
Ore Geology Reviews 135 (2021) 104218

Available online 12 May 2021
0169-1368/© 2021 Elsevier B.V. All rights reserved.

Difference in the nature of ore-forming magma between the Mesozoic 
porphyry Cu-Mo and Mo deposits in NE China: Records from apatite and 
zircon geochemistry 

Pan Qu a,b,c, Ning-Bo Li a,c,*, He-Cai Niu a,c, Qiang Shan a,c, Qiang Weng a,b,c, 
Xiao-Chen Zhao a,b,c 

a CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, 
Chinese Academy of Sciences, Guangzhou 510640, China 
b University of Chinese Academy of Sciences, Beijing 100049, China 
c CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China   

A R T I C L E  I N F O   

Keywords: 
Apatite and zircon 
Halogens 
Water contents 
Differences between porphyry Cu-Mo and Mo 
deposits 
NE China 

A B S T R A C T   

Porphyry Cu-Mo and Mo deposits are the most important source of Mo in the world, but factors controlling their 
difference remain enigmatic. In recent years, many Mesozoic porphyry Cu-Mo and Mo deposits have been 
discovered in NE China, which provides a good opportunity to explore the difference between the Cu-Mo and Mo 
mineralization. In this region, porphyry Cu-Mo deposits (Wunugetushan, Jinchanggou) are distributed along the 
subduction zone, while the porphyry Mo deposits (Luming, Fu’anpu, Daheishan) are far away from the sub-
duction zone. On the basis of whole rock geochemical studies, we present a comprehensive investigation on the 
apatite and zircon from Mesozoic typical porphyry Cu-Mo deposits and Mo deposits, in order to reveal the nature 
of parent magma constraints on Cu-Mo and Mo mineralization. Whole-rock geochemistry, in-situ apatite Sr-Nd 
and zircon Hf isotopic compositions from these granites in porphyry Cu-Mo and Mo deposits indicate that these 
granites originated from a juvenile crustal source. Apatites from the porphyry Cu-Mo mineralized granites show 
relatively high Cl and low F contents, accompanied by enrichment of fluid-mobile elements Ba and Sr, indicating 
that the magmatic source of porphyry Cu-Mo deposits were modified by subducted slab-derived fluids. In 
comparison, apatites from the porphyry Mo mineralized granites have high F and low Cl contents with corre-
spondingly high F/Cl ratios, suggesting that these granites mainly formed in juvenile crustal dehydration self- 
metasomatism under the intra-continental environment. Additionally, apatites from porphyry Cu-Mo mineral-
ized granites have higher OH contents than those from porphyry Mo mineralized granites, indicating that the 
original melt of porphyry Cu-Mo system was more hydrous, consistent with their higher (Ce/Nd)/Y and lower 
Dy/Yb ratios of zircon. It is here proposed that the formation of porphyry Cu-Mo deposits in NE China are related 
to partial melting of the juvenile crust, which metasomatized by slab-derived Cl-enriched fluids with carry 
significant amounts of Cu, whereas the porphyry Mo deposits are related to partial melting of juvenile crustal 
material with released F-enriched fluids by the dehydration of hydrous minerals.   

1. Introduction 

Porphyry deposits are the Earth’s most important source of Cu and 
Mo, accounting for approximately 60% of world Cu production and 95% 
of world Mo production (Sinclair, 2007; Cooke, 2005; Seedorff et al., 
2005; Sillitoe, 2010). In addition, a significant amount of Mo is also 
produced from porphyry Cu (-Mo) deposits (Sinclair, 2007; Chen et al., 

2017b and references therein). Therefore, the Mo/Cu ratios and zona-
tion are of economic importance, and the geologic causes for the dif-
ference of Cu-Mo mineralization have drawn significant attention for 
decades. Xie et al. (2017) proposed that the nature of the magma plays 
an essential role in the differences between porphyry Cu and Mo de-
posits. Zajacz et al. (2008) proposed that the presence of HCl in the fluid 
phase control the Cu and Mo partitioning from aspects of experiments. 
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Zhou et al. (2018) suggested that prolonged fractional crystallization led 
to Mo-rich and high magma water content favor the formation of Cu-Mo 
deposits from the perspective of whole rock geochemistry of the Dong-
bulage Mo and Taibudai Cu-(Mo) porphyry deposits in NE China. Tang 
et al. (2019) reported that the Mo (Cu) mineralization system formed 
from F-rich magmatic-hydrothermal fluids whereas the Cu (Mo) 
mineralization system formed from Cl-rich magmatic-hydrothermal 
fluids through investigation of magmatic and hydrothermal biotites in 
the Bangpu porphyry Mo (Cu) deposit, Tibet. To sum up, the nature of 

ore-forming magma (including magma source and composition) exerts a 
significant control on the styles of Cu-Mo and Mo mineralization. 
Nevertheless, the whole rock geochemistry cannot well constrain the 
nature of parental magma due to the mineralized alteration and 
weathering. 

Apatite [Ca5(PO4)3(F, OH, Cl)] is an ideal choice that can reflect the 
geochemical characteristics of their host rocks and preserve the infor-
mation of the parental magma. Apatite is a common accessory mineral in 
porphyry Cu-Mo and Mo deposits (Bouzari et al., 2016). In general, it 

Fig. 1. (a) Schematic map showing the location of NE China (modified from Safonova and Santosh, 2014); (b) Geology map of NE China and surrounding regions, 
showing the distribution of Mesozoic Mo-bearing deposits (modified after Chen et al., 2017b). 
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can resist weathering and low-grade metamorphism and thus preserve 
the original chemical compositions of parental magma, especially 
apatite wrapped in rock-forming minerals (such as K-feldspar and bio-
tite) can effectively avoid the post-hydrothermal alteration (Creaser and 
Gray, 1992; Mathez and Webster, 2005). Apatite can incorporate a va-
riety of elements, including halogens (F and Cl), Na, S, Fe, Mn, Ba, Sr and 
REE, which are considerably sensitive to the changes in magmatic 
composition and evolution, and has been proven useful in revealing 
details about petrogenetic processes (Chu et al., 2009; Doherty et al., 
2014), e.g., magma crystallization history and geologic setting (Miles 
et al., 2013; Bruand et al., 2014; Webster and Piccoli, 2015). Apatite also 
has displayed great potential in metallogenic studies (Barth et al., 2013; 
Bouzari et al., 2016; Mao et al., 2016), such as Cl:F:OH proportions can 
be used to indicate the ore genesis and evaluate the physiochemical 
conditions of ore-forming processes (Chu et al., 2009; Douce et al., 2011; 
Kusebauch et al., 2015). In addition, Sr-Nd isotopes of apatite have been 
used to constrain the nature of magmatic source (Cao et al., 2019; Palma 
et al., 2019). Zircon (ZrSiO4) is also a ubiquitous accessory mineral in 
granite and relatively resistant to weathering (Hoskin and Schaltegger, 
2003). Zircon can incorporate a variety of trace elements during crys-
tallization, including rare-earth elements (REE), U, Th, and Ti, and 
preserve the isotopic composition of its parent magma at the time of 
crystallization (Zeng et al., 2017). Multiple isotopic systems (e.g., U–Pb, 
and Hf isotopes) of zircon have been explored to reveal crystallization 
age and magma sources (Kemp et al., 2007). 

Northeastern (NE) China is a significant Mo polymetallic metal-
logenic province (Fig. 1a; Gao et al., 2017). The latest findings show that 
porphyry Mo deposits in NE China contain over 11.4 Million tons of Mo, 
making this the largest Mo metallogenic province in China (Shu et al., 
2016). Meanwhile, although lack of porphyry Cu deposits in the poly-
metallic metallogenic province, some porphyry Cu-Mo deposits are 
distributed in the region. Almost all of porphyry Cu-Mo deposits are 
located along the subduction zones, while the porphyry Mo deposits are 
far away from the subduction zone (Fig. 1b; Chen et al., 2017b). To 
better understand the factors controlling on Cu-Mo and Mo minerali-
zation styles, five typical porphyry Cu-Mo and Mo deposits located in NE 
China, namely the Wunugetushan (WS) and Jinchanggou (JC) Cu-Mo 
deposits, and the Luming (LM), Fu’anpu (FA) and Daheishan (DHS) 
Mo deposits, have been selected in this study (Fig. 1b). In this paper, we 
present mineral assemblage observations, whole-rock geochemistry, 
integrated elemental and isotopic geochemistry of apatite and zircon 
from these porphyry Cu-Mo and Mo deposits in NE China. The results are 
used to evaluate the physical and chemical conditions associated with 
the ore forming magma leading to the formation of the deposit, and to 
reveal the factors controlling the diversity of Cu-Mo and Mo minerali-
zation. Our study show that the halogen contents and trace element 
concentrations of apatite and zircon may have significant potential to 
explore the difference in the nature of ore-forming magma between the 
porphyry Cu-Mo and Mo deposits. 

2. Regional geological background 

NE China is located within the east segment of the Central Asian 
Orogen Belt (CAOB; Fig. 1a), which lies between the Siberian and North 
China cratons (Jahn et al., 2000). The region is characterized by Phan-
erozoic crustal growth related to progressive subduction of the Paleo- 
Asia Ocean and amalgamation of a series of micro-continental massifs 
or terranes (Sengör and Natal’in, 1996; Pirajno and Santosh, 2014), 
including the Erguna, Xing’an, Songliao, and Jiamusi blocks from 
northwest to southeast (Wu et al., 2011; Fig. 1b), followed by the 
interaction with the Mongol-Okhotsk and Pacific oceanic plates (Chen 
et al., 2017b). The detailed process is, during the Paleozoic, the sub-
duction and closure of the Paleo-Asian Ocean caused the collision of 
Erguna, Xing’an and Songliao blocks from the northwest to the south-
east—that were separated by a series of northeast-trending faults 
(Fig. 1b; Ouyang et al., 2013). During the Mesozoic, this region was 

characterized by the evolution of the Paleo-Pacific Ocean in the east and 
the Mongol-Okhotsk Ocean to the northwest, resulting in widespread 
magmatism and the accretion of the Jiamusi Massif and Nadanhada 
Terrane in the easternmost area of NE China (Wu et al., 2011). 

NE China is an important metallogenic province for Mo deposits 
(Zeng et al., 2013). In the past decade, >80 Mo (Mo-bearing) deposits 
have been discovered, resulting in it become the largest molybdenum 
mineralization region in China (Fig. 1; Shu et al., 2016; Chen et al., 
2012, 2017b). Most of the Cu-Mo and Mo deposits are of porphyry type 
(Zeng et al., 2013), and they are generally formed in Mesozoic, post-
dating the closure of the Paleo-Asia Ocean (Ouyang et al., 2013; Chen 
et al., 2017b). These include the giant-scale WS porphyry Cu-Mo, DHS 
and LM porphyry Mo deposits, and also contain the medium-scale JC 
porphyry Cu-Mo and FA porphyry Mo deposits. The detailed geological 
characteristics of the five representative porphyry Cu-Mo and Mo de-
posits in NE China are listed in Table 1. 

3. Geological background and samples 

3.1. Wunugetushan porphyry Cu-Mo deposit 

The WS deposit (with Cu–Mo metal reserve of 849.7 Mt at an average 
grade of 0.46% Cu and 0.053% Mo) is situated 30 km south of Man-
zhouli (Fig. 1b; Chen et al., 2011). The ore minerals mainly comprise 
molybdenite, chalcopyrite and pyrite, and occur either as disseminated 
structure in altered rocks or veinlet structure in coarse veins. The 
mineralization in the WS district is associated with a monzogranite 
porphyry that has yielded SIMS zircon U-Pb ages 180.4 ± 1.4 Ma (Wang 
et al., 2015). Molybdenite Re-Os in the WS porphyry Cu-Mo deposit 
indicate that the ore-formation occurred at 180.5 ± 2.0 Ma, which is 
within analytical error of the age of the host monzogranite porphyry 
(Wang et al., 2015). The WS monzogranitic porphyry (WS granite) is 
reddish-brown with porphyritic texture, and are compose of quartz 
(20–25 vol%), plagioclase (15–18 vol%), K-feldspar (15–17 vol%), with 
minor amounts of biotite phenocrysts (~5 vol%). The groundmass 
(30–35 vol%) is composed of quartz, plagioclase, K-feldspar (Fig. 2a). 
Some quartz grains display distinct corroded irregular textures, and 
plagioclase in the groundmass is partly replaced by kaolinite and ser-
icite. Most of biotite is altered to chlorite. The accessory minerals are 
mainly composed of apatite, zircon, and magnetite. Apatite grains from 
the WS granite are commonly occurs as individual crystals or euhedral 
inclusions enclosed in early-formed minerals (such as plagioclase and 
biotite). The Cu-Mo mineralization and associated magmatism in the WS 
area should generated by the southeastward subduction of the Mongol- 
Okhotsk oceanic plate beneath the Erguna Massif (Wang et al., 2015). In 
the Erguna block, geochemical data on the Mesozoic granitoids and 
mineralization associated rocks on southeastern part of Mongol-Okhotsk 
Orogen show an affinity with arc magmas, indicating an active conti-
nental margin related to the southward’s subduction of the Mongol- 
Okhotsk oceanic plate (Chen et al., 2011; Wu et al., 2011; Xu et al., 
2013a). In addition, paleomagnetic study of Late Jurassic volcanic ac-
tivity in the Chengde area and Tiaojishan Formation, Yanshan Belt, 
North China, indicated that the Mongol-Okhotsk Ocean was still open at 
ca. 155 Ma (Pei et al., 2011; Ren et al., 2016). This result is consistent 
with reports by Dmitry et al. (2010) and Cogné et al. (2005), who pro-
posed that the final closure of the Mongol-Okhotsk Ocean occurred in 
the Early Cretaceous in the Amur and Okhotsk sea area. 

3.2. Jinchanggou porphyry Cu-Mo deposit 

The JC porphyry Cu-Mo deposit is located in the 40 km southern of 
Jidong Country in the eastern Heilongjiang, NE China, and contains Cu 
and Mo reserves of >10 Kt with an average grade of 0.57% Cu and 
0.16% Mo (Chen et al., 2010a). The ore minerals mainly comprise 
molybdenite, pyrite, pyrrhotite, sphalerite and chalcopyrite. The host 
granodiorite porphyry has a zircon U–Pb age of 114 ± 2.2 Ma (Sun et al., 
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2012). The JC granodiorite porphyry (JC granite) is porphyritic and 
contains phenocrysts of quartz (25–30 vol%) and plagioclase (20–25 vol 
%) in a groundmass of plagioclase (15–18 vol%), quartz (10–12 vol%), 
K-feldspar (5–10 vol%) and biotite (2–5 vol%) (Fig. 2c). Quartz and 
plagioclase phenocrysts are euhedral, with an average diameter of 
50–800 μm. Most of plagioclase in the matrix is altered to kaolinite and 
sericite. Biotite usually occurs as small, subhedral phase at the gaps 
between K-feldspar or quartz phenocrysts, and most of the biotite was 
replaced by chlorite. The accessory minerals include Fe-Ti oxides, 
apatite, and zircon. Apatite in JC granites have two types, altered and 
primary, and here the primary apatite was selected for study in this text. 
The primary apatite grains from the JC granite are commonly occurs as 
euhedral crystals, can be wrapped in K-feldspar and biotite. The Cu-Mo 
mineralization and associated magmatism in the JC area should gener-
ated by the northwestward subduction of the Paleo-Pacific oceanic 
plate. Firstly, Wu et al. (2011) proposed that Eastern China is mainly 
affected by circum-Pacific tectonics, and since the Early Jurassic NE 
China has been strongly influenced by the westward subduction of the 
paleo-Pacific plate. Petro-geochemical characteristics indicate that the 
existence of voluminous late Early Cretaceous calc-alkaline volcanic 
rocks in Ji-Hei area formed in an active continental-margin setting and 
was induced by the subduction of the Paleo-Pacific Plate beneath the 
Eurasian continent (Yu et al., 2009; Wu et al., 2011; Xu et al., 2013b). 
Secondly, numerous porphyry Cu-Au and epithermal Au deposits closed 
to the JC porphyry Cu-Mo deposit (i.e., Jinchang, xiaoxi’nancha, Jiu-
sangou, Duhuangling, Naozhi, Nongping and Wuxinghsan gold deposits) 
during this episode (ca. 129 and 95 Ma) are mainly concentrated in the 
in eastern Jilin and Heilongjiang provinces, and they are dominated by 
typical of arc-related magmatic-hydrothermal and hydrothermal ore 
deposits (Han et al., 2012; Xu et al., 2013a, 2013b; Cai et al., 2019). 

3.3. Luming porphyry Mo deposit 

The LM porphyry Mo deposit located 45 km northeast of Tieli city 
(Fig. 1b), and it has proven Mo reserves of 890 Kt with an average grade 
of 0.088% Mo (Shi et al., 2007). The ore minerals are dominated by 
molybdenite, pyrite, pyrrhotite, chalcopyrite, and hematite with minor 
molybdite, limonite, covellite and bornite (Cheng et al., 2015). The host 
monzogranite porphyry has a zircon U–Pb age of 176 ± 2 Ma (Yang 
et al., 2012), which is consistent with molybdenite Re-Os isochron age of 
177.9 ± 2.6 Ma (Hu et al., 2014). The LM monzogranitic porphyry (LM 
granite) is dark-gray in color and contains phenocrysts of quartz (15–17 
vol%), plagioclase (15–20 vol%) and K-feldspar (15–20 vol%) in a 
groundmass of plagioclase (10–15 vol%), K-feldspar (5–10 vol%), quartz 
(5–10 vol%), and biotite (5–8 vol%) (Fig. 2e). Anhedral quartz, together 
with biotite, occur intergranular phases along the boundary of K-feld-
spar and quartz phenocrysts. The accessory minerals include, titanite, 
apatite, zircon and magnetite. Apatite grains from the LM granite are 
commonly intergrown with plagioclase, K-feldspar and quartz, and 
occur as euhedral and hexagonal prismatic crystals (Fig. 2e). Tan et al. 

(2012) suggested that the LM porphyry Mo deposit was formed in a post- 
collisional extension setting. Yang et al. (2012) proposed that the for-
mation of LM porphyry Mo deposit is probably related to the subduction 
of Paleo-Pacific plate and the amalgamation between Jiamusi and 
Songnen massifs in the Jurassic. Cheng et al. (2015) and Chen and Zhang 
(2018) reported that the host monzogranite porphyry may be derived 
from partial melting of juvenile crust which formed in Middle-Late 
Proterozoic, and is probably related to the subduction of Paleo-Pacific 
plate. 

3.4. Fu’anpu porphyry Mo deposit 

The FA porphyry Mo deposit is located ~26 km east of Shulan City in 
Jilin Province (Fig. 1b), with Mo reserves of 30 Kt, and with an average 
grade of 0.04–0.16% (Li et al., 2009). The host rocks consist of 
porphyritic monzogranite, in which nine ore bodies have been discov-
ered (Zhang, 2013). Molybdenite Re-Os and zircon U-Pb dating of the 
host porphyritic monzogranite in the FA porphyry Mo deposit indicate 
that the ore-formation and host porphyry emplacement occurred at 
166.9 ± 6.7 Ma and 167.1 ± 0.8 Ma, respectively (Li et al., 2009; Zhang, 
2013). The FA porphyritic monzogranite (FA granite) is light-gray in 
color with porphyritic texture. It comprises phenocrysts K-feldspar 
(10–15 vol%), quartz (25–30 vol%), plagioclase (10–15 vol%), and the 
groundmass (35–40 vol%) is composed of K-feldspar, quartz, and biotite 
(Fig. 2g). K-feldspar rims and plagioclase are partially replaced by ser-
icite. The accessory minerals include apatite, Fe-Ti oxides, and zircon. 
Apatite grains are commonly intergrown with plagioclase, K-feldspar 
and biotite, and occur as euhedral prismatic crystals (Fig. 2g). The 
porphyritic monzogranite associated with the Mo deposits have rela-
tively depleted mantle-like Nd and Hf isotopic compositions, suggesting 
that the ore-forming granitic magma may have predominantly been 
derived from juvenile lower crust material (Hou, 2017). 

3.5. Daheishan porphyry Mo deposit 

The DHS porphyry Mo deposit is located in the southern Lesser 
Xing’an-Zhangguangcai Ranges and tectonically in the northwestern 
Songliao Block, Jilin Province (Fig. 1b). Recently, a total Mo metal 
reserve of 1090 Kt with an average Mo grade of 0.06% was reported, and 
mineralization is closely related to the small (~0.46 km2) Qiancuoluo 
granodioritic porphyry intrusion (Zhou et al., 2015). The ore minerals 
are predominantly molybdenite and pyrite, and consist minor sphalerite 
and chalcopyrite. The molybdenite yielded a Re–Os isochron age of 
169.2 ± 1.2 Ma (Zheng and Yu, 2017) which is indistinguishable from 
the host Qiancuoluo granodioritic porphyry age (169.6 ± 0.4 Ma, Zhou 
et al., 2014). The DHS granodioritic porphyry (DHS granite) is greyish 
white with porphyritic texture, and are composed of quartz (20–25 vol 
%), plagioclase (15–20 vol%), K-feldspar (10–15 vol%), and biotite (~5 
vol%) phenocrysts. The groundmass (40–45 vol%) is composed of fine- 
grained quartz, plagioclase, K-feldspar and biotite. Plagioclase is mostly 

Table 1 
Summary geological characteristics of five representative porphyry Cu-Mo and Mo deposits in NE China (according to Chen et al., 2017b).  

Deposit, province Type Size Reserve @Grade Molybdenite Re- 
Os 

Related instrusion Tectonic environment 

Wunugetushan, Inter 
Mongolia 

Porphyry Cu- 
Mo 

G 849.7 Mt @0.46% Cu;@ 0.055% 
Mo 

180.5 ± 2.0 Ma Monzogranite porphyry Subduction environment 

Jinchanggou, Heilongjiang Porphyry Cu- 
Mo 

M ＞10 Kt @0.57% Cu; @0.16% Mo 114 ± 2.2 Ma Granodiorite porphyry Subduction environment 

Luming,Heilongjiang Porphyry Mo G Mo: 890 Kt @0.088% 177.9 ± 2.6 Ma Monzogranite porphyry Intra-continental 
environment 

Fu’anpu Jilin Porphyry Mo M Mo: 30 Kt @0.125% 166.9 ± 6.7 Ma Porphyritic 
monzogranite 

Intra-continental 
environment 

Daheishan, Jilin Porphyry Mo G 1090 Kt @0.06% Mo; 169.2 ± 1.2 Ma Granodiorite porphyry Intra-continental 
environment 

Abbreviations: For tonnage and size: Kt = 1000 t; G = giant (>500 Kt Mo); L = large (100–500 Kt Mo); M = medium (10–100 Kt Mo). 
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Fig. 2. Petrography and cathodoluminescence (CL) 
images showing examples of typical mineral assem-
blages and the occurrence of apatite grains in repre-
sentative granites associated with five porphyry Cu- 
Mo and Mo deposits. WS: Wunugetushan porphyry 
Cu-Mo deposit; JC: Jinchanggou porphyry Cu-Mo de-
posit; LM: Luming porphyry Mo deposit; FA: Fu’anpu 
porphyry Mo deposit; DHS: Daheishan porphyry Mo 
deposit. Mineral abbreviations: Qtz = quartz, Kfs = K- 
feldspar, Pl = plagioclase, Bt = biotite, Ap = apatite, 
Zr = zircon, Py = Pyrite. Mineral symbols are after 
Whitney and Evans (2010).   
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altered to kaolinite and sericite. Most biotite is altered to chlorite. The 
accessory minerals are mainly composed of apatite, titanite, zircon, and 
magnetite. Apatite occurs as euhedral hexagonal grains intergrown with 
plagioclase, biotite and some feldspar (Fig. 2i). Chen et al. (2017b) 
consider that the DHS porphyry Mo deposit was originated from partial 
melting of a thickened young lower crust during post-collisional 
extension, which is definitely compatible with the geological context 
in the area. 

4. Analytical methods 

4.1. Sample preparation 

The least altered representative ore-related granites from five por-
phyry Cu-Mo and Mo deposits were used for petrographic studies and 
apatite chemical analyses. All these samples were made into thin sec-
tions for petrographic study and one sample was taken from each stock 
to separate apatite and zircon. The apatite and zircon grains were 
separated from the samples by using standard heavy liquid and magnetic 
methods, and then hand-picked under the microscope. The selected 
grains were mounted in epoxy blocks and polished. Before the analysis, 
the apatite and zircon grains were examined using transmitted/reflected 
light microscopy and CL to determine their internal textures. Apatites 
from the representative granites are euhedral or hexagonal and show a 
magmatic texture with clear oscillatory zoning in CL images (Fig. 2b, d, 
f, h, and j), indicates that they are primary magmatic origin and have 
undergone negligible alteration. The paragenetic relationship between 
apatite and phenocryst implies that apatite crystallizes early within the 
parental magmas of these porphyries. Therefore, the chemical compo-
sition of the selected apatite crystals could effectively reflect the infor-
mation of parental magmas. Zircons from the representative granites are 
also euhedral and prismatic shape. They are transparent in transmitted 
light and show fine-scale, well-developed bright oscillatory zoning in the 
CL images. 

4.2. Whole-rock major and trace elements 

The least altered samples were powdered to ~200-mesh size for 
geochemical analyses. The major elements of the whole rock were 
determined using a Rigaku RIX 2000 X-ray fluorescence (XRF) spec-
trometer at the State Key Laboratory of Isotope Geochemistry, 
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences 
(SKLIG, GIGCAS). The trace elements were analyzed using an induc-
tively coupled plasma mass spectrometer (ICP-MS) at the SKLIG, GIG-
CAS. The detailed analytical procedures are described by Li et al. (2000). 
An internal standard solution containing Rh was used to monitor the 
signal drift during counting. A set of USGS and Chinese national rock 
standards, including GSR-1, GSR-2 and GSR-3, were chosen for cali-
bration. The analytical precision is typically better than 5%. 

4.3. Apatite major and trace element analysis 

Major element compositions of apatite were examined using electron 
microprobe analysis (EMPA) and a JEOL JXA 8230 electron microprobe 
at the KLMM, GIGCAS. The analytical conditions for the EMPA of apatite 
were as follows: 15 kV accelerating voltage, 20nA beam current, and 5 
μm beam diameter. The peak and background counting times were 20 
and 10 s for Ca and P, 10 and 5 s for F and Cl, and 60 and 30 s for Si and S. 
The Kα line was chosen for the analysis of all elements. The elements F 
and Cl were analyzed first to minimize their loss. The analytical results 
were reduced using ZAF correction. The used standards were fluo-
rapatite for Ca and P, BaF2 for F, tugtupite for Cl, and diopside for Si. The 
relative precisions were ±2% for Ca, P, and F and ±5% for Si and Cl. 

Trace element concentrations of apatite were measured with in situ 
LA-ICP-MS at the KLMM, GIGCAS, using an Agilent 7900a ICP-MS 
equipped with a Resonetic 193 nm ArF excimer laser ablation system. 

The in situ LA-ICP-MS analyses of apatite were performed on the same 
sample spots that were used for EMPA. The operating conditions were: 
80 mJ laser energy, 8 Hz ablation frequency, and 43 μm laser ablation 
spot diameter. The CaO content determined by EMPA was used as an 
internal standard for the apatite data calibration using ICP-MSDataCal 
(Liu et al., 2010). The LA-ICP-MS detection limit was below 0.1 ppm 
and the analytical uncertainty was better than 10% (relative percentage) 
for most of the analyzed elements. All analysis spots were carefully 
selected to avoid mineral and melt inclusions and cracks. The detailed 
analytical condition for the EMPA of apatite is described in Qu et al. 
(2019). 

4.4. Apatite Sr and Nd isotope analysis 

In situ Sr isotope analysis for apatite was conducted using the RES-
Olution laser ablation system coupled to Nu Plasma II multi-collector 
(MC) ICP-MS at the State Key Laboratory of Geological Processes and 
Mineral Resources, China University of Geosciences (Wuhan). Analyses 
were carried out using a spot size of 108 μm with a repetition rate of 10 
Hz and an energy density of ~3–5 J/cm2. Every 5 to 7 sample analyses 
were bracketed by an analysis of an in-house coral standard as the 
external standard to check the analytical reliability and stability. The 
measurements involved correction of spectral interferences for Kr, Rb, 
and doubly charged REE as described in Chen and Simonetti (2014). The 
average 87Sr/86Sr isotopic composition obtained for the coral standard is 
0.70916 ± 0.00004 (2σ, n = 30), which is consistent with the recom-
mended value of 0.70910 ± 0.00002 as determined by ID-TIMS analyses 
(Bizzarro et al., 2003). 

All in situ apatite Nd isotope analyses were performed with a Neptune 
Plus MC-ICP-MS (Thermo Scientific) coupled with a Resolution M-50 
193 nm laser ablation system (Resonetics) at the SKLIG, GIGCAS. The 
detailed description of the two instruments can be found in Zhang et al. 
(2014) and the detailed data reduction procedure can be found in Zhang 
et al. (2015). The 40 analyses of McClure apatite and 25 analyses of 
Durango apatite performed in this study yielded weighted means of 
143Nd/144Nd = 0.512280 ± 0.000055 (2SD) and 143Nd/144Nd =
0.512470 ± 0.000060 (2SD), respectively, which are consistent (within 
errors) with the value reported in Yang et al. (2014). 

4.5. Zircon trace element and Hf isotope analyses 

The zircon trace element analyses and U–Pb dating using an Agilent 
7900a (ICP-MS) equipped with a 193 nm laser system at the Key Lab-
oratory of Mineralogy and Metallogeny (KLMM), GIGCAS. The analyses 
were performed at a constant energy of 80 mJ using a spot diameter of 
31 μm and repetition rate of 8 Hz. The standard zircon 91,500 and NIST 
glass 610 (Pearce et al., 1997) were used for the external calibration of 
the U–Pb dating and trace element analyses, respectively. As the internal 
standard for the trace element concentrations, 29Si was used. Details 
about the operating conditions and data processing are described in Tu 
et al. (2011). The zircon isotope ratios and trace element contents were 
calculated using ICPMSDataCal (Liu et al., 2010). The analytical data 
were reduced, calculated, and plotted using the ISOPLOT software 
(Ludwig, 2003). 

In situ zircon Hf isotopic analyses were performed on a Neptune Plus 
MC-ICP-MS (Thermo Scientific) coupled with a Resolution M-50 193 nm 
laser ablation system (Resonetics) at the SKLIG, GIGCAS. The detailed 
description of the two instruments can be found in Zhang et al. (2014). 
The laser parameters were as follows: beam diameter of 45 μm, repeti-
tion rate of 6 Hz, and energy density of ~4 J cm− 2. The detailed data 
reduction procedure is reported in Qu et al. (2019). 
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5. Results 

5.1. Whole-rock major and trace element geochemical compositions 

Major and trace element compositions of representative ore-related 
granites from the study area are listed in Supplementary Table 1. 
Almost all of the ore-related granites in this area have 64.30–74.21 wt% 
SiO2 (recalculated to 100% without LOI) and show a relatively high 
concentrations of K2O (Fig. 3a), with most of data plotting in the field of 
high-K calc-alkaline series but JC samples plotting in the field of the 
shoshonite series (Fig. 3b). This is due to the JC samples have high loss in 
ignition (LOI) assays of 4.47–7.02 wt%, indicating that they have un-
dergone significant alteration (Supplementary Table 1). These samples 
have P2O5 concentrations that negatively correlate with SiO2 concen-
trations, a feature that is typical of I-type rocks (Supplementary Table 1; 
Li et al., 2007). In chondrite-normalized rare earth element diagrams, all 
the samples show enrichment of LREEs and depletion of HREEs (Fig. 3c). 
They are moderately fractionated, yielding LREE/HREE ratios of 
9.50–19.6 and (La/Yb)N ratios of 10.7–32.2 (Supplementary Table 1). In 
primitive mantle-normalized diagrams (Fig. 3d), these granites have arc 
affinity with enrichment in large ion lithophile elements (LILEs), 
including K, Rb, Ba, Pb, and Sr, and depletions in high field strength 
elements (HFSEs) including Nb, Ta, Th, Zr, Ti, and P. It is worth noting 
that these granites from porphyry Cu-Mo and Mo deposits have slightly 
different Th, Ba, Nb, La and Yb contents, plus different Ba/La, Th/Yb, 
Ba/Th and Th/Nb ratios (Fig. 8). Temperature estimation by using 
zircon saturation thermometer (Watson and Harrison, 1983) indicates 
that the WS and JC granites have relatively lower whole rock zircon 
saturation temperatures (746–787 ◦C) than those from the LM, FA and 

DHS granites (781–814 ◦C; Supplementary Table 1). 

5.2. Apatite geochemistry 

Major and trace element compositions of apatite are presented in 
Supplementary Table 2 and Fig. 7. The OH content in apatite is calcu-
lated by stoichiometry based on 8 anions and assuming that the halogen 
site is fully occupied with XF-ap + XCl-ap + XOH-ap = 1, where X = mole 
fractions modal of F, Cl and OH (Piccoli and Candela, 2002). Most ap-
atites have CaO content in the range of 53.02 to 56.85 wt%, and P2O5 in 
the range of 41.13 to 43.01 wt%. Apatite from the WS and JC granites 
contain less F (1.27–2.26 wt%) but more Cl (0.11–0.48 wt%) contents 
than those from the LM, FA and DHS granites (F = 2.23–4.45 wt% and 
Cl = 0–0.10 wt%, respectively; Fig. 7c). The calculated OH contents of 
apatites from the WS and JC granites (0.38–0.60 apfu) are clearly higher 
than those from the LM, FA and DHS granites (0–0.37 apfu; Fig. 7a). All 
the apatites from the representative granites exhibit fairly a right in-
clined distribution pattern with enrichment of LREE comparative to 
HREE (Fig. 4). The apatites from the WS and JC granites have relatively 
higher Ba (0.74–3.79 ppm) and Sr (458–761 ppm) contents than those 
from the LM, FA and DHS granites (Ba = 0–1.39 ppm, Sr = 105–570 
ppm; Fig. 7d). 

In situ Sr and Nd isotopic compositions of the apatites from the 
representative granites are listed in Supplementary Table 3 and plotted 
in Fig. 6a, b. Due to high Sr (>105 ppm) and essentially negligible Rb 
(<2.56 ppm) concentrations in the analyzed apatite (Supplementary 
Table 3), therefore the present-day 87Sr/86Sr ratios of the grains can be 
considered as the initial Sr isotopic signatures. The apatites from these 
granitic rocks exhibits fairly homogenous (87Sr/86Sr)i and εNd(t) 
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Fig. 3. Diagrams showing variations in the composition of representative granitic rocks from the northeastern China. (a) Na2O + K2O vs. SiO2 diagram (after 
Middlemost, 1994); (b) K2O vs. SiO2 (after Peccerillo and Taylor, 1976); (c) Chondrite-normalized REE patterns and (d) primitive mantle-normalized spider diagrams 
of the representative granites from five porphyry Cu-Mo and Mo deposits (Normalizing values are taken from Sun and McDonough, 1989). 

P. Qu et al.                                                                                                                                                                                                                                       



Ore Geology Reviews 135 (2021) 104218

8

isotopic compositions. The (87Sr/86Sr)i ratios of apatites from the 
representative granites ranging from 0.704092 to 0.707573 (Supple-
mentary Table 3 and Fig. 6a). The εNd(t) and 143Nd/144Nd ratios of the 
apatites from these granitic rocks are − 4.24 to 3.52 and 
0.512300–0.512764, respectively, corresponding to the two-stage Nd 
model age range between 610 and 1306 Ma (most in the range of 
756–1020 Ma; Fig. 6b). 

5.3. Zircon geochemistry 

Zircon trace element and Hf isotopic compositions from the repre-
sentative granites are listed in Supplementary Tables 4 and 5, 

respectively. All of the zircons obtained from the representative granites 
within NE China are euhedral with clear oscillatory zoning in CL images 
and moderate to high Th/U values (0.35–1.00; Supplementary Table 4), 
indicating that they are primary magmatic grains that have not under-
gone significant alteration. The zircon crystals from the WS and JC 
granites have higher (Ce/Nd)/Y and lower Dy/Yb ratios than those from 
the LM, FA and DHS granites in Fig. 7b, but they share similar Hf isotopic 
compositions (Fig. 6c). These zircons yield 176Hf/177Hf ratios from 
0.282623 to 0.283052 and εHf(t) values from − 1.5 to 13.5 (Fig. 6c), 
corresponding to two-stage TDM2 model ages range between 354 and 
1317 Ma (most in the range of 505–918 Ma), in good agreement with the 
apatite two-stage Nd model ages. 
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6. Discussion 

6.1. Nature of magmatic source of the porphyry Cu-Mo and Mo deposits 

Almost all the ore-related representative granites from these por-
phyry Cu-Mo and Mo deposits belong to high-K calc-alkaline I-type 
granite (Supplementary Table 1). Whole rock zircon saturation tem-
peratures of these granitic rocks with 746–814 ◦C (Supplementary 
Table 1), which are lower than the temperatures of typical A-type 
granites (>900 ◦C; King et al., 1997). There are series of similar affinities 
of geochemistry and isotopes, indicative of a possible of homologous 
source for the WS, JC, LM, FA and DHS granites. Firstly, samples from 
these granites have Nb/Ta (7.88–17.36, average value of 12.9) and Zr/ 
Hf values (34.0–44.4, average value of 37.4), which are similar to the 
crustal values (11.4 and 33, respectively; Supplementary Table 1; Taylor 
and McLennan, 1985). These granites also have low Ti/Zr ratios 
(7.46–22.6, average value of 13.7), which are consistent with those of 
typical crustal rocks (Ti/Zr < 30; Hans Wedepohl, 1995). Secondly, in 
the source region discrimination diagram (Fig. 5), all samples plot into 
the fields of partial melting of amphibolite, together indicating the 
comparable magma source (Patiño Douce, 1999). Thirdly, these granites 
in this study have similar apatite (87Sr/86Sr)i ratios (0.704092 to 
0.707573) and εNd(t) values (− 4.24 to +3.52; Fig. 6a, b), which 
resemble the numerous Mesozoic granitoids in NE China with positive 
εNd (t) values (0 to +4) and low(87Sr/86Sr)i ratios (0.705 ± 0.001) (Jahn 
et al., 2000), all demonstrating a significant contribution from juvenile 

lower crust material. This interpretation is also supported by bulk-rock 
Sr-Nd isotopic data for these granites (Fig. 6d). The Sr-Nd isotopic 
compositions of the WS, LM, FA and DHS granites are consistent with 
those from many other ore-related granites from the Jurassic porphyry 
Mo deposits in the Great and Lesser Xing’an Range region (e.g., Tai-
pingchuan, Honghuaerji, Diyanqinamu, Dongbulage, Huojihe, Cuiling, 
Liushengdian, Xinhualong, Changanbao, Dashihe and Houdaomu por-
phyry Mo deposits) and Mesozoic granitoids in NE China (Fig. 6d), 
together indicating that these granites most likely originated from 
relatively juvenile crust-derived melts. Fourthly, the zircon εHf(t) values 
(− 1.5 to 13.5) of these granites almost all fall within the field between 
the chondrite uniform reservoir and depleted mantle, with a uniform 
TDM2 age range of 354–1212 Ma (most in the range of 505–918 Ma; 
Fig. 6c), which are consistent with zircon εHf (t) values from the other 
Phanerozoic igneous rocks in the east CAOB (Yang et al., 2006), 
implying that they most likely formed via partial melting of juvenile 
crust (Qu et al., 2019). This has also been confirmed in this study that 
Mo is associated with magmas melted from juvenile crust materials (e.g., 
Farmer and DePaolo, 1984; Klemm et al., 2008). 

In light of the discussion above, the whole-rock geochemistry and in- 
situ apatite Sr-Nd and zircon Hf isotopic compositions from the WS, JC, 
LM, FA and DHS granites in NE China suggest that they are originated 
from partial melting of a juvenile crustal source. 

Fig. 6. (a) Plots of (87Sr/86Sr)i ratios versus 88Sr (v) values (b) 143Nd/144Nd–εNd(t) in the apatite from these porphyry Cu-Mo and Mo deposits. (c) Plot of εHf(t) vs. U- 
Pb age (Ma) of zircon from these porphyry Cu-Mo and Mo deposits. (d) Plot of εNd(t) vs. (87Sr/86Sr)i for whole-rock samples from the five porphyry Cu-Mo and Mo 
deposits and several other porphyry Mo-bearing deposits in the Xing’an Range region. The complied whole-rock Sr-Nd isotopic compositions of porphyry Mo deposits 
include Xinhualong (Sun et al., 2012), Huojihe (Hu et al., 2019), Taipingchuan (Chen et al., 2010b), Diyanqinamu (Sun et al., 2014), Dongbulage (Guo et al., 2020), 
Sankuanggou (Deng et al., 2018), Dashihe, Houdaomu, and Jidetun (Zhang, 2013). The shaded area of the granitoids in NE China is from Wu et al. (2003). 
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Fig. 7. Variation diagrams of major and trace element contents for apatite (a, c, d) and zircon (b) from the porphyry Cu-Mo and Mo deposits in NE China. (a) F-Cl-OH 
ternary diagram based on the F-Cl-OH atomic proportions in apatites; (b) variation diagrams of zircon (Ce/Nd)/Y vs. Dy/Yb ratios; (c) Cl (wt%) vs. F (wt%) in 
apatites; (d) Ba (ppm) vs. Sr (ppm) in apatites. The yellow circles represent apatite compositions of the granitoids from the Huojihe porphyry Mo deposit (Xing et al., 
2019). The apatite data source in the Qinling area are taken from Yaochong (Mi et al., 2017), Jinducheng (Li, 2013), Nannihu, Shangfanggou, Shibaogou, and Yuku 
(Du et al., 2019), Sandaozhuang, Nantai, and Qiushuwan porphyry Mo deposits (Chen et al., 2017a). 

Fig. 8. (a) Ba/La vs. Th/Yb and (b) Ba/Th vs. Th/Nb diagram of the representative granites from these porphyry Cu-Mo and Mo deposits in NE China (after Xu 
et al., 2016). 
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6.2. Difference in nature of ore-forming magma of the porphyry Cu-Mo 
and Mo deposits 

Generally, the LILEs (e.g., Rb, Ba, Sr, and K) and other fluid-mobile 
elements such as U and Pb are relatively mobile in fluids released 
from the subducted slab, whereas Th, LREEs and HFSEs are thought to 
be mobilized by the melts (Elliott et al., 1997). Consequently, high Ba/ 
La, Ba/Th, Rb/Y, Sr/Th, and Sr/Nd ratios are generally thought to be 
indicative of arc magma derived from sources that input of slab-released 
fluids, whereas rocks with sources that had been enriched by partial 
melts derived from sediments are likely to have high Th/Yb, Th/Pb, and 
Th/Nb ratios (e.g., Zheng et al., 2011; Labanieh et al., 2012). The WS 
and JC granites near to the subduction zone have variable Ba/La and Ba/ 
Th ratios, but narrow ranges of Th/Yb and Th/Nb ratios, indicating that 
their source were modified mainly by subducted slab-derived fluids 
(Fig. 8; e.g., Dokuz et al., 2020; Wu et al., 2016). Additionally, the ability 
of Cl-bearing hydrothermal fluids to transport Sr is well documented by 

field and experimental studies (La Cruz et al., 2019). As shown in 
Fig. 7d, the apatites from the WS and JC granites near to the subduction 
zone have higher fluid-mobile element Ba and Sr contents than those 
from the LM, FA and DHS granites, also suggesting that the magmatic 
source of porphyry Cu-Mo deposits were modified by subducted slab- 
derived fluids (e.g., Richards, 2015; Chen and Wu, 2020). In contrast, 
the LM, FA and DHS granites away from the subduction zone with lower 
Th/Yb and Th/Nb ratios, and narrow ranges of Ba/La and Ba/Th ratios, 
reflecting their derivation magma neither associated with enrichment 
sediments nor modified by slab-derived fluids (Fig. 8; Wu et al., 2016). 

Volatile fluids (particularly F and Cl) affect a variety of processes 
such as the vapor saturation, depolymerizing the melt structure, and by 
complexing with metals, which exert strong controls on the composi-
tional variations, style of mineralization and related mineralization 
processes in hydrothermal ore deposits (Loferski and Ayuso, 1995; 
Yardley, 2005; Zhang et al., 2012). Therefore, tracing the variation of F 
and Cl contents in natural melts is crucial to understanding of the factors 
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controlling on Cu-Mo and Mo mineralization. The apatites from the 
porphyry Cu-Mo mineralized granites (WS and JC) show relatively 
higher Cl and lower F contents than those from the porphyry Mo 
mineralized granites (LM, FA and DHS) (Fig. 7c). As aforementioned, 
these porphyry Cu-Mo and Mo deposits are located near and away from 
the subduction zones, respectively (Fig. 1b). As a result, the high Cl 
contents of the apatites from the WS and JC granites near to the sub-
duction zone should have a source of Cl from other fluids, most likely 
fluids derived from a subducted slab (e.g., Kawamotoa et al., 2013; 
Reynard, 2013). Generally, Cl is volatile trace element that can be 
incorporated into some hydrous minerals (i.e., amphibole, chlorite and/ 
or serpentine) and variously released during slab subduction (Jiang 
et al., 2018). The altered oceanic crust and sediments could enrich a 
large amount of Cl (Wang, 2015). As the subducting slab dehydration, a 
large amount of Cl is being contributed by the altered oceanic crust, 
marine sediments and mineral phase decomposes, and then preferen-
tially enters the liquid phase (Stroncik and Haase, 2004; Liu et al., 
2020). That is, near the subduction zone the juvenile crust was meta-
somatized by subducted slab-derived fluids with increasing Cl contents 
(Fig. 9), and partial melting of such a source leads to the WS and JC 
granites that have high Cl contents. In contrast, further away from the 
subduction zone under intra-continental setting, with partial melting of 
juvenile crust the breakdown of amphibole and/or biotite will produce a 
hydrous fertile magma enriched in F (Chen and Zheng, 2015; Hou et al., 
2011), and making contributions to the generation of the LM, FA and 
DHS granites with high F contents. Besides, F is also controlled by the 
phengite and lawsonite, decomposing of these minerals at greater depth 
under higher pressure (Pagé et al., 2016; Jiang et al., 2018). Therefore, F 
is transported to deeper depths in the subducted oceanic crust, and 
released through breakdown of phengite and lawsonite, may also pro-
vide an important contribution to the formation of LM, FA and DHS 
granites (e.g., Jiang et al., 2018). The Cl contents of the apatites from the 
LM, FA and DHS granites is <0.10% but have higher F contents, similar 
to the apatites from porphyry Mo deposits in the Qinling area (Fig. 7c 
and reference in), which is consistent with their intracontinental tec-
tonic setting characteristics. As depicted in Xing et al. (2019), apatite 
from the Huojihe porphyry Mo deposit adjacent to the Luming porphyry 
Mo deposit also have low Cl and high F contents with higher F/Cl ratios, 
which is compatible with the results shown in this study (Fig. 7c). 

Magmatic water plays a key role in the formation of porphyry deposit 
(Richards, 2011a; Rohrlach and Loucks, 2005). High magmatic water 
contents can enhance the fertility of magmas and favor the formation of 
magmatic–hydrothermal ore deposits, as water is largely responsible for 
the dissolution, transport, and concentration of a variety of metal ele-
ments and compounds (Robb, 2005; Kelley and Elizabeth, 2009; 
Richards, 2011a). However, directly measuring the content of magmatic 
water is difficult, primarily as a result of the extensive degassing of 
magma as it reaches the shallow crust. Apatite is an important host for 
volatiles F, Cl, and OH (Mathez and Webster, 2005; McCubbin et al., 
2015), though the minor proportion of OH in apatite, many studies have 
used the OH concentration of apatite to estimate H2O abundances in the 
melt from which the apatites crystallized (Boyce et al., 2010; McCubbin 
et al., 2012; Tartèse et al., 2013). Boyce and Hervig (2009) found that F 
and OH variation in apatite matched well with F and H2O change in the 
coexisting melt inclusion. Thus, OH component in apatite is a useful 
proxy to evaluate the water content in coexisting melt. Apatites from the 
WS and JC granites contain higher OH contents than those from other 
three ore-related granites (Fig. 7a), suggesting a higher water content of 
parent melt. Zircon is also ubiquitous accessory mineral in intermediate 
to felsic igneous rocks and relatively resistant to weathering or hydro-
thermal alteration (Hoskin and Schaltegger, 2003). They crystallize 
early and could record the composition of parent melt, controlled by the 
relevant zircon/melt partition coefficients (Claiborne et al., 2010). Lu 
et al. (2016) reported that zircon compositions have great potential as a 
pathfinder for porphyry Cu ± Mo ± Au deposits and some distinct zircon 
trace element ratios (e.g., (Ce/Nd)/Y, Dy/Yb ratios) can be used to 

indicate the magmatic water contents. That’s because trace element 
proxies for the ratio of hornblende in the differentiation series up to the 
stage sampled are especially useful indicators of the hydration state of 
the melt (Davidson et al., 2013; Loucks, 2014). Amphibole preferentially 
incorporates middle REE (e.g., Dy) and Y over HREE (e.g., Yb; Davidson 
et al., 2007). In hydrous melts, hornblende crystallizes at an early stage 
in magmatic evolution should decrease the Dy/Yb ratio and depletes Y 
in the residual melt. Here, zircon crystals from the WS and JC granites 
have higher (Ce/Nd)/Y and lower Dy/Yb ratios than those from the 
other three ore-related rocks, also implying that the WS and JC magma 
had higher water contents (Supplementary Table 4 and Fig. 7b; Collins 
et al., 2016; Lu et al., 2016). Additionally, the lower whole rock Zr 
saturation temperatures from the WS and JC granites than those from 
the LM, FA and DHS granites (Supplementary Table 1), which may due 
to the parent melt of porphyry Cu-Mo system was more hydrous. Based 
on the above discussion, we noted that the water content of parent melt 
of porphyry Cu-Mo deposits in NE China is higher than those of porphyry 
Mo deposits. This conclusion is consistent with the Candela and Holland 
(1986), who reported that porphyry Mo-(Cu) deposits relative to por-
phyry Cu-(Mo), commonly related to magmas with somewhat lower 
initial water content. 

6.3. Porphyry Cu-Mo and Mo deposits genetic model 

Oceanic slab generally contains high concentrations of Cu (60–125 
ppm; Sun et al., 2003) that are two to four times higher than typical Cu 
concentrations within the mantle (30 ppm; McDonough and Sun, 1995), 
meaning that the subducted oceanic slab material is likely to be the main 
source of Cu within the deposit in the study area (e.g., He et al., 2019). 
Crustal materials are significantly more enriched in Mo than the mantle 
suggested that the Mo within porphyry Mo deposits is derived from 
crustal material (Palme and O’Neill, 2003). In addition, many studies 
showed that Mo is associated with magmas melted from continental 
crustal materials (e.g., Farmer and DePaolo, 1984; Klemm et al., 2008; 
Richards, 2011b). Gao et al. (2017) concluded that partial melting of 
juvenile lower crust, rather than ancient crust or continental litho-
spheric mantle played an important role in the genesis of felsic magmas 
associated with the large-scale Mo mineralization in the Central Asian 
metallogenic domain. 

It is widely considered that Cl-rich fluids are more favorable for 
extracting Cu from melt and in the form of chloride complexes in 
moderate salinity fluids transporting it (Keppler and Wyllie, 1991; Bai 
and Koster van Groos, 1999). Meanwhile, the increase in the Cl content 
will markedly increase Cu solubility (Keppler and Wyllie, 1991; Archi-
bald et al., 2002). In comparison, porphyry Mo systems are F-rich (e.g., 
Audétat, 2015; Jin et al., 2018). F in fluids have important effects on 
partitioning Mo between melt and fluid and transporting Mo (Candela 
and Holland, 1984; Bai and Koster van Groos, 1999). The DMo

fluid/melt was 
higher in the F-containing system than in the presence of Cl (Keppler and 
Wyllie, 1991). Indeed, the F enrichment in the LM, FA and DHS por-
phyry can promote high degrees of melt fractionation by lowering the 
magma solidus to extend the crystallization interval, and by lowering 
the melt viscosity to facilitate residual melt extraction and accumulation 
in the apical regions of magma chambers (Giordano et al., 2004; 
Audétat, 2015). Therefore, the enrichment of Cl and lower F/Cl ratios of 
the apatite from the WS and JC granites compared to those from the FA, 
LM and DHS granites suggest that high Cl content is critical for 
extracting Cu from the melt and transporting Cu for the formation of 
Cu–Mo deposits, whereas the magma with F-rich is beneficial to Mo 
mineralization. 

Porphyry Mo deposits that produce Mo as a main commodity have 
recently been divided according to tectonic setting into subduction-, rift- 
, and collision-types, which are also termed Endako-, Climax-, and 
Dabie-types (Chen and Santosh, 2014). In contrast, previous study 
shows that the arc magmas derived from the partial melting of meta-
somatized mantle wedge overlying a subducting oceanic slab are 
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metalliferous and can provide significant quantities of Cu (de Hoog 
et al., 2004; Richards, 2015), so the Cu mineralization is closely related 
to these arc materials (e.g., Sillitoe, 2010; Richards, 2015). Candela and 
Piccoli (2005) reported that intrusions in subduction settings associated 
with the genesis of porphyry Cu system worldwide are consistent with 
partial melting of hydrated mantle followed by fractionation and 
interaction with crustal materials. Overall, Porphyry Cu and Mo deposits 
are generally thought to be associated with mature island or continental 
arcs, although more recent research has identified porphyry deposits 
that formed in syn- to post-collisional settings (Hou and Cook, 2009; 
Hou et al., 2020; Richards, 2011b, 2015). Given that the apatite 
geochemistry discussed here with previously obtained geochronological 
data indicate that the formation of porphyry Cu-Mo deposits in NE China 
is in a subduction tectonic setting while the porphyry Mo deposits is in 
an intra-continental environment. We propose a formation model for 
porphyry Cu-Mo and Mo deposits in NE China as shown in Fig. 9. Fluids 
released from the subducted are usually H2O-rich and can therefore 
carry significant amounts of Cu, LILE, Cl, and S (e.g., Sillitoe, 2010; He 
et al., 2019). The juvenile crust was metasomatized by this fluid 
accompanied by the enrichment of Cu and Cl, with decreasing in solidus 
temperatures. Long-lived subduction causing partial melting of juvenile 
crust material with Cu-enriched, and eventually to form the H2O-rich, 
and Cl-rich granites in WS and JC porphyry Cu-Mo deposits (Fig. 9). In 
contrast, when the tectonic setting transforms from continental arc to 
intra-continental environment, accompanying with upwelling of hot 
asthenosphere, the F-enriched fluids released by these long-term meta-
morphic dehydration reactions and has been stored at the juvenile lower 
crust. Here, the melting of the partial melting of such a source eventually 
leading to a Mo-enriched magma. The magma emplaced shallow crust to 
generate the granites and their related Mo deposits in the NE region (e. 
g., the LM, FA and DHS porphyry Mo deposits; Fig. 9). 

7. Conclusions 

In this study, an integrated investigation on in-situ elemental and 
isotopic geochemistry of apatite from the porphyry Cu-Mo and Mo de-
posits in NE China, to discriminate Cu-Mo and Mo mineralization. The 
main conclusion is as follows: 

(1) The Wunugetushan, Jinchanggou, Luming, Fu’anpu and Dahei-
han porphyry Cu-Mo/Mo deposits are generated by partial 
melting of juvenile crustal material.  

(2) Apatite from the porphyry Cu-Mo mineralized granites have 
higher Cl/F ratios, OH contents, and fluid-mobile elements Ba 
and Sr, suggesting that the magmatic source of porphyry Cu-Mo 
deposits were more hydrous and modified by subducted slab- 
derived Cl-enriched fluids with carry significant amounts of Cu.  

(3) Apatite from the porphyry Mo mineralized granites have high F 
with lower Cl/F ratios, indicating that these granites formed in 
juvenile crustal dehydration self-metasomatism with released F- 
enriched fluids under the intra-continental environment. 
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