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ABSTRACT
It is widely thought that oceanic subduction can trigger cratonic keel delamination, but the 

southwestern Yangtze craton (SYC; southwestern China) lost its lower keel during Cenozoic 
continental collision. The upper mantle beneath the thinned SYC contains its incompletely 
delaminated keel, which has high-velocity seismic anomalies. Combining geophysical obser-
vations with the geochemistry of Eocene mafic potassic lavas derived from the SYC mantle at 
different depths, we suggest that the deep (∼130 km) delaminated lithosphere was more fertile 
and dense, with low-forsterite (Fo; molar 100 × Mg/[Mg + Fe]  = 91.3) and high-δ18O (5.9‰) 
olivine, than the shallow (∼55 km) intact lithosphere (Fo = 94.2; δ18O = 5.2‰), although both 
were rehydrated and oxidized. The deep keel underwent strong refertilization and densifi-
cation owing to the addition of Fe-rich basaltic melts during earlier oceanic subduction. 
Subduction-driven refertilization and subsequent collision-driven cooling caused cratonic 
keel delamination due to compositional and thermal densification rather than hydration- or 
oxidation-induced rheological weakening. Our study provides an example of Cenozoic cra-
tonic keel delamination in a collisional orogen and highlights the key roles of compositional 
and thermal densification in delamination during subduction and collision.

INTRODUCTION
Cratons with thick (as much as 250 km) 

mantle keels have been isolated from mantle 
convection for more than 2 b.y. due to their melt-
depleted and refractory nature. However, some 
cratons lost their keels during oceanic subduc-
tion (Lee et al., 2011; Wu et al., 2019) because 
subduction-related melts may change the mantle 
viscosity by rehydration (Hirth and Kohlstedt, 
1996) and oxidation (Cline et al., 2018) and 
change mantle density by refertilization (Lee 
et al., 2011). However, recent experiments sug-
gest a limited effect of H2O on mantle rheology 
(Fei et al., 2013). Thus, our understanding of 
the relative contribution to cratonic instability 
from different factors (e.g., H2O, oxygen fugac-
ity [fO2], and density) remains poor and conflict-
ing. This may be due to our lack of knowledge 

of the nature of cratonic keels that have sunk 
into the deep mantle.

The thickness of the southwestern Yang-
tze craton (SYC; southwestern China) shows 
a decrease from its interior (as thick as 200 km 
beneath the Sichuan Basin) to its southwest-
ern margin (<80 km thick; Fig. 1; An and Shi, 
2006; Yang et al., 2017), indicating that part of 
the SYC keel has been removed. The deeper 
upper mantle contains high-seismic-velocity 
bodies that are connected to the interior cra-
tonic mantle, implying the keel is incompletely 
delaminated (Fig. 1C; Huang et al., 2019; Lei 
et al., 2019). This delamination during the India-
Asia collision generated potassic magmatism at 
37–33 Ma by melting of the lithospheric mantle 
(Fig. 1B; Lu et al., 2015). This magmatism can 
constrain the nature of the SYC lithospheric 
mantle at different depths, which might shed 
light on the causes of cratonic keel delamination 
in collisional orogens.

SAMPLES AND RESULTS
The SYC is separated from the Indochina 

block to the southwest by the Ailaoshan–Red 
River fault (Fig. 1B). Northward subduction of 
the Paleotethys Ocean beneath the integrated 
SYC and Indochina block during the Paleozoic 
produced the Ailaoshan back-arc oceanic basin. 
Bipolar subduction of the Ailaoshan Ocean dur-
ing the Permian–Triassic caused further mantle 
metasomatism of the SYC margin (Wang et al., 
2018). There is no post-Triassic magmatism in 
the SYC apart from abundant potassic rocks 
formed after the India-Asia collision. We col-
lected Eocene mafic potassic lavas from the 
Dali and Yanyuan areas (Fig. 1B), which were 
erupted on thin (∼70 km) and thick (∼120 km) 
lithosphere, respectively. All the samples are 
porphyritic, with olivine, clinopyroxene, and 
phlogopite phenocrysts, but the Dali lavas have 
larger phenocrysts than the Yanyuan lavas (Fig. 
S1 in the Supplemental Material1). Some Dali 
samples contain diabasic lithic fragments that 
consist mainly of feldspar and clinopyroxene. 
These fragments are not aggregates of pheno-
crysts, given that their host rocks lack feldspar 
phenocrysts (Fig. S1). Olivine phenocrysts con-
tain spinel and melt inclusions (Fig. S2). The 
analytical and data processing methods are 
described in the Supplemental Material.

The Dali lavas are basaltic trachyandesites 
with higher SiO2 contents (51.8–56.2 wt%; on 
an anhydrous basis) but lower CaO, FeOT (total 
Fe), Sm/Yb, and La/Yb than the Yanyuan tra-
chybasalts (SiO2 = 46.4–48.2 wt%) (Fig. 2). 
The Dali olivines have lower CaO contents 
(<0.1 wt%) than the Yanyuan olivines at the 
same forsterite values (Fo; molar 100 × Mg/
[Mg + Fe]), but the maximum olivine Fo (94.2) *E-mails: wqiang@gig .ac .cn; danwei@gig .ac .cn
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and NiO (0.64 wt%) contents and spinel Cr# val-
ues (molar Cr/[Cr + Al] = 0.84–0.90) of the Dali 
lavas are higher than those of the Yanyuan lavas 
(Fo = 91.3; NiO = 0.56 wt%; Cr# = 0.71–0.73; 
Figs. 3A–3C). The olivine-spinel oxybarometer 
of Ballhaus et al. (1991) is valid under oxidized 
conditions and yields fO2 values of FMQ (fay-
alite-magnetite-quartz) + 1.9 (±0.3; 1σ; n = 59) 
for the Dali lavas and FMQ + 1.5 (±0.1; 1σ; 
n = 20) for the Yanyuan lavas. The difference 
between the two results and uncertainty con-
tributed by the spinel analysis are within the 
precision (±0.4 log units) of the oxybarometer 
(Fig. 3C). The horizontal trend between fO2 and 
Fo values indicates fO2 was constant during mag-
matic differentiation (Fig. 3C). Many Dali olivine 
phenocrysts exhibit decreasing Fo and increasing 
δ18O values toward crystal rims (Fig. S2), form-
ing negative correlations between Fo, NiO, and 
δ18O (Figs. 3E and 3F). In contrast, the Yanyuan 
olivine phenocrysts are relatively homogeneous 

and show a horizontal trend between δ18O and 
NiO (Fig. 3F; Fig. S2).

DISCUSSION
Magmatic Phenocrysts or Mantle 
Xenocrysts?

The high-Fo (>89) olivine phenocrysts in 
the Dali lavas have CaO < 0.1 wt%, similar to 
mantle xenocrysts. However, the following evi-
dence suggests a magmatic origin:

(1) High-Fo olivines occur as the cores of 
euhedral phenocrysts and lack the deformation 
(e.g., kink bands) and dissolution textures (Fig. 
S2R) that characterize mantle xenocrysts.

(2) Some olivine cores contain oval melt 
inclusions that are isolated without healed 
cracks (Fig. S2)

(3) Spinel inclusions in olivine (Fig. S2) are 
euhedral, but mantle spinel is anhedral or ver-
micular and distributed along grain boundaries 
(Kamenetsky et al., 2006).

(4) The high-Fo (>92) olivines are in Fe-Mg 
equilibrium with their host rock (Fig. S4), indi-
cating crystallization from the host rock.

(5) The Dali olivines have lower CaO and 
P2O5 contents than the Yanyuan olivines at a 
given Fo value, similar to their corresponding 
host rocks (Figs. 2B and 3A; Fig. S3). Thus, the 
low-Ca feature of olivine was inherited from the 
parental magmas.

Water can also inhibit the partitioning of 
Ca into olivine, as evident from the extreme 
Ca depletions of some arc olivines (Fig. 3A; 
Kamenetsky et al., 2006). Magmatic H2O con-
tents can be estimated from the partition coef-
ficient for CaO between olivine and host rocks 
(Gavrilenko et al., 2016). Using the high-Fo 
olivines in Fe-Mg equilibrium with their host 
rocks (Fig. S4), we obtained H2O contents of 
6.7 ± 0.9 wt% (1σ; n = 43) and 6.0 ± 0.2 wt% 
(1σ; n = 34) for the Dali and Yanyuan lavas, 
respectively (Fig. 3D).

A

B

C

Figure 1. (A) Seismic-thermal lithospheric thickness in China (An and Shi, 2006). (B) Geological map showing Eocene magmatism (Lu et al., 
2015), lithospheric thickness contours (Yang et al., 2017), and sample locations in the southwestern Yangtze craton. (C) Topography and 
P-wave tomography along profile a–b in panel A and lithosphere-asthenosphere boundary (LAB) based on other models (Huang et al., 2019). 
YZ—delaminated Yangtze keel; TC—Tengchong volcano.
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Mantle Source Characteristics
The potassic (K2O/Na2O > 1) feature of 

mantle-derived magmas is attributed to phlogo-
pite breakdown during peridotite or pyroxenite 
melting (Ammannati et al., 2016; Condamine 
et al., 2016). An example of potassic rocks gen-
erated by melting of phlogopite pyroxenite is 
lamproites in Italy (Ammannati et al., 2016). 
The studied olivines have lower NiO contents 
at a given Fo value (Fig. 3B) than those in Ital-
ian lamproites but overlap with those crystal-
lized from peridotite-derived melts, indicating 
a source dominated by phlogopite peridotite. 
Olivine-spinel pairs in the Dali lavas are simi-

lar to those in low-Ca boninites in terms of 
olivine Fo and CaO contents and spinel Cr# 
values (Figs.  3A–3C), and their host rocks 
also have similar SiO2, MgO, CaO, and FeO 
contents (Figs. 2A and 2B). These similarities 
indicate the involvement of shallow, hydrous, 
and ultradepleted harzburgite in their mantle 
source (Prelević and Foley, 2007). Experimen-
tal melts of harzburgite (±phlogopite) gener-
ated at 1–2 GPa also overlap the composition 
of the Dali lavas (Figs. 2A and 2B). In contrast, 
the Yanyuan lavas with high CaO contents are 
similar to melts of carbonated lherzolites gen-
erated at 3–5 GPa (Fig. 2B). Their high Nb/Ta 

ratios (29 ± 1) and the occurrence of carbon-
atites (34–11 Ma) north of Yanyuan also indi-
cate the presence of carbonated mantle (Hou 
et al., 2015). Carbonate metasomatism would 
yield an olivine-rich mantle (Ammannati et al., 
2016). Rare earth element (REE) modeling 
shows that the Dali and Yanyuan lavas could 
have been produced by non-modal batch melt-
ing of light-REE–enriched phlogopite-bearing 
spinel harzburgite and garnet lherzolite, respec-
tively (Fig. 2C). Mantle-melt barometry for the 
high-MgO (>9 wt%) samples indicates that 
the Dali and Yanyuan primary melts formed at 
1.7 ± 0.1 GPa (1σ; n = 12) and 4.0 ± 0.1 GPa 
(1σ; n = 7), respectively (Table S1). A shallower 
origin for the Dali lavas is consistent with low-
pressure andesitic melts derived by the pref-
erential melting of Si-rich orthopyroxene in 
phlogopite harzburgite (Fig. 2A; Condamine 
et al., 2016).

The maximum olivine Fo and NiO contents 
and spinel Cr# values of the Yanyuan lavas are 
lower than for the Dali lavas (Figs. 3B and 3C). 
The difference in olivine Fo values cannot be 
explained by the magmatic fO2 because both 
types of lavas were oxidized with similar fO2 
(Fig. 3C). Fo values of olivine crystallizing in 
a primary magma should be similar to those in 
its mantle source. Thus, the mantle source of 
the Yanyuan lavas was more fertile, with lower 
Cr/Al ratios, lower-Fo (91.3) olivine, and more 
Ca-rich pyroxene than that (Fo = 94.2) of the 
Dali lavas.

High-Fo (>93) olivines with δ18O = 
5.2‰ ± 0.1‰ in the Dali lavas suggest their 
primary magmas originated from normal δ18O 
mantle (Mattey et al., 1994; Fig. 3E). Negative 
correlations between olivine δ18O values and Fo 
and NiO contents imply the high δ18O values 
resulted from combined assimilation and frac-
tional crystallization because olivine fraction-
ation alone cannot produce a large increase in 
δ18O (Figs. 3E and 3F). The likely assimilant 
was the diabasic lithic fragments with a disso-
lution boundary (Fig. S1). These fragments are 
cognate with the host lavas because they have 
similar whole-rock (Fig. 2) and clinopyroxene 
(Fig. S5) compositions and thus represent earlier 
dikes that may have had high δ18O due to low-
temperature hydrothermal alteration. Such self-
cannibalization of cognate mafic rocks has little 
effect on the elements and radiogenic isotopes 
of basalts (Bindeman, 2008). In contrast, the 
horizontal trend between δ18O and NiO values 
for the Yanyuan olivines indicates crystalliza-
tion from magma in equilibrium with high-δ18O 
(5.9‰ ± 0.1‰) mantle olivine (Fig. 3F).

Therefore, the deep (131 ± 5 km) litho-
spheric mantle was more fertile than the shal-
low (55 ± 3 km) lithospheric mantle. The for-
mer likely consisted of refertilized lherzolites 
formed by mantle metasomatism, rather than 
less-depleted peridotite produced during craton 

Figure 2. Major and trace 
element data for the 
southwestern Yangtze 
craton (China) potassic 
lavas. The two curves for 
each lava type represent 
two enriched spinel- and 
garnet-facies mantle 
sources with different 
REE compositions. Data 
sources for samples ana-
lyzed in previous studies, 
experimental peridotite 
melts (±phlogopite [Phl] 
or CO2), low-Ca boninites, 
and melt modeling param-
eters are provided in the 
Supplemental Material 
(see footnote 1).
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formation, because it contained phlogopite and 
had high δ18O and fO2. Mantle metasomatism by 
asthenosphere-derived, Fe-rich basaltic melts 

can lower the Mg/Fe ratios of the cratonic lower 
keel (Fig. 3B; Lee et al., 2011; Zheng et al., 
2015). These Fe-rich basaltic melts respon-

sible for refertilization of the SYC keel had 
high δ18O and fO2 and were K- and CO2-rich, 
and thus may have been derived by melting 

A B

C D

E F

Figure 3. (A–D) Comparison of olivines and spinel inclusions from the southwestern Yangtze craton (China) potassic lavas with those in mid-
oceanic ridge basalts (MORB), Italian lamproites, arc lavas, and low-Ca boninites. Olivine fractionation and magma mixing lines and peridotite 
and pyroxenite melting fields are from Straub et al. (2008). Forsterite (Fo)  = molar 100 × Mg/(Mg + Fe); Cr# = molar Cr/(Cr + Al). Error bars in 
panel C are 1σ. ΔFMQ is the deviation of logfO2 from the fayalite-magnetite-quartz buffer. (E,F) Plots of olivine δ18O versus NiO and Fo. Gray 
shaded area represents δ18O values of normal mantle olivine. Data sources for A–D and olivine fractionation model shown in E and F are given 
in the Supplemental Material (see footnote 1).
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of an asthenospheric wedge fluxed by liquids 
from subducted carbonate-bearing sediments. 
Given that oxygen is a major element, the 
changes in δ18O require strong refertilization. 
Multiple subduction events beneath the SYC 
margin since the Paleozoic would have caused 
extensive refertilization of the SYC deep keel 
(Fig. 4A). Although small amounts of hydrous 
melts remaining from deep refertilization had 
oxidized and rehydrated the shallow harzbur-
gite, they did not alter its refractory nature in 
terms of major elements.

Causes of Cratonic Keel Delamination
Seismic tomography suggests that the 

delaminated keel beneath the thinned SYC 
is not completely detached from the adjacent 
intact craton (Fig. 1C). Numerical modeling 
has shown that cratonic keel delamination can 
occur by peeling off a dense lower keel from 
the craton margin to the interior along weak 
mid-lithospheric discontinuities (MLDs; Liu 
et al., 2018). This explains the similar depths 
of the lithosphere-asthenosphere bound-
ary (LAB) of thinned cratons and MLDs of 
adjacent intact cratons worldwide (Aulbach, 
2018). During delamination of the SYC keel, 
hot asthenosphere flowed into the delaminat-
ing region and caused perturbation of the geo-
therm and melting of hydrated lithospheric 
mantle at various depths (Fig. 4B). The depth 
(131 ± 5 km) of the Yanyuan magma source 
is similar to that (∼120 km; Fig. 1B) of the 
present-day LAB (i.e., the Eocene MLD), 
implying derivation from the upper part of 
the dense lower keel (Fig. 4B). The lower 
keel is more fertile and denser (i.e., low-Fo 
olivine) than the shallow mantle. The empiri-

cal relationship between the bulk density (ρ) 
of mantle peridotite and olivine Fo values 
(ρ = –0.0152 × Fo + 4.74; Lee, 2003) shows 
that a decrease in Fo values from 94.2 to 91.3 
would increase the bulk density by ∼0.044 g/
cm3. This density contrast was the major cause 
of the delamination of the dense lower keel 
and preservation of the buoyant shallow man-
tle (e.g., Liu et al., 2019). H2O contents and fO2 
values played a secondary role because both 
the shallow and deep mantle were hydrated 
and oxidized (Figs. 3C and 3D).

Refertilized peridotite in the SYC lower keel 
has a density (∼3.35 g/cm3) similar to that of fer-
tile Phanerozoic lithosphere (3.36 ± 0.02 g/cm3; 
Poudjom Djomani et al., 2001). It was buoy-
ant when a high geothermal gradient existed 
in association with arc volcanism, but thermal 
contraction rendered it gravitationally unstable 
when magmatic lull and lithospheric thicken-
ing produced a low geotherm (Kay and Kay, 
1993; Poudjom Djomani et al., 2001). Gradual 
eclogitization of Fe-rich infiltrated melts during 
cooling could have further increased the density 
(Liu et al., 2019). Thus, the continued India-
Asia collision caused the thickening, cooling, 
and delamination of the SYC keel. The Eocene 
loss of this dense keel triggered surface uplift 
(Fig. 4B; Chung et al., 1998), as evident from the 
high topography of the thinned SYC (Fig. 1C). 
However, the compositionally unmodified 
refractory keel below the SYC interior remains 
buoyant.

A typical example of cratonic keel delami-
nation during oceanic subduction occurred in 
the eastern North China craton in the Mesozoic 
(Fig. 1A; Wu et al., 2019). It became progres-
sively denser in composition due to keel refer-

tilization during subduction (Liu et al., 2019), 
but its keel delamination occurred mainly during 
the Cretaceous after Jurassic flat subduction of 
the paleo-Pacific slab (Wu et al., 2019). Both flat 
subduction and continental collision can cool 
and thermally densify the lithosphere through 
magmatic lull and compressional thickening, 
which finally triggers the delamination of a cra-
tonic keel that has been compositionally densi-
fied during earlier subduction.

CONCLUSIONS
Our study reveals the nature of a delaminated 

cratonic keel, indicating that a combination of 
earlier refertilization and later cooling of the 
lithosphere, rather than hydration or oxidation, 
can cause its delamination due to compositional 
and thermal densification. Lithospheric refertil-
ization results from prolonged subduction, and 
cooling may be related to magmatic lull and 
lithospheric thickening caused by continental 
collision or flat subduction. We therefore high-
light the key roles of compositional and thermal 
densification in delamination during subduction 
and collision.
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