供氢剂 NaBH₄和 Ni 系金属对高演化干酪根的 生烃影响及催化机理

李 亢^{1,2,3}、卢 鸿^{1,2*},赵忠峰^{1,2,3},彭平安^{1,2}

(1. 中国科学院 广州地球化学研究所, 有机地球化学国家重点实验室, 广东 广州 510640; 2. 中国科学院 深地科学卓越创新中心, 广东 广州 510640; 3. 中国科学院大学, 北京 100049)

摘 要:在金管限定体系温度 500 ℃、压力 50 MPa、恒温 72 h 的条件下,对高演化寒武系玉尔吐斯组和奥陶 系萨尔干组干酪根开展了干酪根、干酪根+Ni 系金属(Ni、NiO、NiS₂)、干酪根+供氢剂 NaBH₄、干酪根+Ni 系金属+供氢剂 NaBH₄ 的高温热解产气实验。干酪根+Ni 系金属热解生成的甲烷略低于单独干酪根,表明金 属催化剂对甲烷生成有轻微抑制作用;玉尔吐斯组和萨尔干组干酪根+供氢剂 NaBH₄ 热解生成的气态烃 (∑C₁₋₅)总产率分别是单独干酪根的 12.8 和 9.8 倍,表明充足的 H 源供应能够使高演化干酪根中的残余有机质 继续裂解生烃;与玉尔吐斯组和萨尔干组干酪根+供氢剂 NaBH₄ 相比,干酪根+Ni 系金属+供氢剂 NaBH₄系列 具有更高的湿气(∑C₂₋₅)产率,分别是只加入供氢剂的 6.4~16.1 和 4.2~8.0 倍。依据 Athabasca 沥青渣油在富 H 条件下的转化机理,高演化干酪根加氢催化裂解生烃的可能机理为:高演化干酪根大分子在热力作用下裂解 生成芳烃自由基,随后在 H₂ 作用下持续加氢生成环烷烃;环烷烃在 H₂、高温高压、金属催化剂的作用下发 生开环裂解生成低碳数气态烃。

关键词:供氢剂;金属催化剂;生烃机理;高演化

中图分类号: P618.130.1 文献标志码: A 文章编号: 0379-1726(2022)06-0651-08 DOI: 10.19700/j.0379-1726.2022.06.004

Effect of hydrogen donor (NaBH₄) and Ni group metals on hydrocarbon generation of highly mature kerogens and their catalytic mechanism

LI Kang^{1, 2, 3}, LU Hong^{1, 2*}, ZHAO Zhongfeng^{1, 2, 3}, PENG Ping'an^{1, 2}

(1. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510600, Guangdong, China; 2. CAS Center for Excellence in Deep Earth Science, Guangzhou 510600, Guangdong, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Pyrolysis experiments of kerogen, kerogen+Ni group metals (Ni, NiO, NiS₂), kerogen+NaBH₄ (hydrogen donor) and kerogen+Ni group metals+NaBH₄ were conducted on the highly mature Cambrian Yuertusi kerogen/ Ordovician Salgan kerogen under a fixed pressure of 50 MPa at 500 °C for 72 h. The results showed that the methane generated by the pyrolysis of kerogen+Ni group metals was slightly lower than that by kerogen alone, indicating that the single metal catalysts slightly inhibited methane generation. The yield of total gaseous hydrocarbon ($\sum C_{1\sim5}$) from the pyrolysis of Yuertusi/Salgan kerogen+NaBH₄ was 12.8 and 9.8 times higher than that from kerogen alone, respectively, indicating that sufficient hydrogen supply could catalyze the highly mature kerogens to continue to generate significant quantities of hydrocarbons. Kerogen+Ni group metals+NaBH₄ had higher wet gas yields ($\sum C_{2\sim5}$) than did Yuertusi/Salgan kerogen+NaBH₄, which were 6.4 to 16.1 and 4.2 to 8.0 times higher

收稿日期: 2021-03-10; 改回日期: 2021-05-17

项目资助: 国家重点研发计划"深地资源勘查开采"重点专项(2017YFC0603102)、中国科学院战略性先导科技专项 A 类(XDA14010102)、 国家重点研发项目(2019YFC0605502)和国家自然科学基金项目(41973069、41673045)联合资助。

第一作者简介:李亢(1994-),男,博士研究生,油气地球化学专业。E-mail: likang@gig.ac.cn

通信作者: 卢鸿(1972-), 男, 研究员, 主要从事油气地球化学、分子生物标志物及稳定同位素研究。E-mail: luhong@gig.ac.cn

than that of kerogen+NaBH₄. Based on the proposed hydrocarbon generation mechanism of Athabasca asphalt residue under hydrogen-rich conditions, we explained the possible hydrocarbon generation mechanism of highly mature kerogen using a hydrogen donor (NaBH₄). The highly mature kerogen macromolecules were cracked to generate aromatic free radicals and then hydrogenated continuously to generate naphthenes in the presence of hydrogen. The ring of the naphthenic was opened to generate chain hydrocarbon free radicals, which continue to generate gaseous hydrocarbons through thermal cracking.

Key words: hydrogen donors; metal catalyst; hydrocarbon generation mechanism; highly mature

0 引 言

热解实验中过渡金属对有机质生烃的影响已被 广泛研究, 过渡金属能显著促进有机质的分解生成 富甲烷的气体(Mango, 1996; Mango and Hightower, 1997; Jin et al., 1999; Medina et al., 2000; 吴艳艳等, 2012)。Mango (1996)和 Mango and Hightower (1997) 以正十八烯、干酪根、原油为反应物进行热模拟实 验,当加入过渡金属 Ni 或者 NiO 时,生成产物中含 有高浓度的甲烷。以他们的过渡金属催化理论为基 础,前人做了大量关于金属元素、矿物的催化实验, 得出的主要结论是过渡金属元素能显著促进有机质 热解生烃(吴艳艳等, 2012; Ma et al., 2016; Gao et al., 2018)。例如, 吴艳艳等(2012)探究了 Mo 对原煤热解 生烃的影响,发现 Mo 对 C7~14 的生成具有促进作用; Gao et al. (2018)通过实验探究 Ni 对低熟煤样Ⅲ型干 酪根热解生烃的影响,发现无论是在有水还是无水 体系中, Ni 的加入都能显著提高甲烷产率。然而, 前人 研究主要集中在金属催化剂对低熟有机质或者模型化 合物的影响,对高演化有机质生烃的影响研究甚少。

在干酪根热演化过程中,有机质的结构逐渐缩合,H含量逐渐降低,因此高演化的干酪根富C贫 H,生烃潜力很弱(Tissot, 1974, 1987),只有在额外 H源供应的情况下,高演化干酪根才有继续大量生 烃的可能。无论是在前寒武纪地层还是在新生代地 层中,均有丰富的富H流体存在(Lollar et al., 2014)。 当H2与沉积岩相遇时,易被其中的黏土矿物和有机 质吸附而参与烃源岩的生烃演化。前人已探究了外 来 H 源对大分子有机质生烃的影响:如 Hawkes (1972)提出深层环境中的游离 H 促进了石油的生成; Love et al. (1995)对干酪根热解生成可溶饱和烃的量 比索氏抽提物的产率高 3~10 倍;金之均等(2003)对 II型干酪根进行加氢热模拟试验,加氢后烃源岩的 生烃率可增加到 140%。但这些研究主要集中在外源 H 对低熟干酪根的生烃影响,对高成熟干酪根的生 烃影响研究甚少。

基于上述考虑,本研究以高成熟玉尔吐斯组和 萨尔干组干酪根作为反应物,选取地质体中含量丰 富的Ni及其金属化合物NiO和NiS2作为催化剂,供 氢剂硼氢化钠(NaBH4)提供外来 H 源,探讨 Ni 系金 属催化剂和外来 H 源对高演化干酪根中的残余有机 质再活化生烃的影响及其中可能的生烃机理。

1 材料与方法

1.1 实验样品

干酪根分别来自塔里木盆地玉尔吐斯组(*R*_o=2.0%) 和奧陶系萨尔干组(*R*_o=1.35%)的高演化烃源岩(王庆 涛等, 2012; 戈一伟和李坤, 2014)。将样品清洗干净, 粉碎至 200 目,用二氯甲烷和甲醇(体积比 9:1)的 混合溶剂索氏抽提 72 h; 抽提后的样品用 HCl 在 80 ℃ 下处理 8 h 以除去碳酸盐矿物,然后用去离子水冲 洗至中性; 随后用 HCl 和 HF(体积比 1:1)的混合溶 液在 80 ℃下处理 8 h; 交替酸处理 6 次除去无机矿 物后制得干酪根。干酪根的基础地球化学数据见表 1。 所用 Ni 系催化剂 Ni、NiO、NiS₂ 和供氢剂 NaBH₄ 均从 Alfa 公司购买, 纯度超过 99.99%。

表 1 玉尔吐斯组和萨尔干组干酪根基础地球化学数据 Table 1 Basic geochemical data of the kerogens from the Yuertusi and Salgan formations

		8		8		8		
层位	TOC(%)	$S_1(mg/g)$	$S_2(mg/g)$	$S_3(mg/g)$	$T_{\max}(^{\circ}\mathbb{C})$	HI(mg/g)	OI(mg/g)	$R_{\rm o}(\%)$
玉尔吐斯组	57.00	1.42	11.00	16.04	579	18	28	2.0
萨尔干组	37.05	1.02	40.27	1.84	452	109	2	1.35

注: 玉尔吐斯组和萨尔干组干酪根 R。数据分别来自戈一伟和李坤, 2014; 王庆涛等, 2012。

1.2 模拟实验

制备一定数量的金管(60 mm×4.5 mm×0.25 mm) 备用。先将金管一端焊封,从另一端装入样品。干 酪根和干酪根+Ni系金属系列中干酪根样品量为60 mg 左右。干酪根+金属催化剂+NaBH₄系列中干酪根样 品量为20 mg 左右,NaBH₄的质量大约是干酪根的 1.7倍,以保证充足的H源供应。样品装毕,用钳子 将金管开口的一端夹紧,用Ar净化15 min以除去金 管内的空气,然后在Ar条件下焊封。将焊封后的金 管置于热水中进行密封性检测,若没有气泡,则证 明金管的密封性好。

将焊封后的金管装入高压釜中,放置于具有15个 独立高压釜的加热炉中加热,50 MPa压力维持金管 内外气压平衡。由于样品成熟度高,低温热解产物产 率低,不便于分析,因此以40 ℃/h的速率快速升温至 500 ℃并恒温72 h,降温后取出金管,以备分析。

1.3 气态烃及无机气体组分分析

气态烃及无机气体组分分析在 Agilent 6890N 气相色谱仪上进行。首先用酒精将金管表面擦拭干 净,置于体积固定并可抽真空的系统中。待系统抽 至完全真空后,在密闭条件下用针将金管刺破,通过 开关阀将气体导入色谱仪中进行成分分析。色谱升温 程序如下:初始温度 60 ℃,保留 5 min,以15 ℃/min 的速率升至130 ℃,再以25 ℃/min的速率升到180 ℃, 保留 4 min。

1.4 ¹³C 固体核磁共振分析

¹³C 固体核磁共振实验分析在 Bruker AVANGE III 400 MHz 超导核磁共振仪上进行。¹³C 的共振频 率为 100.613 MHz。CP-TOSS/MAS 光谱以 5 kHz 的旋 转速度运行。采集时间为 5.12 μs, 光谱宽度为 100 kHz。

2 实验结果

依据加入的反应物,将实验分为干酪根、干酪 根+Ni 系金属、干酪根+NaBH₄、干酪根+Ni 系金属 +NaBH₄4组,获得气态烃及H₂产率的结果见图1、 图 2 和表 2。

干酪根: 玉尔吐斯组和萨尔干组干酪根热解生成甲烷的产率分别为53.61和102.80 mg/g(每克 TOC 的生成量),乙烷和丙烷产率可忽略不计,表明干酪 根 在 高 演 化 阶 段 生 烃 潜 力 弱,产物 以 甲 烷 为 主 (Lorant and Behar, 2002)。二者 H₂ 产率较低,分别为

0.12 和 0.18 mL/g, 与干酪根高演化阶段 H 含量较低 一致(Hawkes, 1972; Lollar et al., 2014)。

干酪根+Ni 系金属: 玉尔吐斯组和萨尔干组干酪根+Ni 系金属(Ni、NiO、NiS₂)热解生成甲烷的产率分别为 23.02~48.08 和 23.30~60.90 mg/g, 整体低于单独干酪根热解生成的甲烷产率。玉尔吐斯组和萨尔干组干酪根+Ni 系金属热解生成 H₂的产率变化范围分别为 0.11~0.15 和 0.13~0.23 mL/g, 与干酪根组近似。

干酪根+NaBH₄: 玉尔吐斯组干酪根+NaBH₄ 热 解生成甲烷、乙烷、丙烷的产率分别为 649.73、35.85、 7.34 mg/g, 总气态烃(∑C_{1~5})产率是单独干酪根的 12.8 倍。萨尔干组干酪根+NaBH₄ 热解生成甲烷、乙 烷、丙烷的产率分别为 891.88、70.32、16.77 mg/g, ∑C_{1~5}产率是单独干酪根的 9.4 倍。玉尔吐斯组和萨 尔干组干酪根+NaBH₄ 热解生成 H₂ 的产率分别为 3.51和 5.24 mL/g, 相比干酪根组 H₂产率同样得到了 很大提高。

干酪根+Ni 系金属+NaBH₄: 玉尔吐斯组干酪根 +Ni 系金属+NaBH₄ 热解生成甲烷、乙烷、丙烷的产率 分别为 318.31~672.70、213.66~676.38、4.74~61.10 mg/g。 与干酪根+NaBH₄ 相比, Ni、NiO、NiS₂等 3 种金属 催化剂的加入显著提升了湿气($\sum C_{2~5}$)产率,是只加入 供氢剂 NaBH₄产率的6.4~16.1倍。萨尔干组干酪根+Ni 系金属+NaBH₄热解生成甲烷、乙烷、丙烷的产率分别 为 298.25~488.59、330.25~692.40、7.91~330.95 mg/g。 3 种 Ni 系金属催化剂的加入同样显著提升了 $\sum C_{2~5}$ 产率,是只加入供氢剂 NaBH₄产率的 4.2~8.0 倍。

玉尔吐斯组和萨尔干组干酪根+Ni 系金属+NaBH₄ 热解生成 H₂的产率是 6.56~8.99 和 9.76~16.94 mL/g, 高于只加入供氢剂系列,可能是因为 Ni 系金属催化 剂的加入促进了供氢剂 NaBH₄分解,生成了更多 H₂。

3 讨 论

3.1 高演化干酪根中的残余有机质在供氢剂作用 下可再活化生烃

在本次热解实验中, 干酪根+Ni 系金属热解生 成的气态烃略低于单独干酪根的热解产烃量, 说明 单独的金属催化剂抑制了高演化干酪根热解生烃。 与前人提出的金属催化剂可以促进有机质裂解生烃 不一致(Mango, 1996; Mango and Hightower, 1997; Medina et al., 2000; 吴艳艳等, 2012), 可能是因为 高演化的干酪根结构更加稳定, 仅依靠单纯的金属

有机质再活化生烃。

高演化干酪根的裂解生烃。在密闭金管中, NaBH4在高

温 500 ℃会分解生成 H₂(2NaBH₄→2NaH+2B+3H₂),

表明充足的 H 源供应能够使高演化干酪根中的残余

催化剂不足以使有机质发生热裂解。

玉尔吐斯组和萨尔干组干酪根+NaBH₄ 热解生成的∑C_{1~5} 产率分别是单独干酪根的 12.8 和 9.4 倍 (图 1; 表 2),表明供氢剂 NaBH₄ 的加入显著促进了

A. 玉尔吐斯组干酪根; B. 干酪根+Ni; C. 干酪根+NiO; D. 干酪根+NiS₂; E. 干酪根+NaBH₄; F. 干酪根+Ni+NaBH₄; G. 干酪根+NiO+NaBH₄; H. 干 酪根+NiS₂+NaBH₄。

图 1 玉尔吐斯组干酪根 500 ℃恒温 72 h 热解生成甲烷(a)、乙烷(b)、丙烷(c)、湿气∑C_{2~5}(d)、总气态烃∑C_{1~5}(e)和 H₂(f)的 产率

Fig.1 Yields of C_1 (a), C_2 (b), C_3 (c), $\sum C_{2-5}$ (d), $\sum C_{1-5}$ (e), and H_2 (f) generated by catalytic pyrolysis of Yuertusi kerogen at 500 °C for 72 h

A. 萨尔干组干酪根; B. 干酪根+Ni; C. 干酪根+NiO; D. 干酪根+NiS₂; E. 干酪根+NaBH₄; F. 干酪根+Ni+NaBH₄; G. 干酪根+NiO+NaBH₄; H. 干酪根+NiS₂+NaBH₄。

- 图 2 萨尔干组干酪根 500 ℃恒温 72 h 热解生成甲烷(a)、乙烷(b)、丙烷(c)、湿气∑C_{2~5}(d)、总气态烃∑C_{1~5}(e)和 H₂(f)的 产率
- Fig.2 Yields of C₁ (a), C₂ (b), C₃ (c), ∑C_{2~5} (d), ∑C_{1~5} (e), and H₂ (f) generated by catalytic pyrolysis of Salgan kerogen at 500 °C for 72 h

3.2 供氢剂 NaBH₄催化高演化干酪根的生烃机理

为探讨高演化干酪根催化生烃机理,首先利用 核磁共振对干酪根的结构进行表征。核磁共振谱图中 不同化学位移区间可归类为 6 种不同结构的官能团: 非极性脂碳(0~62×10⁻⁶)、氧接脂碳(62×10⁻⁶~92×10⁻⁶)、 芳香碳(92×10⁻⁶~150×10⁻⁶)、氧接芳碳(150×10⁻⁶~165×10⁻⁶)、羟基碳(165×10⁻⁶~190×10⁻⁶)和羧基碳(165×10⁻⁶~220×10⁻⁶)(高苑等, 2018)。本次热模拟实验中,玉尔吐斯组和萨尔干组干酪根的芳香碳峰面积远远超过脂肪碳峰(图 3),说明原始干酪根分子中

Table 2Yields of gaseous hydrogeneous	ole 2 Yields of gaseous hydrocarbons and H ₂ generated by catalytic pyrolysis of Yuertusi and Salgan kerogens											
系列	干酪根(mg)	$C_1(mg/g)$	$C_2(mg/g)$	$C_3(mg/g)$	$\sum C_{2\sim 5}(mg/g)$	$\sum C_{1\sim 5}(mg/g)$	$H_2(mL/g)$					
YeTs	60.24	53.61	0.48	0.02	0.50	54.10	0.12					
YeTs+Ni	64.57	23.02	0.25	0.02	0.27	23.29	0.12					
YeTs+NiO	64.21	47.93	0.51	0.02	0.52	48.45	0.11					
YeTs+NiS ₂	64.02	48.08	0.01	0.02	0.03	48.11	0.15					
YeTs+NaBH ₄	24.98	649.73	35.85	7.34	43.19	692.92	3.51					
YeTs+Ni+NaBH ₄	26.54	672.70	213.66	61.10	274.76	947.46	6.84					
YeTs+NiO+NaBH ₄	24.91	613.75	306.44	4.74	311.18	924.93	8.99					
$YeTs+NiS_2+NaBH_4\ NaBH_4+NiS_2+NaBH_4$	21.90	318.31	676.38	17.66	694.04	1012.35	6.56					
SAG	59.95	102.80	1.08	0.07	1.16	103.95	0.18					
SAG+Ni	60.02	47.02	1.13	0.00	1.13	48.14	0.23					
SAG+NiO	60.44	23.30	0.40	0.00	0.40	23.70	0.13					
$SAG+NiS_2$	60.39	60.90	0.01	0.00	0.01	60.91	0.15					
SAG+NaBH ₄	38.72	891.88	70.32	16.77	87.09	978.97	5.24					
SAG+Ni+NaBH ₄	40.47	303.62	368.39	330.95	699.34	1002.96	9.76					
SAG+NiO+NaBH ₄	40.06	488.59	330.25	35.30	365.55	854.14	16.94					
SAG+NiS2+NaBH4	27.59	298.25	692.40	7.91	700.30	998.56	16.00					

表 2 玉尔吐斯组和萨尔干组干酪根热解生成的气态烃及 H₂产率

注:YeTs. 玉尔吐斯组干酪根;SAG. 萨尔干组干酪根。

Fig.3 ¹³C DP/MAS NMR spectra of Yuertusi and Salgan kerogens

主要为芳香碳, 脂肪碳所占比例很小, 与前人的研 究结果一致(Qin et al., 1991; 李岩等, 2013; 高苑等, 2018; Agrawal and Sharma, 2018)。

Sanford (1994, 1995)对 Athabasca 沥青残渣在 N₂、H₂、H₂+催化剂 3 种情况下的裂解产物进行分析, 发现在通入 H₂+催化剂的反应装置中,生成了更多 的气体。他提出了 H₂和金属催化剂促进气体生成的 反应机理:富含芳香烃的残渣分子在热应力作用下 键断裂生成活性不同的脂肪碳自由基和芳香碳自由 基,脂肪碳自由基直接裂解生成气体,芳香碳自由

基与 H₂发生反应, 生成 C-H 键和活性 H 原子, 生 成的活性 H 原子继续攻击芳香环,导致芳香环转变 为环烷烃, 最终继续裂解产生气态烃。Sanford 的实 验体系中,反应装置所需的H2由流动的H2提供,并 保持 H2压力始终维持在 11 MPa; 在本研究封闭黄 金管体系中, 残余 H2产率表明反应所需 H2充足, 高 压 50 MPa 保证了 H₂与反应物的密切接触。前者所 用的反应物为沥青在 524 ℃蒸馏后的剩余残渣,反 应物以富含芳香烃的残碳、沥青质为主;本次热模 拟实验中的玉尔吐斯组和萨尔干组干酪根, 镜质体 反射率分别为 2.0%和 1.35%(表 1),均已达到高演化 阶段,结构多以芳香碳为主(图 3)。两者从反应物到 实验条件,都具有相似性。依据 Sanford (1994)提出 的沥青残渣加氢裂解生烃机理, 高演化干酪根加氢 催化裂解生烃的过程可能为(图 4):选用 Huang et al. (2018)提出的高演化(R=1.98%)干酪根模型作为初 始干酪根的结构模型,高演化的干酪根大分子在高 温下发生脱甲基反应生成少量CH₄和芳香烃自由基; H₂与芳香烃自由基发生反应, 生成活性 H 离子, H 离子继续攻击苯环生成环烷烃;环烷烃在高温高压 下发生开环裂解生成链烃自由基中间体, 随后经过 热裂解生成大量的甲烷、乙烷和丙烷;不存在 H2时, 芳香烃自由基发生聚合反应, 生成结构更加浓缩的 焦炭。

- 图 4 高演化干酪根在供氢剂 NaBH₄ 作用下裂解生烃机 理图
- Fig.4 Hydrocarbon generation mechanism of highly mature kerogens with NaBH₄

值得注意的是: 玉尔吐斯组和萨尔干组干酪根 +Ni 系金属+NaBH₄ 热解生成的 $\sum C_{2-5}$ 产率显著高于 干酪根+NaBH₄ 系列(图 1、2; 表 2), 表明在充足 H 源供应的条件下, Ni 系金属催化剂显著促进了 $\sum C_{2-5}$ 的生成。这可能是因为过渡金属最外电子层有多个 未配对的 d 电子,可与被吸附的 H₂分子形成配位键, 促进了对 H₂的活化,加速了与干酪根大分子的反应 (张敏和林壬子, 1994; Sanford, 1994, 1995)。

3.3 地质体的应用

本次热模拟试验所用的 3 种 Ni 系金属催化剂, 在地质体中含量丰富(Tissot, 1974; Mango et al., 1994; Mango 1996; Mango and Hightower, 1997): Ni 是碳质 沉积岩中主要的组成成分, NiO 是红土镍矿的主要 组成成分, NiS₂ 是针镍矿和镍黄铁矿的主要组成化 合物。研究表明, 过渡金属 Fe 和 Ni 在有机质中的 含量一般为 2000×10⁻⁶ 和 10×10⁻⁶, 在地质条件下具 有很强的活性(Tissot, 1974)。其中 Ni 是过渡金属元 素中催化性能最强者, 烃源岩中 1×10⁻⁶ 的 Ni, 就显 示出很强的催化能力(Mango et al., 1994)。

前人研究认为, 塔里木盆地玉尔吐斯组为良好 的烃源岩层, 形成过程中受海底热液活动的影响, 会带来大量的 CO、CO₂、H₂等挥发组分并富含丰富 的 Ni、Co等过渡金属元素(戈一伟和李坤, 2014)。当 热液与沉积岩相遇时, 热液中的 H₂与具有催化性能 的金属元素易于被沉积岩中的黏土矿物和有机质吸 附, 并参与烃源岩的生烃演化过程(万丛礼等, 2013)。

4 结 论

(1) 高演化的玉尔吐斯组和萨尔干组干酪根热 解产物以甲烷为主,单纯 Ni 系金属的加入轻微抑制 了甲烷生成。

(2) 充足的 H 源供应(供氢剂 NaBH₄)能够使高 演化玉尔吐斯组和萨尔干组干酪根继续裂解,生成 大量气态烃。

(3) 在供氢剂 NaBH₄ 作用下,高演化干酪根加 氢裂解生烃的可能机理为:干酪根大分子热裂解生 成芳香碳自由基,芳香碳自由基在 H₂ 作用持续加氢 生成环烷烃,环烷烃继续发生开环裂解生成低碳数 气态烃。

(4) 供氢剂 NaBH₄和 Ni 系金属的协同配合显著 提高了湿气($\sum C_{2-5}$)产率,可能是因为金属催化剂促 进了 H 活化,生成更多的活性 H 离子和干酪根发生 反应。

致谢:感谢两位匿名审稿专家对本文提出的宝贵 意见。

参考文献(References):

- 高苑, 邹艳荣, 彭平安. 2018. 核磁共振芳碳率作为成熟 度指标的有效性讨论. 地球化学, 47(1): 102-110.
- 戈一伟,李坤. 2014. 塔里木地区下寒武统玉尔吐斯组烃 源岩地球化学特征. 重庆科技学院学报(自然科学版), 16(1): 8-12.
- 金之钧,张刘平,杨雷,胡文瑄. 2002. 沉积盆地深部流 体的地球化学特征及油气成藏效应初探. 地球科学,

27(6): 659-665.

- 李岩,王云鹏,赵长毅,卢家烂.2013. 煤中干酪根在热 演化中结构变化的红外光谱研究. 矿物岩石地球化 学通报,32(1):97-101.
- 万从礼,金强,翟庆龙. 2003. 东营凹陷滨南地区水下火 山喷溢对烃源岩形成及生烃演化的作用. 石油大学 学报(自然科学版), 27(3): 17-21.
- 王庆涛,江林香,刘奇宝,曾建,卢鸿,刘金钟,彭平安. 2012. 柯坪剖面中上奧陶统烃源岩的催化加氢裂解 产物特征及其地质意义.地球化学,41(5):415-424.
- 吴艳艳,秦勇,刘金钟,王爱宽. 2012. 矿物/金属元素在 煤成烃过程中的作用——以黔西滇东上二叠统大河 边煤矿煤样为例. 天然气地球科学, 23(1): 141–152.
- 张敏,林壬子. 1994. 试论轻烃形成过程中过渡金属的催化作用. 地质科技情报, 13(3): 75-80.
- Agrawal V, Sharma S. 2018. Molecular characterization of kerogen and its implications for determining hydrocarbon potential, organic matter sources and thermal maturity in Marcellus Shale. *Fuel*, 228: 429–437.
- Gao J L, Liu J Q, Ni Y Y. 2018. Gas generation and its isotope composition during coal pyrolysis: The catalytic effect of nickel and magnetite. *Fuel*, 222: 74–82.
- Hawkes H E. 1972. Free hydrogen in genesis of petroleum. *AAPG Bulletin*, 11: 2268–2270.
- Huang Z K, Liang T, Zhan Z W, Li M W, Peng P A. 2018. Chemical structure evolution of kerogen during oil generation. *Marine Petroleum and Geology*, 98: 422–436.
- Jin Q, Xiong S S, Lu P D. 1999. Catalysis and hydrogenation: Volcanic activity and hydrocarbon generation in rift basins, eastern China. *Applied Geochemistry*, 14(5): 547–558.
- Lollar B S, Onstott T C, Lacrampe-Couloume G, Ballentine C J. 2014. The contribution of the Precambrian continental lithosphere to global H₂ production. *Nature*, 516(7531): 379–382.
- Lorant F, Behar F. 2002. Late generation of methane from

mature kerogens. Energy & Fuels, 16(2): 412-427.

- Love G D, Snape C E, Carr A D. 1995. Release of covalently bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. *Organic Geochemistry*, 23(10): 981–986.
- Ma X X, Zheng J J, Zheng G D, Wang X, Yu Q, Xia Y Q, Wang Z D, Wang X F, Ye X Y. 2016. Influence of pyrite on hydrocarbon generation during pyrolysis of type-III kerogen. *Fuel*, 167: 329–336.
- Mango F D. 1996. Transition metal catalysis in the generation of natural gas. *Organic Geochemistry*, 24(10): 977–984.
- Mango F D, Hightower J W. 1997. The catalytic decomposition of petroleum into natural gas. *Geochimica et Cosmochimica Acta*, 61(24): 5347–5350.
- Mango F D, Hightower J W, James A T. 1994. Role of transition metal catalysis in the formation of natural gas. *Nature*, 368: 536–538.
- Medina J C, Butala S J, Bartholomew C H, Lee M L. 2000. Low temperature iron- and nickel catalyzed reactions leading to coalbed gas formation. *Geochimica et Cosmochimica Acta*, 64(4): 643–649.
- Qin K Z. 1991. A new method to estimate the oil and gas potentials of coals and kerogens by solid state ¹³C NMR spectroscopy. *Organic Geochemistry*, 17(6): 865–887.
- Sanford E C. 1994. Molecular approach to understanding residuum conversion. *Industrial & Engineering Chemistry Research*, 33(1): 109–117.
- Sanford E C. 1995. Conradson carbon residue conversion during hydrocracking of Athabasca bitumen: Catalyst mechanism and deactivation. *Energy & Fuels*, 9: 549–559.
- Tissot B P. 1974. Influence of nature and diagenesis of organic matter in formation of petroleum. *AAPG Bulletin*, 58(3): 499–506.
- Tissot B P. 1987. Thermal history of sedimentary basins, maturation indexes, and kinetics of oil and gas generation. *AAPG Bulletin*, 71(12): 1445–1466.