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A B S T R A C T   

Assessing the origins and thermal maturity of oils is an important issue in applied petroleum geochemistry. In 
this study, we extracted information regarding the sources and thermal maturity of oils from diamondoid data 
using multivariate statistical analysis based on four series of thermal simulation experiments conducted on Type 
I, II, and III kerogens and a crude oil. Using principal component analysis (PCA) and discriminant analysis (DA), 
we established the relationship between diamondoid indices and kerogen type, which was then used to identify 
the source of oils in some oil fields in China. PCA and regression analysis (RA) were used to determine the 
quantitative relationship between diamondoid indices and thermal maturity, which was then used to estimate 
the thermal maturity of the studied oils. Our results indicate that this approach is effective for determining the 
source and maturity of oils, particularly for condensates.   

1. Introduction 

Diamondoids are a group of rigid fused-ring alkanes with diamond- 
like structures that have been widely detected in petroleum and sedi-
ment extracts (Landa and Machacek, 1933; Williams et al., 1986; 
Wingert, 1992; Chen et al., 1996; Dahl et al., 1999, 2003; Schulz et al., 
2001; Wei et al., 2006; Gentzis and Carvajal-Ortiz, 2018; Scarlett et al., 
2019; Spaak et al., 2020; Atwah et al., 2021b; Botterell et al., 2021; 
Forkner et al., 2021). Due to their strong resistance to thermal degra-
dation and biodegradation, diamondoids have great potential for 
determining the thermal maturity of source rocks and oils (Chen et al., 
1996; Zhang et al., 2005; Wei et al., 2007b; Gentzis and Carvajal-Ortiz, 
2018), establishing oil–oil and oil–source rock correlations (Sassen and 
Post, 2008; Moldowan et al., 2015; Spaak et al., 2020; Atwah et al., 
2021a, b; Botterell et al., 2021; Forkner et al., 2021), estimating the 
extent of oil cracking (Dahl et al., 1999), and evaluating the degree of 
biodegradation of oils (Grice et al., 2000; Wei et al., 2007a). Although 
various diamondoid indices, including absolute concentrations, con-
centration ratios, and δ13C values, have been used in previous studies, 
their application is not as universal and effective as might be expected. 
This may be due to: (1) the lack of a universal calibrated relationship 
between diamondoid indices and thermal maturity; (2) a limited 

understanding of the effects of source on the composition and distri-
bution of diamondoids; and (3) the superposition of multiple factors that 
complicates the interpretation of diamondoid data. 

Concentrations of individual diamondoids and the distribution of 
homologues and isomers can vary widely in natural samples. Dia-
mondoids in oils include adamantanes, diamantanes, triamantanes, 
tetramantanes, pentamantanes, hexamantanes and so forth (Dahl et al., 
2003; Moldowan et al., 2015) and 32 or more individual compounds can 
be detected in a typical analysis (Fang et al., 2012, 2013; Liang et al., 
2012; Zhu et al., 2013). However, most of this information is not used in 
many geochemical studies, which typically report only few parameters, 
such as the concentration of 4- + 3-methyldiamantane (Dahl et al., 
1999) and ratios of methyladamantanes/adamantane (MAs/A), meth-
yldiamantanes/diamantane (MDs/D), the methyl adamantane index 
(MAI; 1-MA/[1-MA + 2-MA]) and methyl diamantane index (MDI; 4- 
MD/[4-MD + 1-MD + 3-MD]). This can be attributed to the fact that 
several factors can affect the composition and distribution of dia-
mondoids in natural petroleum or source rock samples that hinder easy 
interpretation of diamondoid data. For example, some diamondoid 
indices, which are usually used as maturity indicators, can also be 
substantially affected by source rock facies (Schulz et al., 2001), 
cracking (Wei et al., 2006), mixing (Jiang et al., 2020), and 
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biodegradation (Cheng et al., 2018). Most studies only take the influence 
of a single factor into consideration and to a large extent, the choice of 
diamondoid indices depends on the research objectives, which may be 
unsuitable for natural samples that have been affected by multiple fac-
tors. Therefore, making full use of diamondoid data and evaluating the 
effects of different factors on these data remains challenging. 

Multivariate statistical analysis is a powerful data processing 
approach that has been used to extract useful information from large 
datasets in many fields (e.g., finance, biology, geoscience, forensic sci-
ence, and chemistry; Komura et al., 2005; Kujawinski et al., 2009; Banas 
et al., 2010; Hur et al., 2010; Härdle and Simar, 2015). For example, 
principal component analysis (PCA) is one of the most common types of 
multivariate statistical analysis and can simplify a dataset and retain 
most of the original information by reducing the dimensions of the ob-
servations through linear combinations of original variables with the 
largest variances. This is usually used to extract the correlations of 
variables and group the observations. Discriminant analysis (DA) is used 
to establish an allocation rule from known groups of objects and allocate 
a new observation involving the same variables into one of the groups. 
Regression analysis (RA) determines correlations between dependent 
and independent variables in a dataset and establishes regression 
equations with good correlation, which can then be used to quantita-
tively predict the dependent variable based on new independent vari-
ables. These statistical methods are used in this study to analyze 
diamondoid data. 

It is difficult to extract the influence of a specific factor on dia-
mondoid data for natural samples. However, laboratory simulation ex-
periments can solve this problem by constraining the reaction 
conditions. Given that source and thermal maturity are the two main 
factors that could influence the composition and distribution of dia-
mondoids in petroleum, the simulation experiments were designed with 
a focus on these two factors. Four series of thermal simulation experi-
ments were conducted to model the formation and evolution of dia-
mondoids from three different types of kerogen and a crude oil in our 
previous studies (Fang et al., 2012; Jiang et al., 2018). The diamondoid 
data obtained from these simulation experiments are used as a calibra-
tion dataset to establish the source and thermal maturity determination 
models using multivariate statistical methods. Thus, the main objective 
of this study is to develop diamondoid-based models to discriminate oil 
sources by calibrating the relationship between diamondoid indices and 
oil source types, and to determine thermal maturities of oils by estab-
lishing the quantitative relationship between diamondoid indices and oil 
maturities. Finally, the developed models are applied to natural oil 
samples collected from different basins to assess their effectiveness. This 
is the first study to undertake both oil source determination and thermal 
maturity evaluation using the same diamondoid dataset. 

2. Materials and methods 

2.1. Simulation samples 

The diamondoid data of thermal simulation samples were taken from 
our previous simulation experiments undertaken on different types of 
organic matter (i.e., Type I kerogen, Type II kerogen, and Type III 
kerogen, and a normal crude oil; Fang et al., 2012; Jiang et al., 2018). 
The thermal maturity of the samples was calculated based on the tem-
perature and time conditions of the experiments using the EasyRo% 
method proposed by Sweeney and Burnham (1990). Thus, these samples 
have a known source type and thermal maturity. 

2.2. Oil sample pretreatment and diamondoid determination 

Diamondoids in 67 natural oils collected from three typical basins in 
China (i.e., the Tarim, Junggar, and Pear River Mouth basins) were 
analyzed in the present study. All the studied oil samples were carefully 
selected and were considered to be from a single source and free of 

secondary alteration. For example, the oils from the Tazhong Uplift were 
typical Cambrian–Lower Ordovician sourced marine oils within the 
Tarim Basin (Li et al., 2018 and References therein); the oils from the 
central Junggar Basin were generated mainly from Permian source rocks 
in the Pen 1 Jingxi Depression (Jiang et al., 2018 and References 
therein). Preparation of the oil samples involved: (1) ~50 mg of oil was 
first dissolved in isooctane in a 4 mL vial, and then 50 μL of an internal 
standard solution of n-dodecane-d26 and n-hexadecane-d34 in isooctane 
was injected into the sample vial; (2) after 10 min of ultrasonic treat-
ment to dissolve any material, the vial was placed in a centrifuge for 10 
min to separate asphaltenes; and (3) the resulting supernatant was 
transferred to a 2 mL vial for diamondoid detection. The sample infor-
mation is provided in Supplementary Table S1. 

The diamondoids were identified and analyzed by gas chromatog-
raphy triple quadrupole mass spectrometry (GC–MS-MS; Thermo Fisher 
TSQ Quantum XLS) following the method of Liang et al. (2012). In brief, 
a 1 μL aliquot of each sample was injected into the GC system with an 
AS3000 autosampler. The GC instrument was equipped with a PTV 
injector, and the PTV splitless mode was used for the analyses, during 
which the inlet temperature was 300 ◦C and the split flow was 15 mL/ 
min after 1 min of splitless flow. Helium (99.999% purity) was used as 
the carrier gas at a constant flow rate of 1.5 mL/min. The diamondoids 
were separated on a DB-1 fused silica capillary column (50 m × 0.32 mm 
i.d. × 0.52 μm film thickness). The GC oven temperature was held at 
50 ◦C for 2 min, then increased to 80 ◦C at 15 ◦C/min, 250 ◦C at 2.5 ◦C/ 
min, and to 300 ◦C at 15 ◦C/min, and was finally held at 300 ◦C for 10 
min. Quantification of diamondoid compounds was undertaken by 
comparing the peak areas for unknowns with two internal standards (i. 
e., n-dodecane-d26 for adamantanes and n-hexadecane-d34 for dia-
mantanes) in selected reaction monitoring (SRM) mode. The response 
factors of different types of diamondoids relative to the internal stan-
dards were obtained by the external standardization method. A total of 
32 diamondoid compounds, including 22 adamantane and 10 dia-
mantane compounds, were detected (Table 1, A1–A12 and D1–D12). 

2.3. Statistical analyses 

The multivariate statistical analyses used in this study included PCA, 
DA, and RA (Härdle and Simar, 2015). This was performed using IBM 
SPSS Statistics software. A total of 50 diamondoid indices, including 32 
relative diamondoid compound abundances and 18 concentration ratios 
calculated according to previous studies (Fang et al., 2012; Jiang et al., 
2018), were used as variables for the statistical analyses (Table 1). 
Diamondoid data from the simulation samples were considered to be the 
calibration dataset, and the data for the natural oil samples were 
regarded as the test dataset. 

2.3.1. Principal component analysis 
PCA was used to reduce the dimensionality of the diamondoid data. 

The raw diamondoid data were standardized using the Z-score method 
prior to PCA. Firstly, principal components (PCs) were extracted and a 
PCA model was established from the calibration data. The PC score 
values for the calibration data were calculated by linear combination of 
normalized original variables with loadings. The test data were then 
projected into the established PC model to calculate the score values of 
the new data using the same parameters (i.e., mean, standard deviation, 
and loadings; Table 2) that were used for the calibration data. Finally, 
the test data (i.e., the oil samples) could be directly compared with the 
calibration data (i.e., the simulation samples). 

2.3.2. Fisher discriminant analysis 
The PC score values obtained from the PCA model were further used 

to discriminate the source types of the simulation samples using a Fisher 
DA model. Simulation samples were divided into four groups according 
to source type, which were labeled as Group 1, 2, 3, and 4, corre-
sponding to oil, Type I kerogen, Type II kerogen, and Type III kerogen, 
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respectively. Fisher DA is a linear DA technique that searches for a 
projection vector to maximize the difference between groups. The pro-
jection vector (i.e., the canonical discriminant functions) was calculated 
based on the calibration data and used to create a new set of data (i.e., 
scores of functions) from the original data (i.e., in this case PC score 
values from the PCA model). A territorial map showing the range of 
different groups was then constructed according to the distance between 
groups. Finally, the test data were projected onto the territorial map to 
calculate scores according to the canonical discriminant functions and 
were then classified. 

2.3.3. Regression analysis 
Linear and polynomial regression analyses were conducted on the 

calibration data, in which the extracted PCs and their corresponding 
EasyRo% values were regarded as independent and dependent variables, 
respectively. This allowed construction of the maturity model, which 
was then applied to the test data. 

3. Results and discussion 

3.1. Principal component analysis 

To examine the potential relationships between diamondoid vari-
ables and the main factors influencing these variables, PCA was con-
ducted on the diamondoid data from thermal simulation samples of 
known source type and thermal maturity. Three PCs were extracted 
based on the eigenvalue plot (Supplementary Fig. S1). The first three PCs 
explain 81.0% of the total variance of the dataset (i.e., 57.2% for PC1, 
13.6% for PC2, and 10.2% for PC3). The loading plot in Fig. 1 shows that 
most of the variables have small angles (<45◦) to PC1, meaning they are 
highly positively or negatively correlated with PC1, but weakly corre-
lated with PC2 (Aitchison and Greenacre, 2002). PC1 explains 57.2% of 
the total data variance and separates the adamantanes of A3–A5 and 
diamantanes of D1–D8 with a positive loading from the adamantanes of 

A6–A22 with a negative loading. PC2 explains 13.6% of the total data 
variance and separates adamantanes of A1 and A2 with a positive 
loading from the diamantanes of D9 and D10 with a negative loading. 
The projection of the simulation samples onto PCs (Fig. 2) shows that the 
first PC is significantly associated with the maturity of the simulation 
samples (i.e., the maturity increases with PC1), whereas the second PC 
contains information regarding source type (i.e., the source type corre-
lation becomes worse with increasing PC2). PC2 can effectively separate 
different groups of the simulation samples. Positive loadings for PC2 are 
representative of Type III kerogen-derived diamondoids, whereas 
negative loadings are representative of oil-derived diamondoids. The 
Type I–II kerogen-derived diamondoids are distributed along the PC2 
axis. Thus, PC1 and PC2 represent mainly maturity and source type, 
respectively. The meaning of PC3 is ambiguous and is not discussed 
further here. Thus, the PC model can explain the factors that affect the 
diamondoid indices for the simulation samples. 

The test data were also projected onto the PCA model constructed 
from the calibration data to test the ability of the model to group un-
known samples (Fig. 2). Based on the PCA model, we can make some 
inferences about these oil samples. For example, the oil samples from the 
central Junggar Basin were sourced from Type I–II kerogens, which is 
consistent with previous studies that have shown these oils were mainly 
derived from high-quality Permian source rocks (Pan et al., 1999; Jiang 
et al., 2019). Oils from the Tazhong Uplift in the Tarim Basin were 
generated from Type I kerogen, which is also consistent with a previous 
study that showed these oils were mainly derived from marine source 
rocks (Li et al., 2018). Oil samples from the Baiyun Sag in the Pearl River 
Mouth Basin can be inferred to have been derived from Type II kerogen, 
which is consistent with their derivation from shallow lacustrine source 
rocks in the Baiyun Sag (Long et al., 2020; Jiang et al., 2021). The source 
of oil in the Kuqa Depression in the Tarim Basin is still unclear, due to 
their low biomarker abundances (Yang et al., 2016; Ji et al., 2017). 
Based on the PCA model, these oils are mainly derived from Type II–III 
kerogens. Hence, the oil samples can be broadly classified using the PCA 

Table 1 
Definitions and abbreviations of diamondoid indices used in this study.  

Concentration Abbreviation Diamondoid compound Concentration Ratio Abbreviation Formula 

A1 A Adamantane IR1 MAI 1-MA/(1-MA + 2-MA) 
A2 1-MA 1-Methyladamantane IR2 EAI 1-EA/(1-EA + 2-EA) 
A3 1,3-DMA 1,3-Dimethyladamantane IR3 DMAI-1 1,3-DMA/(1,3-DMA + 1,2-DMA 
A4 1,3,5-TMA 1,3,5-Trimethyladamantane IR4 DMAI-2 1,3-DMA/(1,3-DMA + 1,4-DMA) 
A5 1,3,5,7-TeMA 1,3,5,7-Tetramethyladamantane IR5 TMAI-1 1,3,5-TMA/(1,3,5-TMA + 1,3,4-TMA) 
A6 2-MA 2-Methyladamantane IR6 TMAI-2 1,3,5-TMA/(1,3,5-TMA + 1,3,6-TMA) 
A7 1,4-DMA(cis) 1,4-Dimethyladamantane(cis) IR7 MDI 4-MD/(4-MD + 1-MD + 3-MD) 
A8 1,4-DMA(trans) 1,4-Dimethyladamantane(trans) IR8 DMDI-1 4,9-DMD/(4,9-DMD + 3,4-DMD) 
A9 1,3,6-TMA 1,3,6-Trimethyladamantane IR9 DMDI-2 4,9-DMD/(4,9-DMD + 4,8-DMD) 
A10 1,2-DMA 1,2-Dimethyladamantane CR1 A/MAs Adamantane/Methyladamantanes 
A11 1,3,4-TMA(cis) 1,3,4-Trimethyladamantane(cis) CR2 MAs/DMAs Methyladamantanes/Dimethyladamantanes 
A12 1,3,4-TMA(trans) 1,3,4-Trimethyladamantane(trans) CR3 DMAs/TMAs Dimethyladamantanes/Trimethyladamantanes 
A13 1,2,5,7-TeMA 1,2,5,7-Tetramethyladamantane CR4 A/D Adamantane/Diamantane 
A14 1-EA 1-Ethyladamantane CR5 MAs/MDs Methyladamantanes/Methyldiamantanes 
A15 2,6 + 2,4-DMA 2,6- + 2,4-Dimethyladamantane CR6 DMAs/MDs Dimethyladamantanes/Methyldiamantanes 
A16 1-E,3-MA 1-Ethyl-3-methyladamantane CR7 DMAs/DMDs Dimethyladamantanes/Dimethyldiamantanes 
A17 1,2,3-TMA 1,2,3-Trimethyladamantane CR8 MDs/DMDs Methyldiamantanes/Dimethyldiamantanes 
A18 1-E,3,5-DMA 1-Ethyl-3,5-dimethyladamantane CR9 As/Ds Total Adamantanes/Total Diamantanes 
A19 2-EA 2-Ethyladamantane    
A20 1,3,5,6-TeMA 1,3,5,6-Tetramethyladamantane    
A21 1,2,3,5-TeMA 1,2,3,5-Tetramethyladamantane    
A22 1-E,3,5,7-TMA 1-Ethyl-3,5,7-trimethyladamantane    
D1 D Diamantane    
D2 4-MD 4-Methyldiamantane    
D3 4,9-DMD 4,9-Dimethyldiamantane    
D4 1-MD 1-Methyldiamantane    
D5 1,4 + 2,4-DMD 1,4- + 2,4-Dimethyldiamantane    
D6 4,8-DMD 4,8-Dimethyldiamantane    
D7 1,4,9-TMD 1,4,9-Trimethyldiamantane    
D8 3-MD 3-Methyldiamantane    
D9 3,4-DMD 3,4-Dimethyldiamantane    
D10 3,4,9-TMD 3,4,9-Trimethyldiamantane     
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model constructed from the calibration data. 

3.2. Fisher discriminant analysis and identification of oil source types 

Assessing the origins and maturity of condensates, particularly for 
highly mature condensates, is challenging due to a lack of conventional 
biomarkers. Given that the PCA model could only broadly classify the oil 
samples, DA was applied to these samples. A Fisher DA model was 
constructed based on the calibration data with known groups and three 
canonical discriminant functions (Table 3). The first canonical 
discriminant function can explain 98.4% of the total variance, meaning 
that it can almost entirely discriminate the groups of simulation samples. 
In addition, the coefficient of PC2 in the first canonical discriminant 
function is much larger than that of PC1 or PC3, which also supports the 
view that PC2 mainly reflects the source type. The scores of the ca-
nonical discriminant functions for all data were calculated by combining 
the functions and original PC scores. Finally, a territorial map was 

constructed according to the distance between known groups in the 
calibration data. 

The test data were projected onto the territorial map (Fig. 3), which 
contains four regions representing the range of four groups. The cali-
bration data were classified into four groups and the classification re-
sults show that 95.3% of the original grouped cases and 86.0% of the 
cross-validated grouped cases were correctly classified, indicating the 
high accuracy of the Fisher DA model. Thus, the grouping of the test data 
can be predicted based on its projection onto this plot. Oils from the 
central Junggar Basin, Tazhong Uplift, Kuqa Depression, and Baiyun Sag 
are mainly classified into Groups 2–3, 2, 3–4, and 3 (Fig. 3 and Sup-
plementary Table S1), which correspond to Type I–II kerogens, Type I 
kerogen, Type II–III kerogens, and Type II kerogen, respectively. Thus, 
the PCA–Fisher DA model can objectively and accurately group the oil 
samples and identify their source. 

3.3. Establishment and application of the maturity model 

PC1 of the PCA model represents mainly the thermal maturity and is 
independent of source (PC2). Thus, a maturity regression model was 
constructed based on the known maturity of the simulation samples and 
their PC1 scores. The calibration curve was fitted with a cubic regression 
analysis as it yielded a better fit than linear and quadratic regression 
analysis. In the maturity model (Fig. 4a), the r2 value of the fitted curve 
is 0.89, indicating a good correlation between the known EasyRo% 
value and PC1 score. Taking into account the 95% confidence interval 
and maturity range of the original data, the optimum application range 
of the model is EasyRo = 1.0–2.7%, which is in the range of the maturity 
of light oil and condensate oil. The thermal maturation stages of kerogen 
are shown in Supplementary Fig. S2 based on our previous study (Jiang 
et al., 2018). A good linear relationship was also observed between the 
model-predicted and known EasyRo values (Fig. 4b), which has a slope 
of approximately one and an intercept of approximately zero. Thus, the 
maturity model constructed from the simulation samples is robust. 

The maturity model was used to predict the maturity of the oil 
samples. The predicted results are shown in Fig. 4c and Supplementary 
Table S1, and reveal that oils from the central Junggar Basin have the 
lowest maturity with EasyRo = 0.8–1.2%, corresponding to the mature 
stage of the oil window; oils from the Tazhong Uplift in the Tarim Basin 
have EasyRo = 1.8–2.1%, corresponding to the late-mature stage of the 
oil window; oils from the Baiyun Sag in the Pearl River Mouth Basin 
(EasyRo = 1.4–1.9%) have maturities between the above two groups; 

Table 2 
Parameters used in the PCA model.  

Variable Basic Statistics Loadings 

Mean Standard 
Deviation 

PC1 
(57.2%) 

PC2 
(13.6%) 

PC3 
(10.2%) 

IR1  0.6449  0.1687  0.1717  0.0981  0.1181 
IR2  0.6179  0.2213  0.1208  − 0.0225  0.2549 
IR3  0.6622  0.2003  0.1677  0.1244  0.1143 
IR4  0.4761  0.2229  0.1774  0.0939  0.0275 
IR5  0.3297  0.1858  0.1748  0.1082  0.0293 
IR6  0.4698  0.2004  0.1642  0.1613  0.0303 
IR7  0.2831  0.1072  0.1196  − 0.1578  − 0.0928 
IR8  0.2415  0.0988  0.1673  0.0677  − 0.0662 
IR9  0.6122  0.1585  − 0.0101  − 0.0858  − 0.1230 
CR1  0.5390  0.9348  0.0681  0.1681  − 0.2603 
CR2  0.7149  0.2674  − 0.1238  0.2039  0.0520 
CR3  1.5571  0.4646  0.1035  0.0765  − 0.3134 
CR4  6.5277  5.7947  − 0.0880  0.2626  − 0.0832 
CR5  2.1690  1.5889  − 0.1455  0.1566  0.0056 
CR6  2.7253  1.5557  − 0.1508  0.1001  − 0.0237 
CR7  7.1643  5.1259  − 0.1288  0.1827  0.0393 
CR8  2.5440  0.7113  − 0.0373  0.2814  0.1344 
CR9  5.8668  3.9033  − 0.1468  0.1569  0.0090 
A1  7.8199  6.1569  0.0078  0.3046  − 0.2249 
A2  10.7984  3.8541  − 0.0558  0.2519  0.1344 
A3  9.5440  6.0312  0.1719  0.0864  0.0347 
A4  3.3813  2.3228  0.1511  0.0660  0.1716 
A5  0.3724  0.3611  0.1454  0.1234  − 0.0537 
A6  6.8372  3.8444  − 0.1779  0.0278  − 0.0690 
A7  4.5391  1.7338  − 0.1708  − 0.0712  0.0367 
A8  4.8042  1.8179  − 0.1741  − 0.0649  0.0522 
A9  3.3707  1.2833  − 0.1188  − 0.0737  0.2408 
A10  3.7772  1.9481  − 0.1698  − 0.1192  − 0.0772 
A11  3.2212  0.9547  − 0.1484  − 0.0094  0.2361 
A12  3.2812  0.9816  − 0.1479  − 0.0335  0.2308 
A13  1.8055  0.5238  0.0670  − 0.0633  0.3248 
A14  1.6430  0.8736  − 0.1630  − 0.1229  − 0.0173 
A15  2.1824  1.8883  − 0.1317  − 0.1818  − 0.1895 
A16  2.4326  1.0197  − 0.1346  − 0.0987  0.1747 
A17  3.6333  2.1486  − 0.1704  − 0.1034  − 0.1043 
A18  0.6724  0.2959  − 0.0314  − 0.0666  0.3196 
A19  1.5540  1.3925  − 0.1440  − 0.1205  − 0.1509 
A20  0.3587  0.1264  − 0.1206  − 0.0315  0.2290 
A21  1.3518  0.7972  − 0.1650  − 0.1277  − 0.0873 
A22  2.1154  1.2020  − 0.1790  − 0.0410  − 0.0332 
D1  1.7601  0.9960  0.1706  − 0.1211  0.0020 
D2  4.1229  3.5344  0.1700  − 0.1341  − 0.0182 
D3  1.1140  1.1191  0.1687  − 0.1157  − 0.0582 
D4  1.7683  1.2351  0.1618  − 0.0120  0.0857 
D5  0.8447  0.8919  0.1687  − 0.0901  0.0189 
D6  0.7201  0.6915  0.1648  − 0.1301  − 0.0013 
D7  0.3603  0.3327  0.1516  − 0.1266  0.0352 
D8  6.8220  3.3567  0.1611  − 0.1254  0.0802 
D9  2.9628  1.9554  0.1066  − 0.2664  − 0.0255 
D10  0.0286  0.0693  0.0155  − 0.2756  − 0.0927  

Fig. 1. Loading plot for the PCA model calculated from the simulation samples. 
The abbreviations are defined in Table 1. 
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oils from the Kuqa Depression in the Tarim Basin define three groups 
with EasyRo = 1.2–1.4%, 1.9–2.1%, and 2.4%. The predicted maturity 
of these oil samples from the maturity model is consistent with the 
conclusions of previous studies (Zhang et al., 2010; Li et al., 2018; Wang 
et al., 2018; Jiang et al., 2019). Different maturities predicted for the oils 
from the Kuqa Depression suggests that there might be multiple hy-
drocarbon injections in the petroleum reservoir. This is consistent with 
the study of Zhang et al. (2010), which indicated that there were two 
expulsion events in the Kuqa Sag and the gas and condensate charged 
later than the normal oils. 

3.4. General methodology for oil source and maturity prediction 

For any oil sample without obvious secondary alteration, its source 
and maturity can be determined based on the following steps: (1) dia-
mondoids in the sample are analyzed and related indices (Table 1) are 
calculated; (2) these indices (i.e., variables) should be normalized and 

are used to calculate PC scores based on the PCA model (Table 2); (3) 
after conversion by the canonical discriminant functions (Table 3), the 
sample can be projected onto the territorial map of the Fisher DA model 
(Fig. 3) and then the source can be determined; and (4) the maturity of 
the oil sample can be predicted from the maturity model (Fig. 4a). 

The PCA–Fisher DA and PCA–RA models constructed from the 

Fig. 2. Plots of (a) principal component (PC) 1 vs PC2, (b) PC2 vs PC3, and (c) PC1 vs PC3 for the principal component analysis model calculated from the 
simulation samples. 

Table 3 
Canonical discriminant function coefficients (unstandardized) of the Fisher 
discriminant analysis.  

Variable Function 

1 2 3 

PC1 (57.2%) − 0.0664  0.0318  0.1771 
PC2 (13.6%) 1.4125  − 0.0146  0.0379 
PC3 (10.2%) 0.0848  0.4663  − 0.0662 
Constant 0.0000  0.0000  0.0000  

Fig. 3. Plot of canonical discriminant function 1 vs 2 for the Fisher discrimi-
nant analysis model calculated from the simulation samples. 
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diamondoid data for the simulation samples can be used to identify the 
oil source and maturity, particularly for highly mature oils (i.e., light oils 
or condensates), which have low abundances of conventional bio-
markers, but are rich in diamondoids. Given that the effects of secondary 
alteration (i.e., biodegradation, evaporation) or other factors (i.e., 
mixing, contamination from oil-based mud) on the diamondoid data 
were not considered during construction of the models, it is unclear 
whether these models are suitable for oil samples that have been sub-
jected to any of these factors. Theoretically, multivariate statistical 
analysis on diamondoid indices would eliminate or diminish the impacts 
of some abnormal indices caused by secondary alteration or other fac-
tors. Certainly, the effects of secondary alteration or other factors on 
these models requires further study. In addition, more studies are 
needed to test the validity of this approach and extend it to other pe-
troleum basins. 

4. Conclusions 

Multivariate statistical analyses were used to investigate diamondoid 
indices in oil samples. PCA revealed that PC1 reflects oil maturity and 
PC2 reflects oil source, based on simulation samples. Based on the PCA 
results, Fisher DA was used to further classify oil samples into groups, 
and RA was used to construct a maturity model. The models presented in 
this study can be used to identify the oil source type and quantitatively 
determine its thermal maturity, which significantly advances the use of 
diamondoids as source and maturity indicators. 
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