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A B S T R A C T   

The presence of water has significant influence on magma properties such as the chemistry, viscosity, and 
crystallization temperature. Water content in the magma can be modified by magma replenishment or crystal 
fractionation, but technique for direct tracing of these processes are lacking. In this study, we analyzed zircon 
water content, oxygen isotopes, and trace element contents for a co-genetic granitic suite (one primitive biotite 
granite and two evolved garnet-bearing two-mica granites) from the Gangdese batholith in Tibet. The biotite 
granite shows a relatively narrow H2O-in-zircon range with a sharp peak in the density plot, while multiple peaks 
are present for the garnet-bearing two-mica granites. The wide Hf range indicates that the zircon grains have a 
protracted magmatic history, and the positive H2O vs. Hf correlation indicates that H2O-in-zircon faithfully 
recorded the water variation of the evolving magma. These results suggest that H2O-in-zircon is a good indicator 
to trace magma fluid evolution.   

1. Introduction 

Water plays a key role in many magmatic processes, including 
magma generation, crystallization, and volcanic eruption. Incorporation 
of water into nominally anhydrous minerals (NAMs) has been confirmed 
in the last decades (Bell and Rossman, 1992; Demouchy and Bolfan- 
Casanova, 2016; Peslier, 2010). Minor amounts of water in NAMs, 
expressed as hydrogen or hydroxyl, have significant impacts on rock 
physicochemical properties (Karato, 1990; Seaman et al., 2013). Water 
content in NAMs (e.g., olivine, pyroxene, and feldspar) has been widely 
used to calculate their magma or magma source H2O content according 
to partition coefficients between magma and NAMs (Okumura, 2011; 
Xia et al., 2013). Zircon is a common NAM in intermediate-felsic rocks, 
and is widely used for U–Pb dating (Pidgeon et al., 2017; Wu and 
Zheng, 2004) and Hf-O-Li isotope tracing of magma source character 
(Trail et al., 2007; Trail et al., 2018; Ushikubo et al., 2008; Valley, 2003; 
Xia et al., 2006). However, little attention was given to water content in 
zircon due to analytical challenge and limitation on using H2O-in-zircon 

to calculate the magma water content (De Hoog et al., 2014; Xia et al., 
2019). The limited data available led to contradictory claims that 
crystalline zircon can accommodate only low H2O (<100 μg/g) (Bell, 
2004; Woodhead et al., 1991b) or more than 1000 μg/g H2O (De Hoog 
et al., 2014). Therefore, it remains unclear whether H2O-in-zircon can be 
used as a magma water content indicator or not. There is a general 
concept of increasing water in the evolving magma due to crystallization 
fractionation. In order to test H2O-in-zircon can record this evolution or 
not, in this contribution we analyzed the water content and oxygen 
isotope compositions of zircon grains from a co-magmatic granite suite 
in the Gangdese batholith, including a less-evolved biotite granite (also 
called normal granite) and two more-evolved granites, which emplaced 
coevally at ~62 Ma in Zhengga area, southern Tibet (Ma et al., 2017). 

2. Sample descriptions 

The samples used in this study were described in detail by Ma et al. 
(2017). They were collected from the Zhengga area of southern Tibet 
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(Fig. 1). Ma et al. (2017) has also given a detailed account on the field 
geological and petrographic characteristics, geochemistry of whole rock 
and rock-forming minerals, and tectonic setting of the samples. The 
granite suite consists mainly of biotite granite (BG) and garnet-bearing 
two-mica granite (GBG), and was emplaced in the Paleocene (ca. 62 
Ma) during the incipient India-Asia collision (Hu et al., 2017; Mo et al., 
2008). The close field association, and the nearly identical ages, whole- 
rock Sr–Nd and zircon Hf–O isotope compositions between BG and 
GBG indicate that they were derived from a same juvenile crustal- 
dominated source (Ma et al., 2017). However, the BGs are character-
ized by higher MgO (0.4–0.7 wt%) but lower SiO2 (70–73 wt%) and A/ 
CNK (0.98–1.08) than the GBGs (SiO2 = 73–76 wt%, MgO <0.3 wt%, A/ 
CNK = 1.03–1.21). Geochemical modeling indicates that fractionation 
of K-feldspar, biotite and titanite and minor plagioclase and accessory 
minerals (zircon, apatite, allanite and monazite) can account for their 
compositional variation (Ma et al., 2017). The mineral compositional 
difference also supports that the GBGs represent a more-fractionated 
product. The biotite in the GBG has lower TiO2 and MgO contents 
than that in the BG. In addition, the plagioclase composition evolves 
from andesine through oligoclase to albite for BG and GBG. Garnet 
grains in the GBG become increasingly almandine from core to rim. 
Garnet and mica in the GBG were likely formed by reaction between 
biotite and (Mn, Al)-rich magma. 

One BG (11SR04) and two GBG (11SR05–2 and 09 TB66) samples 
were selected for the zircon water content and oxygen isotope analyses. 
Sample 11SR04 has SiO2 = 71.87 wt%, A/CNK = 1.04, Zr/Hf = 29.3, 
Eu/Eu* = 0.64, whereas samples 11SR05–2 and 09 TB66 have SiO2 =

73.99 and 75.01 wt%, A/CNK = 1.09 and 1.21, Zr/Hf = 20.1 and 22.8, 
Eu/Eu* = 0.14 and 0.10, respectively (Ma et al., 2017). 

3. Analytical methods 

Zircon grains were separated from crushed rock samples by con-
ventional heavy liquid and magnetic methods. The separated zircon 
grains were placed on a double-sided adhesive tape, and then molten tin- 
based alloy was poured into hollow cylinder above the adhesive tape for 
mounting. Detailed sample preparation procedures were described by 
Zhang et al. (2018). Cathodo-luminescence (CL) imaging of zircon 
grains was obtained in order to observe the inner structure and choose 
potential target sites for analyses at the State Key Laboratory of Isotope 
Geochemistry, Guangzhou Institution of Geochemistry, Chinese Acad-
emy of Sciences (GIGCAS), using a CAMECA SE-50 microprobe. 

3.1. Water content and oxygen isotope analyses 

Water content in NAMs is most commonly measured with the Fourier 
transform infrared spectroscopy (FTIR) due to its high sensitivity and 
ability to distinguish hydrogen species and association with cations 
(Trail et al., 2011; Woodhead et al., 1991b). However, FTIR method was 
unsuitable for our zircon samples due to their small grain size (about 
100 μm). In this study, zircon water content and oxygen isotope were 
measured simultaneously by a large geometry secondary ion mass 
spectrometry (LG-SIMS) CAMECA IMS 1280-HR at GIGCAS. To improve 
the vacuum performance, liquid nitrogen was used to cool the sample 
chamber via an automatic liquid nitrogen refilling system developed by 
Zhang et al. (2018). Before the analysis, the alloy mount was kept in the 
storage chamber overnight. 

A 3–5 nA Cs+ primary beam was accelerated at 10 kV and the sec-
ondary ion beam was extracted with − 10 kV energy. A normal incidence 
electron gun was used to compensate the charge near the analytical spot. 
16O and 18O were collected by two Faraday cup detectors with resistors 
of 1010 and 1011 Ohm, respectively, while 16O1H was detected by an 

Fig. 1. Geological maps of (a) Gangdese batholith in Xigaze-Nyingchi area and (b) Samri area, showing the sampling locations.  
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electron multiplier. Collector slits of 500 μm was used to collect 16O and 
18O, corresponding to a mass resolving power of ca. 2500. To minimize 
the 17O interference, a ~ 173 nm collector slit was used for 16O1H, which 
yielded a mass resolving power of ca. 7000. The magnetic field was 
locked using nuclear magnetic resonance (NMR) probe by regulation 
mode. Single analytical run contains ca. 200 s of pre-sputtering and 
beam alignment (centering DTFA and DTCA). A total of 60 s were used 
for data acquisition with 16 integrated cycles. Measured 16O1H/16O 
ratios were calibrated into H2O contents based on the calibration curve 
established by FTIR results and SIMS 16O1H/16O ratios for a set of zircon 
reference matrials (Xia et al., 2019). The oxygen isotope compositions 
were normalized to the Vienna Standard Mean Ocean Water composi-
tions (SMOW) notated as δ18OM, and calibrated with zircon SA01 stan-
dard with the recommended δ18O = 6.16 ± 0.26‰ (Huang et al., 2020). 

3.2. Trace element analysis 

Zircon trace element concentrations were measured at GIGCAS, 
using an inductively coupled plasma-sector field-mass spectrometer 
(ICP-SF-MS) instrument of ELEMENT XR equipped with a Resonetic 
RESOlution M-50193 nm ArF excimer laser ablation system. Laser 
ablation was conducted at a 5 Hz repetition rate, ~4 J/cm2 energy 
density, and 33 μm spot size. Analysis time of a single spot was 50s, 
consisting of 20s laser-off background acquisition and 30s laser-on 
sample data acquisition. Helium was used as a carrier gas for aerosol 
transport. The following masses were measured: 25Mg, 27Al, 29Si, 31P, 
49Ti, 57Fe, 89Y, 139La, 140Ce, 141Pr, 145Nd, 149Sm, 151Eu, 155Gd, 159Tb, 
163Dy, 165Ho, 167Er, 169Tm, 172Yb, 175Lu, 178Hf. The reference materials 
of NIST SRM 610 and NIST SRM 612 are bracketed into the unknown 

sample sequence. NIST SRM 610 was used as the external standard for 
mass bias calibration and instrumental drift, whilst 29Si was used as the 
internal standard. Detailed analytical procedures and the data reduction 
strategy were described by Zhang et al. (2019). NIST 612 was used as 
unknown to check the analytical reliability. The average results for NIST 
612 analysis yielded good consistency with the recommended value, and 
the analytical error and precision are within 10%. 

4. Results 

4.1. Zircon CL imaging 

Representative zircon cathodoluminescence (CL) images were shown 
in Fig. 2. Nearly all zircon grains are euhedral-subhedral prismatic. 
Zircon grains from the BG sample 11SR04 are generally larger (50–250 
μm) than zircons from the GBG samples (50–150 μm). The grains 
analyzed show magmatic zircon characteristics, including oscillatory 
zoning and core-rim texture. 

4.2. Zircon water content and oxygen isotopes 

All the H2O content and oxygen isotope data obtained are listed in 
Supplementary Table 1. Six spots were excluded due to their large 
16O1H/16O uncertainties and/or extremely high Al and Y contents, 
which likely reflect contamination by nano-sized H2O-rich inclusions, or 
zone lamellae (Pidgeon et al., 2019; Xia et al., 2019). Previous studies 
showed that as non-formula elements, Al and Y can penetrate fractures 
and selected zone lamellae during weathering (Pidgeon et al., 2019). As 
shown in Fig. 3, the less-evolved BG sample 11SR04 has water-in-zircon 

Fig. 2. Representative zircon CL images. Red and yellow circles denote the SIMS and LA-ICPMS analysis spots, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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of 203–2339 μg/g (median 566 μg/g). It shows one main sharp peak at 
515 μg/g in the kernel density plot (Fig. 4a). The two evolved GBG 
samples 11SR05–2 and 09 TB66 have water-in-zircon of 279–2216 μg/g 
and 112–2193 μg/g, respectively. Compared with the BG, the GBGs have 
higher median water-in-zircon values (11SR05–2: 883 μg/g; 09 TB66: 
734 μg/g) (Fig. 3). Also, the two GBG samples have wider interquartile 
range than the BG (Fig. 3), indicating greater dispersion (>1000 μg/g). 
The kernel density plot shows a bimodal distribution peak at 410 and 
1070 μg/g, and 590 and 1230 μg/g, respectively (Fig. 4b, c). 

All three samples have similar zircon δ18O compositions (Fig. 5). The 
BG sample have zircon δ18O = +5.71 − +7.82‰. The GBG samples 
11SR05–2 and 09 TB66 have zircon δ18O = 5.18–7.21‰ and 
4.69–6.38‰, respectively. The measured δ18O values have no obvious 
correlation with the H2O contents (Fig. 5). 

4.3. Trace element compositions 

The results are listed in Supplementary Table 2. Compared with the 
BG sample, the two GBG samples have higher zircon Hf and REE con-
centrations. Zircon grains separated from the BG have a smaller Hf range 
(ca. 7000–16,000 μg/g) than grains from the GBG (Hf = ca. 
7000–24,700 μg/g). One spot was discarded due to its very high Ti 
content (59.8 μg/g), possibly caused by contamination. The Ti contents 
of BG and GBG cluster in the 0.69–11.1 μg/g range. Zircon grains from 
all the three samples show negative Eu anomalies (Eu/Eu* (EuN/(SmN ×

GdN)0.5) = 0–0.8), while the BG zircons have higher Eu/Eu* values of 
(0.1–0.8) than the GBG ones (Eu/Eu* <0.1) (Fig. 6). 

5. Discussion 

5.1. Radiation damage in the zircon samples 

Radiation damage accumulated by radioactive U–Th decay can 
cause zircon metamictization (Chakoumakos et al., 1987; Murakami 
et al., 1991; Nasdala et al., 2002). Metamict zircon exhibits distinctive 
density, unit-cell parameter, refractive index, and fracturing (Chakou-
makos et al., 1987). Previous works indicated that metamict zircons 
with high degree of damage may contain abundant secondary water (up 
to 16 wt%) (Nasdala et al., 2001; Pidgeon et al., 2017; Wang et al., 2018; 
Woodhead et al., 1991a; Woodhead et al., 1991b), which may be related 
to the post-hydrothermal alteration where exotic cations enter the low- 
atomic-density metamict zircon (Geisler et al., 2002). 

To check whether our zircon samples are metamictized or not, we 
calculated the radiation dose Dα based on the U–Th abundance and 
U–Pb age data reported by Ma et al. (2017). The cumulated Dα for all 
zircon grains is far below the damage threshold (< 3 × 1015 α decay 
event/mg) proposed by Murakami et al. (1991) (Supplementary 

Fig. 3. Box plots of zircon H2O contents for the Gangdese batholith. Rectangles 
represent the average value of each sample. 

Fig. 4. Kernel density estimation plots, showing the water-in-zircon distribu-
tions. Peak values are annotated. 

Fig. 5. Plot of H2O content vs. δ18O, indicating no correlation between them.  
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Table 3). Except for five spots with high La content (possibly due to 
impurity), most zircon analyses have high (Sm/La)N and low La content 
(Fig. 7), resembling typical magmatic crystalline zircons (Hoskin, 2005). 

5.2. Charge balance between trace elements in zircon 

Zircon is commonly enriched in tetravalent U, Th, and Hf due to their 
substitution of Zr4+. Trivalent cations, including REE, Y and Al are also 
abundant in zircon (Finch, 2003; Hoskin and Schaltegger, 2003). To 
maintain charge balance, a coupled substitution (termed as xenotime 
substitution) was proposed, in which P5+ and (REE + Y)3+ are coupled 
to replace Si4+ or Zr4+. Accordingly, the (REE + Y)/P molar ratio should 
be equal to one. However, De Hoog et al. (2014) found that natural 
zircon samples from a oceanic gabbro have excess of (REE + Y) to P, and 
the (REE + Y) excess is well balanced by H as the (H + P)/(REE + Y) 
molar ratios are equal to/ approaching one. This suggests that the H2O 
content is possibly controlled by charge-balance between H, P, and (REE 
+ Y) in crystalline zircon, and that using zircon water content to 
constrain the magma water content is not straightforward (De Hoog 
et al., 2014). In the molar (REE + Y) vs. (H + P) plot, our data points fall 
mostly in the field of (H + P)/(REE + Y) > 1 (Fig. 8a), and three spots 
show P excess (i.e., above the 1:1 line) (Fig. 8b), which also yield 
obvious H. This indicates that charge balance for excess (REE + Y) to P is 
not the only way for H-uptake in our zircon samples. 

5.3. Water evolution during magma fractionation and its records in zircon 

As water is incompatible, its content would increase with magma 
fractionation (Petrelli et al., 2018). The whole-rock Zr/Hf ratios of the 
GBG samples (11SR05–2 = 20.1, 09 TB66 = 22.8) are lower than that of 
the BG sample (29.3), and outside the “CHARAC” (CHArge and RAdius 
Controlled) range (26–46), suggesting that the GBG magma was “wet” 
(Bau, 1996). In addition, the negative Eu anomaly, the low 

∑
REE 

contents and LREE/HREE ratios for the GBG are also consistent with a 
volatile-rich magma system (Wu et al., 2017). This indicates that the 
more-evolved GBG magma was more volatile-rich than the BG magma. 

Besides, the less evolved granite and evolved granite can be distin-
guished according to the zircon Hf content and Zr/Hf ratio (Breiter et al., 
2014). High Hf content (>1.2 wt%) and low Zr/Hf (<55) are charac-
teristics of zircon crystallized in evolved magmas (Claiborne et al., 2006; 
Claiborne et al., 2010; Deering et al., 2016). The BG has their zircon Zr/ 
Hf > 55, supporting its less-evolved nature (Breiter et al., 2014). In 
contrast, nearly 40% of the zircon grains from the GBG have Zr/Hf < 55, 
indicating their crystallization from a more evolved magma (Supple-
mentary Table 2). In the Hf vs. Eu/Eu* plot (Fig. 6a), the BG zircon 
analyses mostly plot at one end of the normal granite field (Hf < 17,000 
μg/g and Eu/Eu* > 0.05), whereas the GBG zircon grains show a wide 
composition range toward the evolved granite end-member (Fig. 6a). 
We interpreted these zircon grains to have crystallized during or after 
plagioclase fractional crystallization (Deering et al., 2016; Yan et al., 
2018). Ti-in-zircon thermometer (Ferry and Watson, 2007) is another 
commonly used tool to obtain crystallization temperature. Assuming 
that αSiO2 = 1 and αTiO2 = 0.75, the calculated temperature correlate 
positively with Eu/Eu* when Eu/Eu* > 0.1. Most zircon grains from the 
BG plotted in this field (Fig. 6b), indicating that they were crystallized 
progressively with the magma cooling without significant plagioclase 
fractionation. In contrast, most GBG zircon samples show a steep 
downtrend of Eu/Eu* with nearly constant temperature (Fig. 6b). This 
suggests that the crystallization of most GBG zircon grains was associ-
ated with significant plagioclase fractionation, although some zircon 
grains may have crystallized in the early hotter magma similar to the BG 
zircon. 

In Fig. 9a, the positive Hf vs. H2O correlation indicates a H2O-in- 
zircon rise with magma evolution and increasing magma water content. 
In the H2O-in-zircon density plot (Fig. 4a), the BG zircon samples show a 
H2O content peak at 515 μg/g, indicating that most zircon grains were 

Fig. 6. Plots of zircon Eu/Eu*versus (a) Hf content and (b) TTiz (◦C).  

Fig. 7. Chondrite-normalized Sm/La vs. La plot. The magmatic and hydro-
thermal zircon fields were from Hoskin (2005). Chondrite normalizing values 
are from Sun and McDonough (1989). 
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crystallized in a magma with similar water content. In contrast, both 
GBG samples yielded a wide-range and multiple populations (Fig. 2b-c). 
The recent study of Samperton et al. (2017) has shown that zircon from 
plutonic rocks may have a protracted crystallization history between the 
temperature of zircon saturation and rock solidification. We interpreted 
our GBG H2O-in-zircon results to have recorded such protracted crys-
tallization history. It is noteworthy that both samples have a major H2O- 
in-zircon peak similar to that of the BG sample (400–600 μg/g, Fig. 4), 
which means that these zircon grains were crystallized at the initial 
stage, when the magma water content was comparable with the BG 
magma. This interpretation is consistent with their co-magmatic petro-
genesis based on petrological and geochemical evidence (Ma et al., 
2017). In addition, we have reported H2O-in-zircon results of two less- 
evolved granitoids in the Gangdese belt, which show similar results 
with the BG such as one dominant peak in 400–600 μg/g (Meng et al., 
2021), which means that these mamas have similar initial water content 
and the higher water content for evolved GBG magma is the result of 
magma evolution. Consequently, we considered that the water content 
of zircon in the Zhengga granites records the water content increase 
from BG to GBG. 

6. Conclusions 

Secondary ion mass spectrometry (SIMS) results show distinct water 
contents in crystalline zircon from the Gangdese granites with different 
degrees of evolution. The median water-in-zircon of the less-evolved 
biotite granite and the co-magmatic more-evolved garnet-bearing two- 
mica granite were around 566 and 750–900 μg/g, respectively. The 
biotite granite sample shows a single dominant H2O-in-zircon peak in 
the kernel density plot, while the garnet-bearing two-mica granites have 
multiple H2O-in-zircon peaks, indicating a protracted crystallization 
history of this granitic suite. Zircon grains with high water content 
(>1000 μg/g) are also characterized by higher Hf content and lower Eu/ 
Eu*, indicating that these grains were crystallized in highly-evolved 
magma with high volatile content. This demonstrates that H2O-in- 
zircon is a good indicator of magma water content. We suggested that 
the water incorporation into zircon is not entirely controlled by charge 
balance, and that the magmatic water content is a major controlling 
factor on H2O-in-zircon. 
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