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The properties of accreted terranes in a large collisional orogen determine, in large part, the nature and subse-
quent development of the orogen. In this paper we present a detailed study of Late Mesozoic sodic mafic mag-
matic rocks from Central Tibet. These sodic mafic rocks from Bandatso provide an excellent opportunity to
assess the nature and evolution of pre-collisional lithospheric mantle in the Himalayan–Tibetan region, and
will thus aid our understanding of the evolution of the orogeny. The Bandatso sodicmafic rocks are characterised
by marked oceanic island basalt (OIB)-like enrichment in incompatible elements, such as Nb (up to 139 ppm)
and light rare-earth elements. This Late Mesozoic (ca. 148 Ma and 90 Ma) mafic magmatism is likely to be the
result of two-stagemantle evolution in thenorthernQiangtang. The late Jurassic rockswere derived fromcarbon-
ated lithosphere metasomatized by subducted oceanic sediments during flat subduction. Whereas the late Cre-
taceous basanites were likely derived from interaction of lithosphere with upwelling asthenosphere induced
by removal of lithosphere that had previously been thickened by relamination. Our study suggests the presence
of an inherited carbonated lithosphericmantle beneath the northern Qiangtang prior to continental collision. The
conclusions from this work suggest that the enrichment of the mantle source of Cenozoic potassic rock closely
related to plateau uplift, more likely result from continental subduction after the late Cretaceous (ca. 90 Ma).
These conclusions will help our understanding of the Cenozoic geology of this multi-terrane collision system
and uplift mechanism of the Tibetan Plateau.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The Himalayan-Tibetan orogen was formed by the accretion of a se-
ries of Gondwana-derived terranes and subsequent collision of the
Indian and Asian continents (e.g., Chung et al., 2005; Murphy et al.,
1997; Yin andHarrison, 2000; Zhu et al., 2013). Formation of the Tibetan
Plateauhas not only significantly affected the landscape of the Earth and
the Cenozoic climate system (Dupont-Nivet et al., 2007; Royden et al.,
2008), but also resulted in many significant geological processes
(e.g., Chung et al., 2005; Kapp and DeCelles, 2019; Kelly et al., 2020).
These include large-scale crust shortening (Kapp and DeCelles, 2019;
Zhang et al., 2004), markedly different lithospheric composition and
structure between the southern and northern plateaus (Chung et al.,
2005; Deng and Tesauro, 2016), potential removal of lithosphere
(e.g., Chen et al., 2017; Shi et al., 2020) and continuous migration of
ope Geochemistry, Guangzhou
uangzhou 510640, China.
Cenozoic magmatism between the Qiangtang and Lhasa terranes
(Chung et al., 2005; Kapp and DeCelles, 2019).

Various models have been proposed to explain uplift of the Tibetan
Plateau. Delamination of the overthickened lithosphere (Chen et al.,
2017; Chung et al., 1998; England and Houseman, 1986; Shi et al.,
2020; Turner et al., 1993, 1996) and continental subduction (Ding
et al., 2003; Guo et al., 2015; Guo and Wilson, 2019; Harrison et al.,
1992; Ma et al., 2017; Tapponnier et al., 2001) are two of particular sig-
nificance. Both models have been presented as an explanation for for-
mation of the Cenozoic potassic rocks in Tibet (e.g., Chung et al., 1998;
Ding et al., 2003; Guo et al., 2006, 2015; Ma et al., 2017; Turner et al.,
1993, 1996). The focus of the debate concerns the role of continental
subduction in formation of an enriched mantle source of the Cenozoic
potassic rocks. The first model attributes such enriched mantle to
inherited subcontinental lithospheric mantle (SCLM) during oceanic
slab subduction, whereas the secondmodel emphasizes the role of con-
tinental subduction. Goussin et al. (2020) have proposed the presence
of a carbonated lithospheric mantle below the eastern Qiangtang
based on the mantle phlogopite xenocrysts preserved in Eocene potas-
sic rocks. Although when and how such a lithospheric mantle formed
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may be crucial in helping to revolve conflicting interpretations of the
geophysical data, little is known about this carbonated mantle. Numer-
ical geodynamical modelling experiments also show that the inherited
properties of the mantle lithosphere of the accreted Asian upper-plate
are key to unravelling the enigmatic post-collisional behaviour of the
Himalayan-Tibetan orogeny (Kelly et al., 2020).

Only a few reports of magmatic rocks constrain the properties and
compositions of pre-collisional lithospheric mantle in the northern
Qiangtang after closure of Paleo-Tethyan ocean in the Triassic
(~233 Ma, Dan et al., 2020; Zhang et al., 2016) until the Cenozoic
(Deng, 1998; Ding et al., 2003; Guo et al., 2006). Therefore, in this con-
tribution, we present new geochronology, petrology and geochemical
data for the Late Mesozoic sodic mafic magmatic rocks from the north-
ern Qiangtang. These mafic rocks present a rare opportunity to con-
strain the nature and composition of the lithospheric mantle beneath
the northern Qiangtang region prior to Indo-Asian collision and provide
insights into the post-collisional evolution of Himalaya-Tibet orogen
and uplift mechanism of Tibetan Plateau.

2. Geological background and sampling

The Tibetan Plateau consists of a tectonic collage of crustal blocks.
From north to south, the main east–west-trending blocks are the
Kunlun–Qaidam, Songpan-Ganze, Qiangtang, Lhasa and Himalaya
Blocks (Fig. 1) (Chung et al., 2005; Yin andHarrison, 2000). These blocks
are separated by a series of suture zones, namely the Anyimaqen–
Kunlun–Muztagh, Jinsha, Bangong-Nujiang, and Indus-Yarlung Tsampo
Suture Zones (Fig. 1).

The Qiangtang Block, located in central Tibet, can be divided into
southern and northern sub-blocks separated by an early Mesozoic
blueschist-bearing metamorphic belt named the Longmutso-
Shuanghu Suture (LSS) zone (Fig. 1; e.g., Zhang et al., 2016 and refer-
ences therein). Although there is still controversy as to which of the
Jinsha and Longmutso-Shuanghu suture zones represents the final clo-
sure location of the Paleo-Tethys Ocean basin (e.g., Zhang et al., 2016;
Zhu et al., 2013 and references therein), both models suggest that the
Paleo-Tethys Ocean closed in the Early Triassic (prior to 220 Ma, Dan
et al., 2020; Xu et al., 2020; Zhang et al., 2016). Following this closure,
magmatism in the Northern Qiangtang terrane was rare until the Ceno-
zoic (e.g., Xu et al., 2020; Zhu et al., 2013). Before the magmatic gap at
150–130 Ma, Jurassic magmatism and metamorphism were mainly
Fig. 1.A topographicmap of Tibet showing the tectonic blocks and the location of Cenozoic
magmatic rocks in Tibetan Plateau. Abbreviations: Indus-Yarlung Tsampo suture (IYTS);
Bangong-Nujiang suture (BNS); Longmutso-Shuanghu suture (LSS); Jin-Sha suture (JSS)
and Anymaqen-Kunlun-Muztagh Suture (AKMS). The Cenozoic magmatic rock data is
from literatures (Chung et al., 2005; Ding et al., 2003; Ma et al., 2019; Ou et al., 2019).
The original digital topography data for the Tibetan Plateau are from the Earth
Resources Observation and Science (EROS) Center of United States Geological Survey
(http://eros.usgs.gov/products/elevation/gtopo30.html).
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focussed within the Bangong-Nujiang suture zone and are only rarely
found in Qiangtang (Liu et al., 2016; Peng et al., 2020; Tang et al.,
2020; Zhang et al., 2017) and references therein). This is likley related
to the angle of subduction (normal or steep) of the Bangong-Nujiang Te-
thyan slab during early Jurassic (prior to 170 Ma). Cenozoic igneous
rocks are sporadically distributed in the Qiangtang terrane but are
mainly clustered in the northern part of the block close to the Jinsha su-
ture (Fig. 1). Early Paleogene (ca. 60–45Ma) Na-rich alkali basalts occur
in the northwest Qiangtang terrane (e.g., Deng, 1998; Ding et al., 2003),
while Eocene–early Oligocene (ca. 50–28 Ma) potassic volcanic and
subordinate intrusive rocks are widely distributed throughout the
Qiangtang terrane (Fig. 1) (e.g., Chung et al., 2005; Ding et al., 2003,
2007; Guo et al., 2006; Ou et al., 2017, 2019; Wang et al., 2008, 2010).

The Na-rich basalts are characterised by high Mg# and Cr, Ni con-
tents and have been proposed to represent primitive mantle melts dur-
ing roll-back of a previously shallow subducted Neo-Tethyan slab
(e.g., Deng, 1998; Ding et al., 2003). Subsequent potassic magmas
were derived from an enriched mantle source during continental sub-
duction (e.g., Ding et al., 2003; Guo et al., 2006) or lithospheric delami-
nation (e.g., Chung et al., 2005; Turner et al., 1993).

The study area is located in the hinterland of the plateau about
150 km northeast of Songxi town (Fig. 1) at an altitude of 5500 m. The
studied sodic mafic rocks, including basanite and dolerite, occur as vol-
canic hills and dykes (Fig. 2 and S1a–d) and are mainly distributed on
the north and south sides of Bandatso Lake over an area of about
~200 km2. These mafic rocks were erupted on to, or were emplaced
into, the Paleozoic neritic facies deposits and their distribution appears
to be controlled by SW-NE trending faults (Fig. 2).

The Bandatso basanites consists of subhedral and anhedral plagio-
clase and clinopyroxene phenocrysts, and secondary carbonate, set in
a fine grained and glassy groundmass (Fig. 3e, f). The Bandatso dolerites
are composed of clinopyroxene (40–60%), plagioclase (30–50%), and
Fe\\Ti oxide, apatite (Fig. 3g, h). Some clinopyroxenes have a needle-
like texture (Fig. 3g, h). The minerals are randomly oriented, indicating
that they formed inflowingmagma rather than accumulation of crystals
(Fig. 3g, h).
3. Analytical methods

Argon isotope analyses of plagioclase from three samples were con-
ducted on a multi-collector ARGUS VI Noble Gas Mass Spectrometer at
the Laboratory in China University of Geosciences (Wuhan) following
procedures similar to those described in detail by Bai et al. (2018). All
samples were stepwise heated using a carbon dioxide infrared laser
(10.6 μm, 50 W). The 40Ar\\39Ar dating results were calculated and
plotted using the software ArArCALC (Version 2.52) (Koppers, 2002).
The 40Ar\\39Ar age data are listed in Table S1.

Rock samples were first examined by optical microscopy and the
freshest whole-rock samples were broken into small chips. These
chips were washed with distilled water before being dried and
handpicked to remove visible contamination. The rockswere powdered
before analysis of major and trace elements, and Sr\\Nd isotopes at
SKLaBIG GIG CAS. Major-element oxides were determined by a Rigaku
RIX 2000X-rayfluorescence spectrometer on fused glass beadswith an-
alytical uncertainties <5%. Trace elements were analysed by a Perkin–
Elmer Sciex ELAN6000 instrument. Trace element data of referencema-
terials (DM17-1, AD01-1, AD02-2, AD02-8, SARM-4, W-2a, BHVO-2,
GSR-2, AGV-2, GSR-3, GSR-1) are given in Table S4.

Sr and Nd isotopic compositions of selected samples were deter-
mined using a MC-ICP-MS at SKLaBIG, GIG–CAS. The 87Sr/86Sr ratio of
the NBS987 standard and 143Nd/144Nd ratio of the Shin Etsu JNdi–1
standard measured were 0.710260 ± 6 (2σ, n = 17) and 0.512103 ±
5 (2σ, n=19), respectively. All measured 143Nd/144Nd and 86Sr/88Sr ra-
tios are fractionation corrected to 146Nd/144Nd = 0.7219 and
86Sr/88Sr = 0.1194, respectively.

http://eros.usgs.gov/products/elevation/gtopo30.html


Fig. 2. Geological map showing the location of the sodic mafic rocks in this study.
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4. Results

4.1. Plagioclase 40Ar\\39Ar dating

Plagioclases from one dolerite sample (14QW67) and three basaltic
samples (14QW18, 14QW22 and 14QW55) were selected for
40Ar\\39Ar dating. The plagioclase from dolerite sample 14QW67 gave
a late Jurassic plateau age of 147.8 ± 1.2 Ma, which is the first report
on the age of late Jurassicmafic rocks in northernQiangtang. The plagio-
clase of Bandatso basanite samples (14QW18, 14QW22 and 14QW55)
in this study yielded 40Ar\\39Ar plateau ages of 90.5 ± 1.0 Ma, 86.5 ±
7.1 Ma and 89.0 ± 3.6 Ma, respectively (Fig. 4; Table S1). The Bandatso
basalts were previously thought to have formed in the Eocene coeval
with other Na-rich mafic rocks in the northern Qiangtang based on un-
published 40K\\40Ar data (e.g., Chung et al., 2005; Ding et al., 2003). Our
new geochronological data of Bandatso basalts indicates that this is in-
correct and that the Bandatso basaltic lavaswere formed in the Late Cre-
taceous (91–87 Ma, weighted mean age: 90.32 ± 0.95 Ma) (Fig. 4).
4.2. Major and trace elements

The major and trace element data for 29 samples are given in
Table S2. The samples classify as either alkaline basalt or basanite com-
positions (Fig. 5), with sodium/potassium ratios up to 16.4 (with mean
of 3.6). All these LateMesozoic sodic rocks are characterised by low SiO2

and K2O contents and they are markedly different from the Eocene-
Miocene potassic to ultra-potassic magmatic rocks in Qiangtang and
Songpan-Ganze region (Fig. 5).

The rocks in this study show a wide range in SiO2 (38.8–50.1 wt%)
andMgO (3.6–9.4wt%)with relatively high TiO2 (1.5–3.7wt%) contents
3

(Table S2). Four samples (14QW58, 14QW60, 14QW62 and 14QW63)
have high loss on ignition (L.O·I>6wt%) and so in the followingdiscus-
sion we will only use the immobile element data for these samples, to
avoid the potential effects of element mobility due to alteration.

The Bandatsomafic rocks are characterised by variable and enriched
light rare earth elements (LREEs) ([La/Sm]N = 1.4–8.7) and depleted
heavy REE ([Dy/Yb]N = 1.5–2.3) with insignificant Eu anomalies (Eu/

Eu* = Eu=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sm� Gd2
p

= 0.92–1.01) (Fig. 6a). Primitive mantle-
normalised trace-element patterns show significant enrichments in
high field strength element signatures (HFSE; e.g., Nb, Ta) and variable
large ion lithophile elements (LILEs; e.g., Sr and Ba) with negative
Th\\U anomalies ([Th/La]PM = 0.31–0.97) (Fig. 6). These features are
distinct from those of continental crust and arc-like basalts that are
characterised by LILE-rich and HFSE-poor signatures (e.g., Rudnick and
Gao, 2003; Tatsumi and Eggins, 1995).

Nevertheless, the late Cretaceous Bandatso basanite and late Jurassic
dolerite samples exhibit distinct differences in their geochemical com-
positions, such as REE and HFSE contents (Fig. 6b, Table S2). Late Creta-
ceous basanites have high total REE (187–320 ppm) and Nb
(51–87 ppm) contents and positive Nb\\Ta anomalies ([Nb/La]PM =
1.08–1.43; Nb/Nb* = 2 × NbN/(ThN + LaN) = 1.19–1.45) (Fig. 6),
whereas Late Jurassic dolerites have higher total REE (800–1022 ppm)
and Nb (73–139 ppm) contents with moderate negative Nb (Nb/
Nb* = 0.41–0.60) and Zr-Hf-Ti anomalies (Fig. 6).
4.3. Sr\\Nd isotopes

Sr and Nd isotope results for 8 representative Bandatso samples are
shown in Table S3. The late Cretaceous samples have positive εNd
(t) (+0.03 − +2.37) values and relatively low (87Sr/86Sr)i



Fig. 3. field and petrography pictures. (a-d) The field outcrop of the Bandatso mafic rocks; (e-f) Micro-petrographic photos of the Bandatso basanite; (g-h) Micro-petrographic photos of
the Bandatso dolerite.
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(0.7043–0.7049) (Fig. 7), whereas the late Jurassic samples have nega-
tive εNd(t) (−0.64 to −0.36) values and much higher (87Sr/86Sr)i
(0.7041–0.7046) ratios (Fig. 7).

5. Discussion

5.1. Fractional crystallisation and crustal assimilation

Fractional crystallisation with concurrent crustal assimilation can
mask primary magma compositions, and thus may hamper a straight-
forward interpretation of trace element data with respect to the nature
5

and composition of the melt source region (e.g., Hastie et al., 2011).
Evaluation of these magma chamber processes is thus required before
conclusions on the origin and source of basaltic magmas can be drawn
from element and isotope data.

5.1.1. Fractional crystallisation
Linear trends on variation diagrams of major and trace elements for

the two suites of Bandatso mafic rocks indicate the likelihood of frac-
tional crystallisation (Hastie et al., 2011). In the following section we
will assess the potential influence of olivine, pyroxene and plagioclase
fractionation on the composition of the Bandatso mafic rocks.

Insignificant Eu anomalies (Eu/Eu* = 0.92–1.01) indicate a limited
amount of plagioclase crystallisation in the Bandatso mafic rocks. In-
creasing Al2O3 contents with magmatic evolution (i.e., MgO reduction)
also does not support the significant fractionation of plagioclase. Simi-
larly, the lack of correlation between CaO and MgO suggest that the
late Cretaceous Bandatso basanites did not undergo much fractional
crystallisation of clinopyroxene (Fig. S1). In contrast, the positive corre-
lation of CaO and Fe2O3withMgO indicate that the late Jurassic samples
likely underwent significant fractional crystallisation of clinopyroxene
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(Fig. S1). The significant decrease in Cr and Ni contents with fallingMgO
does however indicate that olivinewas a major crystallising phase from
all of the Bandatso mafic rocks (Fig. S1h, i). It is also important to note
that Nb contents appear to indicate minimal fractional crystallisation
of rutile or Fe\\Ti oxides, based on weak to moderate negative correla-
tion of Nb with MgO and TiO2 (Fig. S1g, k).

In conclusion, olivine fractional crystallisation is most likely respon-
sible for the variation ofmajor and trace elements in the Bandatsomafic
rocks. In addition to this the late Jurassic samples probably underwent
minor fractional crystallisation of clinopyroxene.

5.1.2. Crustal contamination
Continental crust is characterised by enrichment in LILE and deple-

tion in HFSE, such as Nb and Ta (e.g., Rudnick and Gao, 2003). However,
all Bandatso basaltic samples show significantly higher Nb contents and
Nb/U ratios than continental crust (Fig. 8a; Hofmann, 1997). If there is
crustal contamination, it will have had little influence on the trace ele-
ment and isotopic signature, given that these rocks are so enriched.
Moreover, the lack of an increase in (87Sr/86Sr)i and decrease in
(143Nd/144Nd)i with increasing SiO2 and decreasing MgO and Nb/La,
likewise does not support significant crustal contamination (Fig. 9).
Therefore, combined with low SiO2 and high MgO contents of the
Bandatso basaltic samples, there is very little evidence that crustal con-
tamination has a significant effect on the composition of these rocks.

5.2. Magma source region

Enriched incompatible elements and high Nb contents of the Late
Mesozoic Bandatso rocks are markedly different from mid-ocean ridge
6

basalt (MORB) and subduction-related basalts (Fig. 6). In addition,
there is little evidence for hotspot-related magmatism in the study re-
gion during late Triassic to the present-day. Thus, there is unlikely to
have been a plume beneath the Central Tibet during the Late Mesozoic.

Instead, we propose that the late Jurassic Bandatso dolerites were
derived from a carbonatite metasomatised lithospheric mantle.
Carbonatite contamination of a peridotite source region would produce
high and fractionated Zr/Hf ratios of up to 100 in any resultant melt
(Chauvel et al., 1997; Woodhead, 1996), which is in contrast to the av-
erage Zr/Hf ratios (~33–49) for MORB, continental flood basalts, arc ba-
salts and some OIB lavas (Chazot et al., 1996; Dupuy et al., 1992;
Woodhead, 1996). In addition, carbonatite melts and the contaminated
sources, have very high LREEs concentrations (> > 100 times chon-
drite) and negative Ti anomalies on chondrite/primitive mantle-
normalised multi-element diagrams (Chauvel et al., 1997; Hauri et al.,
1993; Woodhead, 1996).

The late Jurassic Bandatso dolerite samples have high LREEs (LaN =
1027–1313) and Nb (73–139 ppm) contents as well as somewhat ele-
vated Zr/Hf (48–64) ratios with markedly negative Ti anomalies (Ti/
Ti* = 2 × TiN/(SmN + TbN) = 0.38–0.49) (Fig. 6, Table S2). These ele-
vated Zr/Hf ratios probably reflect mantle source variably
metasomatized by finite carbonate-rich fluids (Dupuy et al., 1992). De-
pletion in Ti, Zr, and Nb (as well as Sr) relative to the REE are similar to
those found in continental xenoliths that have beenmetasomatized by a
carbonaceousmelt (Hauri et al., 1993; Zhang et al., 2017) and references
therein), suggesting involvement of a carbonate-rich melt component.
All these thus support the late Jurassic dolerite was derived from a car-
bonated lithosphere mantle source. In addition, the markedly distinct
compositions of Bandatso dolerite from that of continental crust
(Fig. 8), exclude thepotential of significant continental crust component
as the main metasomatic agent for mantle source during late Jurassic.
The carbonate-rich fluid and melt components thus are more likely de-
rived from recycled oceanic slab materials. The mantle phlogopite
xenocrysts and carbonate-bearing ultramafic cumulates preserved in
Eocene potassic rocks from the Eastern Qiangtang terrane also support
such a pre-collisional carbonated lithospheric mantle beneath Central
Tibet (Goussin et al., 2020).

The late Cretaceous Bandatso basanites are characterised by OIB-like
compositions with positive Nb\\Ta anomalies (Fig. 6b) and high Nb/U
ratios (up to 63) comparable to MORB (49.6) and OIB (47.1) (Fig. 8).
However, their low Th and U ([Th/La]PM = 0.31–0.97) compositions
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are inconsistent with a source containing recycled oceanic sediments
e.g., HIMU (high-μ, μ = 238U/204Pb). Moreover, the average Th/Nb
ratio of the late Cretaceous samples is 0.072 whereas the ratios for
enriched mantle (EM)-1, EM-2 type OIB are 0.10–0.12 and 0.11–0.16,
respectively (e.g., Woodhead, 1996). The depleted mantle-like Sr\\Nd
isotope signatures and marked enrichment of incompatible elements
also do not support a source containing recycled continental crust and
oceanic crust. Given the lack of evidence for coeval mantle plume in
Qiangtang mentioned above, the late Cretaceous Bandatso sodic
basanites thus are unlikely to be derived fromanOIB-typemantle reser-
voir (e.g., EM1, EM2 or HIMU) (Hofmann, 1997). The relatively depleted
Sr\\Nd isotopic compositions (Fig. 7) and higher Nb and lower LREE
contents than that of late Jurassic dolerite, suggests involvement of de-
pleted asthenosphere in the generation of the late Cretaceous Bandatso
basanites. It is therefore more likely that late Cretaceous sodic basanites
were derived from interaction between asthenospheric melts and
metasomatised lithosphere, and this possibility will be explored below.

5.3. Primitive magmas and properties

Mantle-derived alkaline lavas rich in alkali metals such as potassium
and sodiumare commonly found in the interiors of continental and oce-
anic plates (e.g., McKenzie and O'Nions, 1995; Hofmann, 1997; Niu,
7

2008; Lee et al., 2009). These small-volume alkaline magmas have var-
iously been proposed to be derived from mantle plumes (Hofmann,
1997; Wang et al., 2015; Yang and Faccenda, 2020) or metasomatised
lithospheric mantle (McKenzie and O'Nions, 1995; Pilet et al., 2008;
Yang and Faccenda, 2020), and thus provide an excellent proxy with
which to probe the compositional and physical properties of the deep
mantle (e.g., Lee et al., 2009).

The thermal state of the mantle can be constrained by the tempera-
tures and pressures of coeval basaltic magma generation(e.g., Herzberg
et al., 2007; Lee et al., 2009; McKenzie and Bickle, 1988; Putirka, 2008).
Accordingly, in this study, we have used six of the most primitive and
least fractionated samples to calculate the primary melt composition
and to assess the thermal state of the mantle beneath the Central
Tibet during late Mesozoic (148 Ma to 90 Ma). To minimize the effect
of olivine and clinopyroxene fractionation, only samples with
MgO > 7.0 wt% were selected.

Olivine increments are required to be in equilibrium with the
instantaneous melt composition, assuming compositionally dependent
olivine/melt KD(Fe/Mg) of 0.3 (Tamura et al., 2000). Such olivines were
back-added to melt until the Mg# reached ranges between 71 and 81,
when the magma composition is considered to be in equilibrium with
a mantle composition (Albarede, 1992). This mantle composition is as-
sumed to be the average composition of the mantle residue after melt
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extraction (Albarede, 1992). A series of olivine and basalt compositions
were then calculated from these starting materials as follows: (1) the
composition of equilibrium olivine was obtained using KD(Fe/Mg)

oliv/liq =
0.31 (Putirka, 2005) and DNi

oliv/liq (Beattie et al., 1991), assuming that
Fe2+/(Fe2++Fe3+) = 0.90 in the melt (Lee et al., 2009); (2) a more
primitive basalt composition was calculated as a mixture of the basalt
and equilibrium olivine in a weight ratio of 99.9:0.1 (Wang et al.,
2011); (3) steps 1 and 2 were repeated using the calculated primitive
basalt to obtain a more primitive basalt.

Given the likely carbonatite contaminated peridotite source, the pri-
mary melts of late Jurassic dolerite were calculated until equilibrium
with Fo87 olivine, similar to fertile mantle (after Sobolev et al., 2005).
Other Bandatso samples were calculated assuming liquid Mg# values
consistent with a Fo89 source (Lee et al., 2009). The amounts of olivine
addition are mostly between 21% and 24% for the Bandatso mafic rocks
(Table S5).

An independent constraint on the primary melt compositions can
be obtained by comparing the compositions calculated by another
model of olivine addition (Herzberg and Asimow, 2008; Herzberg
and O'hara, 2002). The major oxide contents calculated by the two dif-
ferent models are similar, suggesting that the calculated primary
magmas represent primary melt compositions. The calculated primary
melts of late Jurassic dolerites have low SiO2 (39.5–41.2 wt%) and high
MgO (14.4–14.7 wt%) contents, whereas the estimated primary
magma compositions of late Cretaceous basanites are characterised
by similar MgO (14.2–14.7 wt%) contents but slightly higher SiO2

(43.7–46.5 wt%) (Table S5). H2O contents were calculated by
8

assuming that the primary magma has H2O/Ce ratio of ~200 similar
to oceanic basalt (Herzberg et al., 2007).

Four separate thermometers were used to estimate the mantle po-
tential temperature of the Bandatso basalts (Albarede, 1992; Herzberg
et al., 2007; Lee et al., 2009; Sugawara, 2000). Given that the effect of
water is not considered in some calculations, we subtracted the differ-
ence in temperature due to water as ΔT = 74.403 × (H2O wt%)0.352

(Falloon and Danyushevsky, 2000).
The details of initial and calculated compositions and mantle poten-

tial temperature and pressure along with melting proportions, are
shown in Table S5. The late Jurassic samples from the carbonatite con-
taminated fertile mantle have moderate mantle potential temperatures
(1225–1240 °C), whereas all late Cretaceous basanites yield higher
mantle potential temperatures (1331–1345 °C) (Table S5). Similarly,
five barometers were used to independently estimate the mantle melt-
ing pressure (Albarede, 1992; Haase, 1996; Lee et al., 2009; McKenzie
and Bickle, 1988; Putirka, 2008). Since these barometers are dependent
on the temperature, the calculated temperatures from the four ther-
mometers and the average temperature were used for comparison.
The samples from late Jurassic dolerite and late Cretaceous basanite
yield different mantle pressures ranging from 2.0 to 2.9 GPa (Table S5).
The late Jurassic samples are calculated to be derived by 2.6–2.9% partial
melting of a deeper mantle source at 87–98 km (2.61–2.93 GPa)
(Fig. 10b) than late Cretaceous basanites that were derived from ap-
proximately 3.5–6.6% partial melting of a mantle source at 67–77 km
(2.04–2.33 GPa) (Fig. 10b; Table S5). Given the calculated composition
uncertainty of 0.3–0.8% (e.g., Herzberg et al., 2007; Wang et al., 2011),
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heterogeneity of mantle composition and different of experient melts
and natural samples (e.g., Albarede, 1992; Herzberg and O'hara, 2002),
the relative standard deviations of calculated temperature and pressure
are 20–46 °C and 0.4–1.4 GPa, respectively (Table S5).

The crystallisation pressures and temperatures of the Bandatso dol-
erites and basalts were also calculated using the clinopyroxene-liquid
thermobarometer (Neave and Putirka, 2017). In order to obtain robust
results, the clinopyroxene-melt equilibriumhas been assessed for all se-
lected clinopyroxene-liquid pairs using their Fe\\Mg exchange coeffi-
cient, which was defined as KD(Fe\\Mg)

cpx-liq = [(XFe
cpx × XMg

liq )/(XMg
cpx × XFe

liq)]
with values within a range of 0.27 ± 0.03 (Fig. 10a; Putirka, 2008), be-
fore performing calculations. The calculated P–T results (0.7–1.3 GPa
and 1105–1180 °C) suggest an upper crustalmagma reservoir and feed-
ing system (at 20–40 kmdepth) for the Bandatsomafic rocks (Fig. 10b).

5.4. Implications

The essential role of heterogeneous multi-terrane configuration in
the formation and evolution of large collisional orogens has been in-
creasingly recognised over the last few years (e.g., Huangfu et al.,
2018; Kelly et al., 2016; Kelly et al., 2020). The pre-collisional properties
of these terranes ultimately determine the evolution of orogen. The
Himalaya-Tibet orogen is a heterogeneous multi-terrane collisional
orogen (Huangfu et al., 2018; Kelly et al., 2020) with complex
tectonomagmatic terranes that were accreted to Asia prior to the colli-
sion of India (e.g., Chung et al., 2005). The properties of each major
block in the Himalaya-Tibet orogen are critical for our understanding
of the lithospheric behaviour and evolution of Tibetan Plateau. How-
ever, there was little knowledge of the pre-collisional geology and lith-
ospheric properties of the northern Qiangtang subterrane, which has
hitherto only been the focus of a small amount of petrological and geo-
logical work due to scaricity of magmatic activity in central Tibet. The
current study has helped to redress this imbalance by placing petrolog-
ical constrains on pre-collisional lithospheric properties and below we
propose a two-stage evolution model for the northern Qiangtan during
Late Mesozoic.

The calculations reported in the previous section support the pres-
ence of a moderately hot (1225–1240 °C) carbonated lithosphere,
90–100 km thick, beneath central Tibet during the Late Jurassic. This is
consistent with the late Jurassic (150–120 Ma) flat subduction model
of the Bangong-Nujiang Tethyan (Zhang et al., 2017) or the
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Neo-Tethyan slab (Ma et al., 2013). Generally, during flat subduction,
hot asthenosphere at the base of the overriding continental lithosphere
is replaced by cold oceanic lithosphere (e.g., Axen et al., 2018), meaning
that a large-scale cold thermal structure is expected (e.g., Gutscher,
2018). A new thermo-mechanical model to investigate the dynamic
evolution of the Farallon plate beneath the North American continent
indicates that the flat subduction can scrape 20–50 km of thick conti-
nental lithospheric mantle from the base of the overriding plate (Axen
et al., 2018). If the scraped material is relatively light in density, it can
accumulate at the front of the subducting plate and form a ‘bulldozed
keel’ (Axen et al., 2018). The asthenospheric wedge is replaced by a
mixture of scraped-off lithospheric mantle and oceanic crust, inhibiting
melting of the asthenosphericwedge and eventually leading toweaken-
ing or termination of arc magmatism and lithospheric thickening. The
late Jurassic to early Cretaceous magmatic gaps in the southern
Qiangtang (ca. 150–120 Ma, Hao et al., 2019; Peng et al., 2020) and
the Lhasa blocks (150–110Ma,Ma et al., 2013) therefore support poten-
tial flat subduction (e.g., Zhang et al., 2017). In addition, during flat sub-
duction, the oceanic sediments accumulated in the front of the
subducting plate can provide a source of carbonate metasomatism
away from the suture.

The results andmodellingpresented in this paper for theBandatsoba-
salts support a depleted mantle-like high temperature (1331–1345 °C)
source comparable to depletedMORBmantle (1300–1400 °C; Lee et al.,
2009), suggesting adiabatic decompressionmelting of passively upwell-
ing asthenosphere. In addition, the relatively low estimated mantle po-
tential pressure suggests a relatively thin (70–80 km) continental
lithosphere beneath Central Tibet during late Cretaceous (ca. 90 Ma).
Based on all above evidence, we propose that a delamination of part of
bulldozedkeel andhigh-densityoceanic crust causedpassivelyupwelling
of asthenosphere to interactwith former carbonated lithosphere beneath
the northern Qiangtang during roll-back of subducting plate (e.g., Ma
et al., 2013, 2015).

Combined with the mantle phlogopite xenocrysts found in Eo-
cene potassic rocks in the eastern Qiangtang (Goussin et al.,
2020), our study indicates an inherited pre-collisional carbonated
lithospheric mantle beneath the northern Qiangtang that was
formed by metasomatism of oceanic sediments during late Juras-
sic flat subduction. In late Cretaceous, part of the scraped-off lith-
ospheric mantle and high-density oceanic lithosphere at the front
of subducting plate were likely delaminated to trigger
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decompression melting of the asthenosphere, which further
weakened the lithosphere beneath the northern Qiangtang to
form the Bandatso mafic rocks in the present study.

A pre-collisional northern continuation of the modern Indian con-
tinent is known as Greater India and is postulated to extend approxi-
mately 2400 km underneath the Himalayas and southern Tibet
(Ingalls et al., 2016). These massive amounts of continental material
may help explain the double thickness of Tibetan continental crust
(Chung et al., 2009 and references therein). Alternatively, most may
have been delaminated or subducted below the over-riding Asian
plate (Ingalls et al., 2016; Ma et al., 2017) or may have been accom-
modated by shortening (e.g., Kapp and DeCelles, 2019; Li et al.,
2018). However, given the lack of coeval Lhasa crust shortening and
associated deformation of the overlying northern Qiangtang and adja-
cent Songpan-Ganzi crust (Kapp and DeCelles, 2019), approximately
half of the present India-Asia convergence is likely accommodated
north of 32°N (Zhang et al., 2004). All these require a weak litho-
sphere in the northern Qiangtang. Our study is the first to report
Late Mesozoic magmatism in the northern Qiangtang and reveals oc-
currence of a carbonated lithosphere formed by the metasomatism
of subducted oceanic sediments during the late Jurassic. This weak
inherited lithosphere helps to significantly accommodate the conver-
gence in central Tibet.

Cenozoic magmatic rocks scattered throughout the plateau have
been used to decipher the history and mechanisms of plateau uplift
(e.g., Chung et al., 2005; Ding et al., 2003; Guo and Wilson, 2019;
Turner et al., 1993, 1996; Williams et al., 2004). The Cenozoic potassic
rockswith extremely enriched Sr\\Nd isotopic compositions are closely
associated with the south-to-north rift and have been regarded as the
products of uplift (Chung et al., 2005; Ding et al., 2003; Guo et al.,
2006; Turner et al., 1993, 1996; Williams et al., 2004). However, as the
timing andmechanism for the formation of the enrichedmantle sources
are unclear, their petrogenesis and origin is still controversial
(e.g., Chung et al., 2005; Guo et al., 2015; Ma et al., 2017).

This has also caused a further debate on the mechanism of Tibetan
Plateau uplift. There are two competingmodels to explain the formation
of the enriched lithospheric mantle. The “pre-collisional” model
suggests that the enrichment was either inherited from the pre-
existing ancient lithospheric mantle (Turner et al., 1993, 1996), or was
metasomatized by subducted Tethyan oceanic material (Ding et al.,
2007). The other model proposes metasomatism by subducted conti-
nental material after the India–Asia collision (Guo et al., 2006; Ma
et al., 2017). Given the quite different composition between the Ceno-
zoic potassic rocks and late Mesozoic sodic rocks in this study (Figs. 5
and7), we propose that the enrichedmantle source of Cenozoic potassic
magmatic rocks was formed after late Cretaceous (ca. 90 Ma). Further-
more, we would argue that continental subduction is very likely to
have played a significant role in the thickening and detachment of the
Qiangtang lithosphere and uplift of Tibetan Plateau (e.g., Guo et al.,
2006; Tapponnier et al., 2001).

6. Conclusions

1) The Late Mesozoic Bandatso sodic mafic rocks are characterised by
OIB-like compositional features of marked enrichment in incompat-
ible elements.

2) The late Jurassic Bandatso dolerites were formed by melting of car-
bonated lithosphere metasomatized by subducted oceanic sedi-
ments during flat subduction at mantle temperatures of
1225–1240 °C and depths of 90–100 km.

3) The late Cretaceous basanites were likely derived from interaction of
lithosphere with asthenosphere upwelling that was induced by re-
moval of previous scraped-off lithosphere and subducted slab.

4) This inherited weak lithosphere beneath northern Qiangtang has
likely played a critical role in determining the post-collisional evolu-
tion of Himalaya-Tibet orogen.
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