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• Carbonaceous aerosols from on-road
vehicle fleet were tested in an urban
tunnel.

• An average OC/EC ratio of 1.8 ± 1.0 was
obtained for the on-road vehicle emis-
sion.

• Fleet average EFs of OC and EC were
8.5 ± 6.6 and 4.9 ± 2.6 mg km−1, re-
spectively.

• Regression-derived average TC-EF of
319.8 mg km−1 for DVs and 2.1 mg
km−1 for GVs.

• Brown carbon contributed 19.1% light
absorption by carbonaceous aerosols at
405 nm.
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With changingnumbers, compositions, emission standards and fuel quality of on-road vehicles, it is imperative to
accordingly characterize and update vehicular emissions of carbonaceous aerosols for better understanding their
health and climatic effects. In this study, a 7-day field campaign was conducted in 2019 in a busy urban tunnel
(>30,000 vehicles day−1) in south China with filter-based aerosol samples collected every 2 h at both the inlet
and the outlet for measuring carbonaceous aerosols and their light absorbing properties. Observed fleet average
emission factor (EF) of total carbon (TC)was 13.4± 8.3mg veh−1 km−1, and 17.4±11.3mg veh−1 km−1 if elec-
tric and LPG-driven vehicles were excluded; and fleet average EF of organic carbon (OC) and elemental carbon
(EC) was 8.5 ± 6.6 and 4.9 ± 2.6mg veh−1 km−1 (11.0± 8.8 and 6.3± 3.6mg veh−1 km−1 if excluding electric
and LPG vehicles), respectively. Regression analysis revealed an average TC-EF of 319.8mg veh−1 km−1 for diesel
vehicles and 2.1 mg veh−1 km−1 for gasoline vehicles, and although diesel vehicles only shared ~4% in the fleet
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On-road vehicles
Emission factors
Light absorption
Tunnel test
Black carbon
Brown carbon
compositions, they still dominate on-road vehicular carbonaceous aerosol emissions due to their over 150 times
higher average TC-EF than gasoline vehicles. Filter-based light absorption measurement demonstrated that on
average brown carbon (BrC) could account for 19.1% of the total carbonaceous light absorption at 405 nm, and
the average mass absorption efficiency of EC at 635 nm and that of OC at 405 nm were 5.2 m2 g−1 C and
1.0 m2 g−1 C, respectively.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Carbonaceous aerosols have significant effects on air quality (Cao
et al., 2012; Che et al., 2007; Wu et al., 2007), human health (Maji
et al., 2018; Shang et al., 2013; Tie et al., 2009), and climate change
(Akimoto, 2003; Ramanathan et al., 2001). Carbonaceous aerosols are
very complex mixtures, consisting of organic carbon (OC) and a refrac-
tory carbon component, which refers to the elemental carbon (EC,when
quantified by thermally optical method) or black carbon (BC, it is called
equivalent black carbon (eBC) when quantified by optical method)
(Chow and Watson, 2002; Petzold et al., 2013; Contini et al., 2018). As
an important short-lived climatic pollutant, BC poses directwarming ef-
fects only less than CO2 (Bond et al., 2013), and thus emission control of
BC is of increasing concern for co-benefits in reducing both health risks
and global warming potentials. Organic carbon (OC), as the major com-
ponent of carbonaceous aerosols, is considered as a pure scattering
aerosol in early studies and therefore may have a cooling effect on the
climate (Bond et al., 2013; Bond et al., 2004; Mordukhovich et al.,
2009; Ramanathan et al., 2007). However, recent studies have revealed
that light-absorbing compounds, termed brown carbon (BrC), are pres-
ent in OC, introducing large uncertainties to current climate models
(Feng et al., 2013; Jo et al., 2016). BrC may contribute about 10–30% of
total light absorption of airborne fine particles at 365 nm and 405 nm
(Clarke et al., 2007; Favez et al., 2009; Sun et al., 2007; Yang et al.,
2009). BrC from biomass burning, in particular, could even contribute
more than 65% of light absorption at 370 nm (Favez et al., 2009). As
China has become the largest emitter of carbonaceous aerosols (Bond
et al., 2007; Cofala et al., 2007) with approximately one-fourth of global
carbonaceous aerosol emissions (Bond et al., 2007; Cofala et al., 2007),
controlling short-lived climate pollutants like carbonaceous aerosols in
China has the potential to yield more immediate climate benefits than
controlling long-lived climate pollutants, such as carbon dioxide (CO2)
(Schmale et al., 2014; Shindell et al., 2012).

Vehicle emissions are an important source of carbonaceous aero-
sols, especially in urban areas. Bond et al. (2004) pointed out that
globally vehicle exhausts could contribute 11.5% of the total BC emis-
sions. As estimated by Wang et al. (2012), vehicle emissions could
account for 9.4% of China's BC emissions in 2007, of which diesel
and gasoline vehicles shared 8.0% and 1.4%, respectively. In urban
areas, vehicular emission could contribute up to 50% of total carbo-
naceous aerosols (Almeida et al., 2005; Maykut et al., 2003; Yu
et al., 2013). Since vehicular emissions are highly dynamic with the
changing engine technology, after-treatment performance, and
tightening emission standards, it is imperative to accordingly char-
acterize carbonaceous aerosol emissions from on-road vehicles and
timely update the emission estimates. As a matter of fact, emissions
of air pollutants from vehicles would decrease significantly with
stricter emission standards (Zhao et al., 2018).

There are a variety of approaches to characterizing vehicle emis-
sions, such as chassis and engine dynamometer testing (Artelt et al.,
1999), roadside measurements (Bishop and Stedman, 1996), portable
emissions measurements (Yao et al., 2015), and tunnel tests (Zhang
et al., 2015). Among these approaches, tunnel tests could obtain emis-
sions for on-road vehicle fleets under real-world driving conditions
(Chirico et al., 2011), and there have been some studies in China tomea-
sure emission factor (EF) of carbonaceous aerosols based on tunnel
tests,mainly in the Pearl River Delta region, theworld's largestmegacity
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in south China. Studies in the ShingMun Tunnel in Hong Kong revealed
that fleet-average EF of total carbon (TC; the sum of OC + EC) had de-
creased greatly from 101.5 mg veh−1 km−1 in 2003 (Cheng et al.,
2011) to 22.2 mg veh−1 km−1 in 2015 (Niu et al., 2020), probably due
to the implementation of Euro V emission standard in 2007. However,
Chiang and Huang (2009) observed that a fleet-average TC-EF of
19.8 mg veh−1 km−1 based on tests in the Chung-Liao Tunnel in Hong
Kong in 2019, and the TC was OC-dominating instead of EC-
dominating as observed in the Shing Mun Tunnel. The differences in
emissions of carbonaceous aerosols from the two tunnel tests in Hong
Kong might result from their different fleet compositions, which is an
important factor influencing carbonaceous aerosol emissions as demon-
strated in previous studies (Alander et al., 2004; Robert et al., 2007;
Yang et al., 2019). In the Zhujiang Tunnel, a busy urban tunnel in Guang-
zhou and the same tunnel where this study was conducted, emission
factors and compositions of carbonaceous aerosols were measured in
2004, 2013, and 2014, respectively (He et al., 2008; Dai et al., 2015;
Zhang et al., 2015). Liu et al. (2012) reported EF of carbonaceous aero-
sols based on the tests in 2010 in an urban tunnel in Shenzhen, a big
city neighboring Hong Kong. In north China, Cui et al. (2016) compared
emissions and composition profiles of PM2.5 in both anurban tunnel and
a suburban tunnel in 2014 in Yantai, and pointed out that vehicle types
and driving conditions could affect carbonaceous aerosol compositions
and emissions. For the light absorption of carbonaceous aerosols from
on-road vehicles in China, only one study is availablewith roadway tun-
nel experiments (Yuan et al., 2016).

In recent years, the number of vehicles in China rose rapidly from
170 million in 2014 to 348 million in 2019 (http://www.mee.gov.cn/
hjzl/sthjzk/ydyhjgl/). Meanwhile, vehicle emission standards have
been updated from China IV in 2010 to China V in 2015 and to China
VI in 2020. Therefore, it is necessary to update vehicular EF for carbona-
ceous aerosols with the rapid changes. In essence, measurements in the
Zhujiang Tunnel have revealed great changes in on-road vehicular
emissions during 2004–2014 (He et al., 2008; Zhang et al., 2015,
2018). Here we renewed our tests in the Zhujiang Tunnel in 2019, and
this study aims to: (1) update EF of carbonaceous aerosols and assess
the effectiveness of vehicle emission control in reducing carbonaceous
aerosol emissions by comparing with previous studies in the same
tunnel; (2) investigate the light-absorption properties of vehicular
carbonaceous aerosols; and (3) quantitatively estimate contributions
to light absorption by BC and BrC emitted by on-road vehicles under
real-world driving conditions.

2. Experimental

2.1. Tunnel sampling

The field campaign was conducted in the Zhujiang Tunnel (23.13°N,
113.25°E) in urban Guangzhou during October 13–19, 2019. The tunnel
is 1238 m in length, consisting of a 721 m flat underwater section and
two 517 m open slope sections. Sampling sites were located 50 m
away from the entrance and outlet of the flat underwater section, re-
spectively (Fig. 1). The detailed descriptions of the tunnel were given
elsewhere (Zhang et al., 2015). The ventilation systems in the tunnel
were all closed during the sampling period to ensure that the accumu-
lation of particulatematter inside the tunnelwas solely attributed to ve-
hicle emissions.

http://www.mee.gov.cn/hjzl/sthjzk/ydyhjgl/
http://www.mee.gov.cn/hjzl/sthjzk/ydyhjgl/


Fig. 1. Schematic diagram of sampling sites in the Zhujiang Tunnel.
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Filter-based PM2.5 samples were collected concurrently at both
the inlet and the outlet stations by high-volume samplers (TE-6070,
Tisch Environmental Inc., USA) at a constant flow rate of 1.1 ±
0.04 m3·min−1 during each 2-h intervals, namely 0:00–2:00,
02:00–04:00, 04:00–06:00, 06:00–08:00, 08:00–10:00, 10:00–12:00,
12:00–14:00, 14:00–16:00, 16:00–18:00, 18:00–20:00, 20:00–22:00
and 22:00–24:00. Before sampling, the quartz filters (8 × 10 in.,
Whatman, UK) were prebaked at 450 °C for 4 h to eliminate any inter-
ference from the filters. All collected samples were stored in a refriger-
ator at −20 °C before chemical analysis. The blank samples were
collected by loading the filter onto the sampler without starting the
sampler.

The meteorological parameters, such as wind speed and tempera-
ture, were synchronously measured at the entrance and the exit sam-
pling locations by a 3-D Sonic Anemometer. The accuracy of the 3-D
Sonic Anemometer in measuring wind direction, horizontal wind, and
ambient temperature is ±0.7°, 1 m s−1 and ± 0.5 °C, respectively.
More detailed descriptions about the 3-D Sonic Anemometer can be
found in our previous study (Zhang et al., 2015). A video camera was
placed at the entrance during the sampling periods. The videotapes
were used to count vehicle number and to categorize the vehicles into
four categories by fuel-types, namely, diesel vehicles (DVs) (including
heavy-duty trucks, medium-duty trucks, large passenger cars, and me-
dium passenger cars), gasoline vehicles (GVs) (including sedan cars
with blue license plates, light-duty trucks, light passenger cars, andmo-
torcycles), electric vehicles (EVs) (including sedan cars with green li-
cense plates, taxis, buses with green license plates), and liquefied
petroleum gas vehicles (LPGVs) (including taxies with blue license
plates) (He et al., 2005).

2.2. Chemical analysis

Organic carbon and elemental carbon in PM2.5 were analyzed by a
DRI Model 2015 multi-wavelength thermal/optical carbon analyzer
(Desert Research Institute, Nevada, USA). A circular punch (0.5024
cm2) of the filters was taken into the quartz groove and analyzed by
an IMPROVE_A heating procedure. This heating procedure included
four OC fractions (OC1, OC2, OC3, and OC4 with cutting temperature
of 140, 280, 480, and 580 °C, respectively, in a helium atmosphere)
and three EC fractions (EC1, EC2, and EC3 with cutting temperature of
580, 740, and 840 °C, respectively, in an oxygen/helium atmosphere of
2/98 volume ratio). Meanwhile, this analyzer, which was equipped
with seven diode lasers (405, 455, 532, 635, 780, 808, and 980 nm),
can also be used to determine the spectral reflectance and transmit-
tance of filter samples. During the analysis of samples, the stability
and reliability of the instrument are tested daily with standard potas-
sium phthalate (Li et al., 2018).
3

2.3. Calculation of emission factors

Average emission factors (EF) for vehicles traveling through the tun-
nel during a time interval were calculated the same way as in previous
studies (Zhang et al., 2015)

EFi ¼
Ci,out−Ci,in
� �� Vair � T � A

N � L
ð1Þ

where EFi (mg veh−1 km−1) is the emission factor of i species; Ci,out and
Ci,in (mg m−3) are the concentration of i species at the tunnel exit and
entrance, respectively; Vair (m s−1) is the air velocity parallel to the tun-
nel sensed by the 3-D sonic anemometer; A is the tunnel cross-section
area, which is 52.8 m2 in this study; N is the total traffic number travel-
ing through the tunnel during the time interval T (s) (T=7200 s in this
study), and L is the length of the tunnel between the twomonitoring lo-
cations, which is 0.621 km in this study.

2.4. Calculation of light absorption coefficient

The light absorption coefficient (babs) for particles was estimated by
Eq. (2) as described in detail in previous studies (Chen et al., 2015; Li
et al., 2018):

babs ¼ Aλ � ln
FTλ,f

FTλ,i

� �� �2
þ Bλ � ln

FTλ,f

FTλ,i

� �
� A
V

ð2Þ

where Aλ and Bλ are coefficients describing wavelength-specific
multiple-scattering and loading effects, respectively, and the values of
Aλ and Bλwere reported by Chen et al. (2015); FTλ,i and FTλ,f are the fil-
ter transmittance measured before and after thermal analysis, respec-
tively, and here FTλ,f approximates the transmittance of a blank filter;
A is the filter area, and V is the sampling volume.

Since BC and BrC are the light-absorbing materials in the aerosol
samples, a simplified two-component model was used to differentiate
their relative contributions to light absorption (Chen et al., 2015; Li
et al., 2018):

babs ¼ KBC � λ−AAEBC þ KBrC � λ−AAEBrC
� 	

� A
V

ð3Þ

where KBC and KBrC are the fitting coefficients for BC and BrC, respec-
tively; AAEBC and AAEBrC are the absorption Angstrom exponent
values of BC and BrC, respectively. Previous studies have shown that
when particulate matter is mainly emitted from the high-
temperature combustion process of motor vehicles, its correspond-
ing AAE value of BC is close to 1 (Bergstrom et al., 2002; Bond and
Bergstrom, 2006; Drozd and McNeill, 2014; Yuan et al., 2016).



Fig. 3. Average diurnal variations of ΔOC and ΔEC concentrations during the sampling
period.
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Therefore, in this study, we assume that AAEBC value is 1.0. And, the
corresponding mass absorption efficiency (MAE, m2 g−1 C) could be
calculated in the following formula:

MAE ¼ Δbabs
Δcarbonaceous aerosols

ð4Þ

where Δcarbonaceous aerosols are the incremental carbonaceous aero-
sols concentrations (μg m−3).

3. Results and discussion

3.1. Traffic fleets and carbonaceous aerosol concentrations inside the tunnel

During the sampling campaign, the traffic volume in the tunnel var-
ied from 34,141 to 37,721 vehicles day−1, and its daily maximums oc-
curred between 16:00–18:00 with an average of 4170 vehicles h−1.
The traffic volume was higher during the daytime (8:00–20:00) with
an average of 3765 vehicles h−1our compared to that during the night-
time with an average of 2211 vehicles h−1. The temporal variation in
GVs, DVs, EVs, and LPGVs during the sampling period were shown in
Fig. 2. On average, GVs, EVs, LPGVs, and DVs accounted for 75.1%,
13.3%, 7.8%, and 3.8%, respectively. Unlike the fleet compositions ob-
served in the same tunnel in 2014 (Zhang et al., 2015), the number of
EVs increased rapidly in recent five years, and EVs replaced DVs to be-
come the second-largest in the vehicle fleets (Fig. 7).

The average incremental concentrations from inlet to outlet for OC
and EC, termed ΔOC and ΔEC, were 9.8 ± 6.4 μg m−3 and 6.0 ± 3.2 μg
m−3; and they were 67.0% and 68.6% lower than those observed in
the same tunnel in 2014 (Zhang et al., 2015), respectively. The ΔOC/
ΔEC ratios ranged from 0.2 to 5.7with an average of 1.8±1.0. The dom-
inance of GVs in the fleet in this study makes the average OC/EC ratio
much higher than those in tunnelswith a larger portion of DVs traveling
through, such as 0.76 in Sepulveda tunnel, USA (Gillies et al., 2001), 0.21
in Bulk-Ak tunnel, Korea (Ma et al., 2004), 0.20 in Kaisermuhlen tunnel,
Austria (Handler et al., 2008), 0.53 in an urban tunnel, France (El
Haddad et al., 2009), and 0.29–0.37 in Marques de Pombal tunnel,
Portugal (Pio et al., 2011). This difference in the OC/EC ratios is also con-
sistent with dynamometer test results, which demonstrated that the
higher OC/EC ratios (>1) were associated with gasoline vehicle emis-
sions while lower values (0.2–0.9) were associated with diesel vehicle
emissions (Alander et al., 2004; Robert et al., 2007; Yang et al., 2019).
Fig. 2. Diurnal variations of different fuel-ty
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ΔOC andΔEC showed great diurnal variations, but not in a consistent
way (Fig. 3). It was found that the variation in ΔOC and ΔEC concentra-
tionswas associatedwith the traffic fleet compositions (the proportions
of GVs and DVs) (Alander et al., 2004; Robert et al., 2007; Yang et al.,
2019). For example, during 4:00–6:00, ΔOC had a small peak while
ΔEC dropped to the lowest, largely due to increases in the proportion
of GVs at this time intervals. At the beginning of the morning rush
hour (4:00–6:00), the number of GVs had risen sharply, while the num-
ber of DVs had remained stable or even declined. Similarly, during
18:00–20:00, ΔEC decreased significantly while ΔOC increased to
reach a peak because DVs were prohibited from entering the urban
areas, leading to a sharp drop in numbers of DVs between 17:00 and
20:00.

3.2. Emission factors of carbonaceous aerosols

The fleet average EF for TC was 13.4± 8.3mg veh−1 km−1, in which
EF for OC and EC was 8.5 ± 6.6 and 4.9 ± 2.6 mg veh−1 km−1, respec-
tively. As EVs have no emission of carbonaceous aerosols and emissions
of carbonaceous from LPGVs can be negligible (Zhai et al., 2007;
Ristovski et al., 2005; Stewart et al., 2021; Wang et al., 2013; Wang
et al., 2004), if LPGVs and EVs are excluded, the average TC-EF for GVs
and DVs should be 17.4 ± 11.3 mg veh−1 km−1, and the EF for OC
and EC was 11.0 ± 8.8 and 6.3 ± 3.6 mg veh−1 km−1, respectively.

To explore the trend of carbonaceous aerosol emission from on-road
vehicles with the increasingly tightened vehicle emission standards and
pe vehicles during the sampling period.



Table 1
EFs of carbonaceous aerosols from this study in comparison with those from previous tunnel studies.

Study area-test year Emission factors (mg veh−1 km−1) References

OC EC TC

Monterrey Tunnel, USA-2009 12.6 5.7 18.3 (Mancilla and Mendoza, 2012)
Kiborn Tunnel, USA-2000 6.4 6.9 13.3 (Lough et al., 2005)
Howell Tunnel, USA-2000 12.9 6.6 19.5
Kaisernuhlen Tunnel, Austria-2005 5.4 17.8 23.2 (Handler et al., 2008)
Sepulveda Tunnel, USA-1996 19.3 25.5 44.8 (Gillies et al., 2001)
Osmangazi Tunnel, Turkey-2018 40.3 33.7 74.0 (Gaga et al., 2018)
Shing Mun Tunnel, Hong Kong-2003 35.7 65.8 101.5 (Cheng et al., 2011)
Shing Mun Tunnel, Hong Kong-2015 6.6 15.6 22.2 (Niu et al., 2020)
Chung-Liao Tunnel, Taiwan-2009 15.1 4.7 19.8 (Chiang and Huang, 2009)
Shenzhen Tunnel, Shenzhen-2010 9.7 20.2 29.9 (Liu et al., 2012)
WZS Tunnel, Yantai-2014 19.4 22.5 41.9 (Cui et al., 2016)
KXL Tunnel, Yantai-2014 3.9 2.3 6.2
Zhujiang Tunnel, Guangzhou-2004 24.3 49.6 73.9 (He et al., 2008)
Zhujiang Tunnel, Guangzhou-2013 16.7 16.4 33.1 (Dai et al., 2015)
Zhujiang Tunnel, Guangzhou-2014 19.3 13.3 32.6 (Zhang et al., 2015)
Zhujiang Tunnel, Guangzhou-2019 8.5 4.9 13.4 This study

Table 2
Comparison of TC-EFs (mg veh−1 km−1) for DVs and GVs derived from regression in this
study with those in previous studies.

Study area-test year TC-EFs Vehicle type

Caldecott Tunnel, San Francisco, USA-1997a 3.5 Light-duty vehicle
428.0 High duty vehicle

Shing Mun Tunnel, Hong Kong, China-2003b 11.7 Light-duty vehicle
198.9 High duty vehicle

Shenzhen Tunnel, Shenzhen, China-2010c 8.7 Light-duty vehicle
124.4 High duty vehicle

Zhujiang Tunnel, Guangzhou, China-2004d 35.0 Light-duty vehicle
217.0 High duty vehicle

WZS Tunnel, Yantai, China-2014e;
KXL Tunnel, Yantai, China-2014e

1.0 Gasoline vehicle
277.0 Diesel vehicle

Zhujiang Tunnel, Guangzhou, China-2019f 2.1 Gasoline vehicle
317.7 Diesel vehicle

a (Allen et al., 2001).
b (Cheng et al., 2011).
c (Liu et al., 2012).
d (He et al., 2008).
e (Cui et al., 2016).
f This study.
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changing fleet compositions, we compared the results from this study
with those from previous studies, as showed in Table 1. Compared
with that from other tunnel studies over the world, the average TC-EF
of the entire fleet (13.4 mg veh−1 km−1) from this study was similar
to that of 13.3 mg veh−1 km−1 observed in 2000 in Kilborn tunnel in
Milwaukee, America, and only higher than that of 6.2 mg veh−1 km−1

observed in 2014 at the suburban KXL tunnel in Yantai, China
(Table 1). The fleet OC-EF of 8.5 mg veh−1 km−1 was at a relatively
low level, but still higher than that of 6.4 mg veh−1 km−1 observed in
2000 at the Kilborn tunnel, 5.4 mg veh−1 km−1 in 2005 at the
Kaisernuhlen tunnel, and 6.6 mg veh−1 km−1 in 2015 at the Shing
Mun tunnel; Similarly, the fleet EC-EF of 4.9 mg veh−1 km−1 was
much lower when compared to that ranging 5.7–65.8 mg veh−1 km−1

reported in other tunnel studies (Cui et al., 2016; Gaga et al., 2018;
Gillies et al., 2001; Handler et al., 2008; Liu et al., 2012; Lough et al.,
2005; Mancilla and Mendoza, 2012; Niu et al., 2020), except that an
EC-EF as low as 4.7 mg veh−1 km−1 was observed in the Chung-Liao
tunnel in Taiwan (Chiang andHuang, 2009). Comparedwith other stud-
ies, the low EC-EF in this studymay be resulted from a lower proportion
of DVs (Alander et al., 2004; Robert et al., 2007; Yang et al., 2019) and
tighter emissions standards (Zhang et al., 2015).

Compared with the previous studies in the same tunnel (He et al.,
2008; Zhang et al., 2015), measured average TC-EF decreased by 59.0%
from 2014 to 2019, in which the EF of OC and EC decreased by 56.0%
and 63.5%, respectively. The significant reduction in carbonaceous aero-
sol emissions was mainly due to changes in fuels and emission stan-
dards (He et al., 2008; Shen et al., 2014; Zhang et al., 2015; Niu et al.,
2020). In the city of Guangzhou, since 2004 public transportation vehi-
cles such as buses and taxis had been converted from diesel- and
gasoline-driven to LPG-driven and electric-driven (He et al., 2008;
Zhang et al., 2015). By 2018, all buses had been switched to electric-
driven ones, all taxis had been switched to electric-driven or LPG-
driven ones, and the number of electric-driven private cars had also in-
creased rapidly. On the other hand, upgrading motor vehicle emissions
standardswas also an important factor leading to a significant reduction
in vehicle emissions (Shen et al., 2014). Emission standards of particu-
late matter from vehicles were upgraded from 0.08 to 0.20 g km−1 in
China II (GB18352.2-2001) to 0.0045 g km−1 in China V (or Euro
V) (GB 18352.5-2013). By 2018, the proportion of motor vehicles meet-
ing the emission standards of China IV and above reached up to 73.4%
(Zhang et al., 2015).

As EVs have no emission of carbonaceous aerosols and emissions of
carbonaceous from LPGVs are negligible, we can ascribe emissions of
carbonaceous aerosols in the tunnel to diesel and gasoline vehicles,
5

and average EF for diesel and gasoline vehicles can be derived from re-
gression based on the following equation (Zhang et al., 2015):

EFi ¼ αi � EFdiesel þ 1−αið Þ � EFgasoline ð5Þ

where EFi is the fleet average EF excluding EVs and LPGVs during
time inter i, αi is the fraction of DVs during time interval i, EFdiesel is
the average emission factor for DVs, and EFgasoline is the average emis-
sion factor for GVs. Based on the regression analysis, an average TC-EF
was derived to be 319.8 ± 65.1 mg veh−1 km−1 for DVs and 2.1 ±
3.6 mg veh−1 km−1 for GVs. Based on the regression results, although
the proportion of DVs was only ~4% in the fleet, they contributed over
88% of carbonaceous aerosols from on-road vehicles since the average
TC-EF for DVs was over 150 times higher than that for GVs.

A comparison of our results with those reported from previous tun-
nel studies based on the same regressionmethodwas shown in Table 2.
Compared with other studies, The GV-EF in this study were only higher
than that of 1.0 mg veh−1 km−1 observed in 2014 in Yantai, China (Cui
et al., 2016), but significantly lower than that from other tunnel studies
(Table 2). In the same tunnel, the GV-EF measured in 2004 by He et al.
(2008) was 16.7 times that measured from this study in 2019, largely
due to the upgrading of emission standards in the study area. The DV-



Fig. 5. An example showing the decomposition of contributions to the measured
absorption optical depth by BC and BrC for a PM2.5 filter sample collected at the outlet.
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EF from this studywere significantly higher when compared to those in
other tunnels (Cheng et al., 2011; Liu et al., 2012; He et al., 2008; Cui
et al., 2016), except that of 428.0 mg veh−1 km−1 observed at the
Caldecott tunnel (Allen et al., 2001). A previous study indicated that
TC-EF for DVs increased with the increase of vehicle passenger volume
or cargo capacity with the same emission standards (Zhao et al.,
2019a). Apart from that a high proportion of DVs were heavy-duty
ones (42.4%), most DVs in the fleets were China III and China IV (equiv-
alent to Euro III and IV) ones without after-treatment systems. There-
fore, a relatively higher average TC-EF was observed for DVs from this
study.

3.3. Light absorption of BC and BrC

Time series of the TC light-absorption (babs-TC) at three wave-
lengths (405, 455, and 635 nm) are shown in Fig. 4. On average babs-TC
at 405, 455, and 635 nm were 15.7 ± 6.9 Mm−1, 13.3 ± 5.6 Mm−1

and 7.7 ± 3.6 Mm−1 at the inlet, and were 66.2 ± 29.8 Mm−1, 58.6 ±
26.3 Mm−1 and 38.3 ± 18.1 Mm−1 at the outlet, respectively. On aver-
age Δbabs-TC at 405, 455 and 635 nm were 52.5 ± 29.0 Mm−1, 47.2 ±
25.2 Mm−1 and 31.8 ± 17.4 Mm−1, respectively. The mass absorption
efficiency (MAE,m2 g−1 C) of carbonaceous aerosols is an important pa-
rameter for the derivation of aerosol particle radiative forcing in climate
models. Calculated average MAETC at 405, 455, and 635 nmwere 3.6 ±
2.1, 3.2 ± 1.8, and 2.1 ± 1.3 m2 g−1 C, respectively. These results were
similar toMAE405 nm (3.4m2 g−1 C in summer; 4.9m2 g−1 C in autumn)
measured by Li et al. (2018) in 2015 using the same approach for filter-
based ambient carbonaceous aerosols at an urban site about 4 km away
from the Zhujiang Tunnel. The light absorption of TC can be further di-
vided into that of BC and BrC (Chow and Watson, 2002). As shown in
Fig. 5, nonlinear regression based on Eq. (3) revealed that light absorp-
tion by BC (babs-BC) at 405, 455 and 635 nm were 45.5 ± 28.2, 41.4 ±
25.7, and 29.0 ± 18.0 Mm−1, accounting for 80.9 ± 12.3%, 81.6 ±
Fig. 4. Diurnal variations of PM2.5 light absor
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11.7%, and 86.5 ± 9.1% of babs-TC, while BrC accounted for 19.1 ±
12.3%, 18.4 ± 11.7%, and 13.5 ± 9.1%, respectively (Fig. 6).

According to a previous study (Hecobian et al., 2010), the wave-
length of 405 nm and 635 nm was selected to characterize the MAE of
OC and EC, respectively. The fleet average MAE635nm of EC from this
study was 5.2 ± 3.1 m2 g−1 C. In previous studies, Yan et al. (2019)
found that MAE632nm for EC from vehicle emissions were significantly
higher than those from other sources, such as 11.2 m2 g−1 C for EC
from gasoline vehicle emissions, 7.0 m2 g−1 C for EC from ship emis-
sions, 6.6 m2 g−1 C for EC from diesel exhaust, 5.5 m2 g−1 C for EC
from coal combustion in quartz tube furnace, 4.9 m2 g−1 C for EC from
coal combustion in household coal stoves, 4.5 m2 g−1 C for EC from in-
dustry emissions, and 0.5 m2 g−1 C for EC from power plant emissions.
Schwarz et al. (2008) and Cheng et al. (2011) also indicated that the
MAEEC from vehicle emissions were significantly higher (~8 m2 g−1

C). In this study, the measured MAE635 nm of EC is lower than those
ption at the tunnel outlet and the inlet.



Fig. 6. The average light absorption of BC and BrC at 405, 445 and 635 nm. The percentages
over the bars are the contribution percentages in the total light absorption.

Table 3
Comparison of MAEOC from our tunnel tests with those by solvent extraction method.

Source types MAEOC (m2 g−1 C) Reference

WSOC (365 nm)

Biomass burning 1.6 ± 0.6 (Tang et al., 2020)
Anthracite combustion 1.3 ± 0.3
Bituminous coal combustion 2.0 ± 0.75
Vehicle emission 0.71 ± 0.30
Coal combustion 0.9–1.0 for anthracite (Li et al., 2019)

0.3–0.7 for bituminous coal
Rice straw burning 1.37 ± 0.23 (Park and Yu, 2016)
Pine needles burning 0.86 ± 0.09
Sesame stems burning 0.86 ± 0.09
Rice straw burning 1.23 ± 0.33 (Fan et al., 2016)
Corn straw burning 1.56 ± 0.34
Rice straw burning 0.79 ± 0.22
Coal combustion 0.42 ± 0.03

Source types MSOC (365 nm) Reference

Biodiesel/diesel 0.08–5.73 (Kuang et al., 2020)
Chemicals/diesel ND–0.23
Gasoline vehicle emission 0.62 ± 0.76 (Xie et al., 2017)
Biomass burning 1.27 ± 0.76
Biomass burning 1.6 ± 0.55 (Tang et al., 2020)
Anthracite combustion 0.88 ± 0.74
Bituminous coal combustion 3.2 ± 1.1
Vehicle emission 0.26 ± 0.09

Source types DRI 2015 (405 nm) Reference

Vehicle emission (tunnel) 1.0 ± 0.8 This study
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previously measured by chassis dynamometer tests or at road sites
(Schwarz et al., 2008; Cheng et al., 2011; Yan et al., 2019). It is unknown
whether EC fromon-road vehicles shows differentMAE from that based
on chassis dynamometer tests.

A previous study indicated that light-absorbing organic aerosols pro-
duced by low-temperature incomplete combustion (e.g., biomass com-
bustion) had a stronger spectral dependence than those produced by
high-temperature combustion processes (e.g., vehicles) (Kirchstetter
et al., 2004). Therefore, much more attention has been paid to BrC
from biomass burning than from vehicular emissions. However, in this
study, the fleet average MAE405nm of OC based on tunnel tests was 1.0
± 0.8 m2 g−1 C, which is higher than MAE365nm from previous studies
for vehicle emissions (Table 3), and even near that from biomass burn-
ing. It is worth noting that for vehicle-emitted OC theMAE405 nm should
be lower than MAE365 nm (Fig. 5), implying that if the MAE365 nm could
be measured, it would be even higher than the reported MAE365 nm in
previous studies. A possible reason for this is that in previous studies,
the BrC light absorption was measured with WSOC and MSOC by a
UV–Vis spectrophotometer, and the extraction efficiency of light-
absorbingOC bywater andmethanolmay have great uncertainty. Inter-
estingly, Liu et al. (2013) also found that theMAE365nm of water-soluble
OC (WSOC) or methanol-soluble OC (MSOC) in ambient aerosols col-
lected at roadside was higher than that collected at the urban and
rural sites, indicating BrC from vehicle emissions could contribute sub-
stantially to BrC particularly in urban areas. A possible reason for this
is that in previous studies, the BrC light absorption was measured
withWSOC and MSOC by a UV–Vis spectrophotometer, and the extrac-
tion efficiency of light-absorbing OC by water and methanol may have
Fig. 7. The average proportions of different vehicles
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great uncertainty. Xie et al. (2017) indicated that while the methanol
extraction efficiency was >90% for OC from biomass combustion, the
methanol extraction efficiency of OC from vehicle exhausts was only
75.9%; therefore, if the non-extracted OC, like hydrophobic compounds
with conjugated structures, contributes to the light absorption, the
extraction method would underestimate the MAE of OC from vehicle
exhausts. Nevertheless, there is still a lack of research on the difference
of MAEOC measured by the extraction method and the multi-
wavelength thermal/optical carbon analyzer. Till now, there are quite
limited studies using the multi-wavelength thermal/optical carbon
analyzer to measure MAEOC for filter-based ambient aerosol samples
(Li et al., 2018; Zhao et al., 2019b; Peng et al., 2020). It is worth noting
that Ghaffarpasand et al. (2020) recently revealed an increase in
the NO2/NOx ratio in exhausts from EURO-VI vehicles. There is
concern whether this elevated NO2/NOx ratio would facilitate the for-
mation of more light-absorbing nitro-containing compounds (such as
nitrophenols and nitro-PAHs) that would result in higher MAE values
for vehicle-emitted OC (Liu et al., 2008; Chen and Bond, 2010; Zhang
et al., 2013).
during the sampling period in 2014 and 2019.
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4. Conclusions

In this study, carbonaceous aerosol emissions from on-road vehicles
under real-world conditions were measured in a busy urban tunnel
with traffic volumes of over 30,000 vehicles day−1. We obtained a
fleet-average TC-EF of 13.4± 8.3mg veh−1 km−1, in which the average
OC-EF and EC-EF was 8.5 ± 6.6 and 4.9 ± 2.6 mg veh−1 km−1, respec-
tively. If EVs and LPGVs, which are free of carbonaceous aerosol emis-
sions, were excluded in the vehicle fleets, the average for DVs and GVs
in the fleets was 17.4 ± 11.3 mg veh−1 km−1, in which the average
OC-EF and EC-EF was 11.0 ± 8.8 and 6.3± 3.6 mg veh−1 km−1, respec-
tively. Compared to the EF measured in the same tunnel in 2014, the
fleet-average EF from this study decreased by 59.0%, and the average
OC-EF and EC-EF decreased by 56.0% and 63.5%, respectively. The
ΔOC/ΔEC ratios ranged from 0.2 to 5.7 with an average of 1.8 ± 1.0.

Based on regression between fleet average EF andfleet compositions
at different time intervals, the average TC-EF for DVs and GVs were de-
rived. The average TC-EF for DVs (319.8 mg veh−1 km−1) was more
than 150 times that for GVs (2.1 mg veh−1 km−1), and therefore DVs
still dominate over GVs in on-road carbonaceous aerosol emissions, al-
though DVs only shared 4% in the fleets.

By using a multi-wavelength thermal/optical carbon analyzer, the
filter-based aerosol samples were further characterized for the light-
absorbing properties of carbonaceous aerosols. The aerosol light absorp-
tion at 405, 455 and 635 nm were measured to be 45.5 ± 28.2, 41.4 ±
25.7, and 29.0 ± 18.0 Mm−1, in which BrC contributed 19.1 ± 12.3%,
18.4 ± 11.7%, and 13.5 ± 9.1%, respectively.

The MAEEC at 635 nmwas calculated to be 5.2 m2 g−1 C on average,
lower than that previously tested by the chassis dynamometer. How-
ever, the average MAEOC at 405 nm (1.0 ± 0.8 m2 g−1 C) was higher
than previously reported for vehicle emissions. Further studies, espe-
cially on a molecular level and morphological aspects, are needed to
give an explanation for the lower MAEEC and higher MAEOC for on-
road vehicular emissions.
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