韶关市夏季颗粒物组成特征及消光贡献

杨威强¹ 刘剑筠¹ 廖程浩¹ 李易熹¹ 伍鹏程¹ 李晟² 裴成磊³ 张润琪² 欧 劼⁴ 张艳利² 王新明² 张永波¹

(1. 广东省环境科学研究院,广州 510045; 2. 中国科学院广州地球化学研究所有机地球化学国家重点实验室,广州 510640; 3. 广东省广州生态环境监测中心站,广州 510060;
 4. 广东省韶关生态环境监测中心站,韶关 512026)

摘 要:为探究韶关市夏季细颗粒物(PM_{2.5})组成及其光学特征,本研究于 2020 年 7~8 月在韶关市郊区采 集 PM_{2.5}样品,分析了水溶性离子及碳质组分的浓度水平。研究结果表明,观测期间韶关市 PM_{2.5}平均质量浓度 为(24.9±8.4) μ g/m³;OM、SO²⁺₄、EC、NH+4和 NO⁻₅是 PM_{2.5}的主要组分,对 PM_{2.5}质量浓度的贡献分别为 46.3%、19.7%、6.0%、4.4%和4.0%。SOR和 NOR 值分别为0.34和0.05,大气中 SO₂的二次转化率大于 NO₂。NO⁻₃/SO²⁺₄平均值为0.22±0.08,表明燃煤可能是本地 PM_{2.5}的主要来源。使用 IMPROVE 方法计算观 测期间大气消光系数平均值为173±76 Mm⁻¹,(NH₄)₂SO₄和 OM 是对消光系数贡献较大的组分,贡献率分别 为 38.8%和 33.1%;非清洁时段(NH₄)₂SO₄和 OM 的散射系数分别是清洁时段的2.4倍和2.7倍,且增幅高于 其他组分。因此,进一步降低(NH₄)₂SO₄、OM 等重要组分浓度成为持续降低韶关市 PM_{2.5}质量浓度,提高大气 能见度的关键。

关键词:细颗粒物 组成特征 消光系数 韶关 DOI:10.3969/j.issn.1001-232x.2021.06.022

Composition characteristics and light extinction contribution of fine particulate matter in Shaoguan in summer. Yang Weiqiang¹, Liu Jianjun¹, Liao Chenghao¹, Li Yixi¹, Wu Pengcheng¹, LiSheng², Pei Chenglei³, Zhang Runqi², Ou Jie⁴, Zhang Yanli², Wang Xinming², Zhang Yongbo¹ (1. Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; 2. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 3. Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou 510060, China; 4. Shaoguan Ecological and Environmental Monitoring Center of Guangdong Province, Shaoguan 512026, China)

Abstract: 24-hour $PM_{2.5}$ samples were collected during July to August 2020 at a suburban site of Shaoguan, and major chemical components including water-soluble ion, organic carbon (OC), elemental carbon (EC) were analyzed. The average mass concentration of $PM_{2.5}$ in Shaoguan was $(24.9 \pm 8.4) \mu g/m^3$ during the campaign. Organic matter (OM), SO_4^{2-} , EC, NH_4^+ and NO_3^- were the main components of $PM_{2.5}$, accounted for 46.3%, 19.7%, 6.0%, 4.4% and 4.0% of $PM_{2.5}$, respectively. The values of SOR and NOR were 0.34 and 0.05, suggesting that the secondary conversion rate of SO_2 was higher than that of NO_2 . The average level of NO_3^- / SO_4^{2-} was 0.22 \pm 0.08, indicating that coal combustion may be the main source of local $PM_{2.5}$. The average light extinction coefficient was $(173 \pm 76) Mm^{-1}$ by IMPROVE method, $(NH_4)_2 SO_4$ and OM were the main components with the extinction contribution of 38.8% and 33.1%, respectively; the scattering coefficient of $(NH_4)_2 SO_4$ and OM during the non-cleaning

基金项目:广东省环保专项资金项目(粤财资环[2021]13 号);国家自然科学基金青年基金项目资助(41907196);广东省科技创新战略专项资 金项目(2019B121205004);有机地球化学国家重点实验室开放基金项目(SKLOG202003)。

period were 2. 4 and 2. 7 times of those during the cleaning period, and increased more significantly than those of other components. Hence, lowing the concentration of $(NH_4)_2 SO_4$ and OM was the key to continuously reduce the $PM_{2.5}$ concentration and improve atmospheric visibility in Shaoguan.

Key words: Fine particle; Composition; Extinction coefficient; Shaoguan

大气细粒子(PM_{2.5})是指空气动力学当量直径 ≪2.5µm 的颗粒物,是我国当前城市群面临的突出 空气质量难题之一。其粒径小、质量轻,常悬浮于 大气中,可经人体呼吸进入肺部并扩散至血液,对 人体健康产生重要影响^[1,2]。除危害人体健康外, PM_{2.5}对太阳光的消光作用所导致的能见度下降是 空气污染的最直观体现^[3,4]。有机质(organic matter, OM)、元素碳(EC)及包括硫酸盐、硝酸盐和铵 盐(SNA)在内的水溶性离子是 PM_{2.5}的主要化学组 分^[5,6],也是影响大气能见度的重要物质^[7]。二次 无机离子经吸湿导致霾的发生,从而影响气候系统 的辐射强迫^[8,9]。因此,研究和掌握城市大气中 PM_{2.5}的组成特征及消光贡献,对科学认知其环境 效应,推动空气质量持续改善并降低健康风险有重 要意义。

以往已经有很多学者对 PM2.5 污染特征及其 组成进行大量研究^[10,11],也探讨了 PM2.5 的光学特 性及不同组分对消光的贡献^[12,13]。Tao et al.^[14] 指出北京冬季不同程度污染情景下影响消光的主 要组成,并提出控制硫酸盐和硝酸盐以减少重霾的 发生。Fu et al. [15] 研究了 2007~2013 年珠三角 地区秋季能见度及细颗粒物主要组分对消光贡献 的演变特征。邯郸市冬季重污染期间 EC、SNA 和 OC质量浓度增幅明显,随着污染的加重 EC 和硝 酸铵消光系数增长幅度远高于其他组分[16]。这些 研究成果对于认识细颗粒物污染特征,并提出高效 防控措施起到了重要作用。《大气污染防治行动计 划》(简称"大气十条")发布以来,各地大气污染防 控措施不断加严,PM2.5质量浓度持续下降^[17]。 2020年,全国 337 个地级以上城市 PM2.5 平均浓度 为 33µg/m^{3[18]},达到国家年均值二级标准 (GB3095-2012), PM2.5 污染防控进入新阶段。然 而,前期学者重点关注重污染季节或重污染时间段 PM2.5组成特征及对大气消光的影响,进一步研究 和掌握较清洁城市大气中 PM2.5 组成特征及消光 贡献,有利于科学认知 PM2.5 的形成机理,为其他 污染较严重城市 PM25防治提供决策参考。

广东省是全国经济活动水平最高的省份之一, 随着近些年大气污染防控力度的不断加严,全省 PM2.5浓度逐年降低。2020年,广东省 PM2.5年均 值为 22 µg/m^{3[19]},首次达到世界卫生组织第二阶 段目标(25 μg/m³),但与欧美日等发达国家和地区 相比仍有较大差距,深入研究较清洁大气中 PM2.5 污染特征及其化学组成对于制定污染防控策略,推 动下阶段 PM2.5 浓度持续下降具有重要的启示意 义。前期在广东省内的研究主要集中在珠三角地 区^[4,5,13,15,20],而鲜有研究关注粤东西北地区。韶 关市位于广东省北部,是广东省内 PM2.5 污染较为 严重的城市之一,2020 年 PM2.5 年均值为 24µg/ m³,位列全省第17位。本研究以韶关市为代表性 区域,在污染较轻的7~8月连续采集 PM2.5样品, 并对 PM25 中水溶性离子和碳质组分的浓度水平、 细颗粒物组成特征及其消光贡献进行了较为全面 深入的分析,揭示现阶段韶关市 PM2.5 污染特征及 其对能见度的影响,以期为韶关市乃至广东省下阶 段 PM2.5 污染防控政策的制定提供一定的科学 依据。

1 材料与方法

1.1 样品采集

样品采样地点位于韶关市曲江区小坑村党群服务中心楼顶(24°40′N,113°33′E),距离地面 12 m。采样点在韶关市中心城区南部 17km 处,周围 无工业排放源,四周无高大建筑物遮挡。采样时间 为 2020 年 7 月 21 日至 8 月 16 日,采样时间为每天 9:00 至次日 8:30,总共采集 27 套 PM_{2.5}样品,另采 集 2 套空白样品用于质量控制与保证。细颗粒物样 品使用中流量采样器(2030D)采集,采样流量为 100L/min,采样 膜使用 直径为 96mm 的石英膜 (Whatman QM/A),用于分析 PM_{2.5} 质量浓度、水 溶性离子(WSIC)和碳质组分。

1.2 样品分析

在恒温恒湿条件下对采样前后的石英膜称重,结合采样体积计算得到 PM_{2.5}质量浓度。取 5 cm²

石英膜于聚丙烯离心管中,加人 20 mL 超纯水超声 萃取 20min,离心后用 0.45 μ m 过滤头过滤,最后使 用离子色谱仪(733/761 Metrohm)分析 PM_{2.5}中的 阳离子(Na⁺、NH⁺₄、K⁺、Mg²⁺、Ca²⁺)和阴离子 (F⁻、Cl⁻、NO₃⁻、SO²⁻)。使用热/光碳分析仪(DRI Model 2015)分析 PM_{2.5}样品中的元素碳和有机碳。 上述具体分析方法参考文献^[5,21]。

1.3 质量控制与保证

样品采集和实验室分析过程执行严格的质量 控制和质量保证。采样前,石英膜放置于马弗炉内 在460℃下烘烤6h(去除有机杂质),自然冷却后放 入恒温恒湿箱(温度20±1℃,湿度50±5%)中平衡 24h,并使用十万分之一天平(QUINTIX35-1CN)对 采样前的石英膜进行称重后备用。采样后,采样膜 放置于恒温恒湿箱平衡24h后称重,完成后样品放 人-18℃冰箱保存至分析。

水溶性离子分析时,使用6个标准溶液绘制标

准曲线(r≥0.999),分析结果扣除空白样品值,每 10个样品中加入一个标准样品,检测仪器的稳定 性。碳质组分分析时,每天运行1次仪器空白和 1个标准样品,每10个样品进行1次标准样品 校准。

2 结果与讨论

2.1 PM2.5 变化特征

观测期间,韶关市 PM_{2.5}质量浓度变化范围为 11.4~43.0 μ g/m³,平均值为(24.9±8.4) μ g/m³,与世界卫生组织第二阶段(WHO-II)标准值的 25 μ g/m³接近,日均浓度超出 25 μ g/m³的天数占 总采样天数的 44%。观测期间 PM_{2.5}质量浓度呈 现双峰变化特征(图 1),最大值为 7 月 25 日的 43.0 μ g/m³,最小值为 8 月 5 日的 11.9 μ g/m³,源 排放及气象条件的差异是导致 PM_{2.5}浓度呈波动 变化的两大主要原因。

表1 所示为与国内外其他城市 PM_{2.5} 质量浓度 水平对比,夏季韶关市 PM_{2.5} 质量浓度与 2015 年广 州(27.0 μg/m³)^[22]夏季浓度水平相似,大于珠海市 夏季 PM_{2.5} 质量浓度(19.0 μg/m³)^[23],但小于济南 (75.3 μg/m³)^[24]、杭州(38.6 μg/m³)^[25]、上海
(34.8 μg/m³)^[26]等我国北方及东部城市夏季
PM_{2.5}浓度水平,比西班牙巴塞罗那(18.6 μg/m³)、
法国马赛(19.6 μg/m³)和意大利热那亚(14.0

μg/m³)等^[27]欧美国家 PM_{2.5}浓度要高。总的来说, 韶关市夏季 PM_{2.5}浓度较我国北方及东部城市低, 但与欧美发达国家相比仍有较大差距。

表1 韶关市与国内外其他城市 PM _{2.5} 、SO ²⁻ 、	、NO ₃ 和 NH4	质量浓度对比
--	------------------------	--------

采样点	采样时间	PM _{2.5} (μg/m ³)	SO_4^{2-} $(\mu g/m^3)$	NO₃ ⁻ (µg/m³)	NH_4^+ $(\mu\mathrm{g/m}^3)$	文献
济南市	2015.7	75.3 \pm 25.9	18. 0	9. 4	7.2	[24]
杭州市	2013.6~8	38.6 \pm 23.9	8.9±7.0	3.3±7.1	3.0±2.7	[25]
上海市	2015.6~8	34.8±15.0	10.0 \pm 4.3	4.0±4.7	4.8±2.2	[26]
广州市	2015.6~8	27.0 \pm 11.7	5.9	2.6	3.0	[22]
珠海市	2014.7~8	19.0±10.0	2.1±2.7	0.3±0.2	0.8±1.1	[23]
厦门市	2014.8	45.4	2.7	0.7	2.0	[28]
巴塞罗那	2011~2012	18.6	2.8	1.0	1.0	[27]
马赛	2011~2012	19.6	2. 2	1.7	1.5	[27]
热那亚	2011	14.0	3.6	0.5	1.4	[27]
塞萨洛尼基	2011~2012	37.2	3.9	2.4	2.1	[27]
韶关市	2020.7~8	24.9±8.4	4.9±2.2	1.0 ± 0.5	1.1±0.6	本研究

2.2 PM_{2.5}中水溶性离子的变化特征

2.2.1 水溶性离子组成特征

观测期间水溶离子浓度变化范围为 2.9~15.5 μg/m³,平均浓度为 8.7±3.6 μg/m³,占 PM_{2.5} 总质 量浓度的 35.0%, 是 PM_{2.5} 的主要组成之一。 SO_4^{2-} 、NO₃⁻和 NH⁺₄(SNA)是浓度最高的 3 种水溶 性离子,浓度分别为 4.9±2.2 µg/m³、1.0±0.5 $\mu g/m^3 和 1.1 \pm 0.6 \mu g/m^3$, 三者浓度之和为(7.0 ± 3.2) µg/m³,分别占水溶性离子和 PM_{2.5}浓度的 80.5%和 28.1%。韶关市 SNA 浓度与其他城市的 对比如表1所示。总体来说,韶关市 SO2- 不仅高 于西班牙、法国、意大利等[27]国城市,也高于我国厦 门^[28]和珠海^[23]等沿海城市,但低于我国部分北方 和东部城市(例如济南、杭州、上海等)^[24-26];NO₃ 和 NH₄ 浓度与国外及国内沿海城市基本持平,且 显著低于国内其他城市。韶关市 Ca2+、Na+和 K+ 浓度范围为 0.3~0.7 µg/m³, Mg²⁺、Cl⁻、和 F⁻浓 度相对较低,平均浓度均小于 0.1 µg/m³。

2.2.2 水溶性离子的来源分析

(1)相关性分析

为进一步明确韶关市夏季水溶性离子间的相 互联系,初步推断其来源,对观测期间水溶性离子 及 $PM_{2.5}$ 作相关性分析,如表 2 所示。 SO_4^{-} 、 NO_3^{-} 和 NH4 三者之间显著相关(r 值均大于 0.65),说 明二次生成对 SNA 有重要贡献; NH+ 4 与 SO4-和 NO₃ 的相关性远大于其他阴离子,表明 PM_{2.5} 中 NH_4^+ 主要以 $(NH_4)_2$ SO₄ $, NH_4$ NO₃ 和 NH_4 HSO₄等形式存在^[29]。SNA 与 PM_{2.5}显著相关(r 分别为 0.95、0.78 和 0.96),表明 SNA 对 PM25有 重要贡献。观测期间 SNA 和水溶性离子与 PM2.5 呈现相似的变化特征(图 1),且随着 PM2.5 质量浓 度的上升, SNA 占 WSIC 和 PM2.5比值呈显著上升 趋势(图 2a 和 2b),与前期北方地区重霾期间的研 究结果一致[30,31],表明即使在较为清洁的城市地 区,二次无机物的生成对 PM2.5 浓度的升高也有重 要贡献,进一步加强对 SO2、NOx 等无机前体物的 管控是降低 PM2.5浓度水平的重要手段。

	Na ⁺	NH ↓	K ⁺	Mg^{2+}	Ca ²⁺	Cl-	NO ₃	SO_4^{2-}	PM _{2.5}	
Na ⁺	1									
NH₄+	0.33	1								
K +	0.45*	0. 73**	1							
Mg ²⁺	0.90**	0.44*	0.58**	1						
Ca^{2+}	0.72**	0.71**	0.83**	0.84**	1					
Cl-	0.24	-0.12	0.14	0.34	0.17	1				
NO ₃	0.38*	0.73**	0.62**	0.47*	0.67**	-0.01	1			
SO_4^{2-}	0. 37	0.98**	0.78**	0.50**	0.76**	-0.08	0.67**	1		
PM _{2.5}	0.39*	0.96**	0.83**	0.53**	0.81**	-0.01	0.78**	0.95**	1	

表 2 PM_{2.5}及其水溶性离子相关性分析

除 Cl^- 外,其他一次无机离子(Na^+ 、 K^+ 、 Mg^{2+} 、 Ca^{2+})与 $PM_{2.5}$ 均显著相关,其中 K^+ 和 Ca^{2+} 与 $PM_{2.5}$ 的相关系数较高(r 分别为 0.83 和 0.81), K^+ 和 Ca^{2+} 通常作为生物质燃烧和道路/建筑扬尘 的典型标志物^[32],表明生物质燃烧和道路/建筑扬尘 市夏季 $PM_{2.5}$ 有一定贡献。在所有离子中,仅有 Cl^- 与 $PM_{2.5}$ 呈负相关,同时 Cl^- 也与 SNA 呈负相 关,韶关市夏季盛行偏南风,可能与 Cl^- 受海洋源排 放影响有关。

(2)SOR 和 NOR 的变化

如上所述, SNA 是浓度最高的 3 种水溶性离 子,其除了一次排放外, SO₂、NOx 等气态前体物的 转化也是其重要来源。硫氧化率(SOR)和氮氧化 率(NOR)分别表征 SO₂向 SO²₂ 的转化率及 NO₂向 NO³ 的转化率,可在一定程度上反映 SO₂和 NOx 的二次转化,计算公式如(1,2)^[33]。通常将 0.1 作 为衡量是否存在二次转化的临界值^[20,34,35], SOR 和 NOR 越大表明二次转化效率越高, SO₂和 NO₂通 过大气氧化或非均相反应生成的二次无机气溶胶 粒子越多。

$$SOR = \frac{[SO_4^{-}]}{[SO_4^{-}] + SO_2} \tag{1}$$

$$NOR = \frac{\lfloor NO_3^- \rfloor}{\lfloor NO_3^- \rfloor + NO_2}$$
(2)

式中, SO_{1}^{2} 和 NO_{2}^{3} 为样品中硫酸盐和硝酸盐 浓度, SO_{2} 和 NO_{2} 为监测日均浓度。观测期间 SOR 值为 0.34±0.09,远大于 NOR 值的 0.05±0.02, 说明夏季韶关市 SO₂较 NO₂更易发生二次转化。夏 季韶关市 SOR 与济南市夏季观测值相似(0.4± 0.1)^[24],大于广州市^[36]7~8月(0.13)和深圳市^[20] 夏季 SOR 值(0.20),小于邯郸市^[37]夏季 SOR 值 (0.49),韶关市夏季相对较高的 SOR 值表明 SO₂的 二次转化对硫酸盐有重要贡献。韶关市 NOR 值与 深圳市秋冬季(0.04~0.05)和广州市夏季 NOR 值 (0.05)相似,远小于济南市夏季(0.2)和邯郸市夏 季 NOR 值(0.2),可能与韶关市夏季气温较高易导 致颗粒物中 NH4 NO3及硝酸铵盐的分解有关^[24]。

(3)NO₃⁻/SO₄²⁻的变化

颗粒物中 NO₃⁻ 和 SO₄²⁻ 质量比可用来评估移 动源(例如机动车尾气)和固定源(例如煤炭燃烧) 排放对大气污染的相对贡献。NO₃⁻/SO₄²⁻ 比值越 小说明固定源对 SO₂和 NOx 的贡献越大,反之,说 明移动源的贡献越大。韶关市夏季大气颗粒物中 NO₃⁻/SO₄²⁻的变化范围为 0.10~0.42,均值为 0.22 ±0.08,与济南^[24]、杭州^[25]、上海^[26]等城市相似, 小于邯郸市^[37]秋季 NO₃⁻/SO₄²⁻ 比值(1.23)。整体 来看,包括煤炭燃烧在内的固定源排放对韶关市 PM_{2.5}的贡献较大。

2.3 PM_{2.5}中碳质组分的变化特征

观测期间韶关市 PM_{2.5}中 OC 和 EC 的平均浓 度分别为 $6.4 \pm 2.7 \mu g/m^3$ 和 $1.5 \pm 0.4 \mu g/m^3$,在 PM_{2.5}中的占比分别为 25.7%和 6.0%,与冬季邯郸 市^[16]相似。观测期间 OC 呈双峰变化特征,最大值 和最小值分别为 7 月 25 日的 12.5 $\mu g/m^3$ 和 8 月 8 日的 8.8 $\mu g/m^3$,与 PM_{2.5}和水溶性离子的变化特征 相似,表明其在来源上的一致性。与 OC 变化特征 不同,观测期间 EC 波动较小,也未出现较为明显的 峰值。

EC 主要来自含碳燃料的不完全燃烧,通常作 为燃烧源一次排放的典型标志物^[16]。OC 除了污 染源直接排放的一次有机碳(POC)外,还包括各种 前体物通过光化学反应生成的二次有机碳 (SOC)^[24],采样期间 EC 与 OC 的相关性较弱(R² 仅为 0.14),说明一次排放对 OC 的贡献较小。通 常认为 OC/EC 比值大于 2 时有 SOC 的形成^[38,39], 观测期间 OC/EC 比值的变化范围为 2.2~9.1,平 均值为 4.4±1.8,说明二次生成对 OC 有一定 贡献。

进一步使用 EC 示踪法估算得到观测期间 SOC 平均质量浓度为 $3.2\pm 2.5\mu g/m^3$,占 OC 质量浓度 的 49.9%,说明 SOC 是夏季韶关市 OC 的主要组 成。本研究中 SOC/OC 低于济宁市^[40]秋冬季占比 (78.9%),与济南市^[24]夏季(53.0%)和邯郸市^[16] 冬季(53.8%)占比接近。同时,随着 PM_{2.5}质量浓 度的上升,SOC 占 OC 的比值显著增加(图 2c),说 明即使在 PM2.5浓度相对较低的地区,二次有机物的生成也是导致 PM2.5浓度升高的主要因素之一,加强对挥发性有机物(VOCs)等前体物的排放管控有利于控制 PM2.5浓度水平。

OC/EC 比值同时可分析碳质气溶胶的来源特 征,OC/EC 在 1.0~4.2 表明有机动车尾气排放, 2.5~10.5 时有燃煤排放^[41],生物质燃烧排放 OC/ EC 通常在 3.8~13.2 之间。本研究中比值范围为 2.2~9.1,说明机动车尾气、燃煤和生物质燃烧排 放都有可能是韶关市夏季碳质气溶胶的重要来源。 K⁺是生物质燃烧的典型标志物,观测期间 OC 与 K⁺显著相关($\mathbf{R}^2 = 0.69$),同时 K⁺/EC 比值(0.19) 与前期研究中生物质燃烧排放特征相似^[40,42],也与 前述 K⁺和 PM_{2.5}呈显著相关一致。韶关是广东省 重要的农产品种植基地,7 月上旬是主要夏收时间 段,由于夏种和夏收的时间间隔短(通常小于 30 天),露天焚烧仍是部分地区秸秆主要的处理方式, 且焚烧主要集中在 7 月下旬-8 月初,进一步表明该 时段生物质燃烧对碳质气溶胶有重要贡献。

2.4 PM2.5 中各组分的消光贡献

PM2.5对太阳光的吸收和散射(消光作用)是导 致大气能见度降低的最直接原因。大气的消光系 数与污染物浓度、气溶胶化学组成、粒径分布及大 气湿度等密切相关^[43],为进一步了解 PM2.5的光学 性质,本研究使用国内外广泛使用的 IMPROVE 模 型计算大气消光系数及各组分消光贡献^[44,45],公式 如下:

$$b_{iex} = b_{ap} + b_{sp} + b_{ag} + b_{sg}$$
 (3)

公式中, b_{ap} 和 b_{sp} 为颗粒物的吸收和散射系数; b_{ac} 和 b_{sc} 为气体的吸收和和散射系数;其中:

$$\begin{split} b_{ap} &= 10 \times [EC] \\ b_{sp} &= 2.2 \times f_s(RH) \times [Small(NH_4)_2 SO_4] \\ &+ 4.8 \times f_L(RH) \times [Large(NH_4)_2 SO_4] \\ &+ 2.4 \times f_s(RH) \times [SmallNH_4 NO_3] \\ &+ 5.1 \times f_L(RH) \times [LargeNH_4 NO_3] \\ &+ 2.8 \times [SmallOM] + 6.1 \times [LargeOM] \end{split}$$

 $+1.7 \times f_{ss} (RH) + [SS] + 1 \times [FS] + 0.6 \times [CM]$

$b_{ag} = 0.161 \times [NO_2]$

气体散射(b_{sg})通常取瑞利散射系数的标准值 (10 Mm^{-1})。公式中: [(NH_4)₂ SO₄] = 1.37 [SO₄²⁻]、[NH_4 NO₃] = 1.29[NO_3^{-1}]、[OM] = 1.8 [OC]、[SS](sea salt)=1.8[Cl⁻];FS 为土壤成分, 由于 PM_{2.5}中土壤成分的质量浓度及其消光贡献相 对较小,本研究计算时将其忽略;[CM]=PM₁₀-PM_{2.5};[NO₂]为 NO₂的质量浓度,本研究中 PM₁₀、 PM_{2.5}和 NO₂浓度均使用同期环境空气质量监测数 据。f_s(RH)、f₁(RH)和 f_{ss}(RH)为吸湿增长系数, 见文献[44]。根据 Mie 理论,改进的 IMPROVE 公 式将观测期间的(NH₄)₂SO₄、NH₄NO₃和 OM 以 20 μ g/m³为分界线化为高低两档,并分别赋予单位质 量散射效率计算其散射系数,方法如下:

 $[X]_{Large} = [X] 2 \text{ total}/20 \ \mu g/m^3 (\ \ [X] < 20 \ \mu g/m^3)$

 $[X]_{Large} = [X]_{total}$ (当 $[X] \ge 20 \mu g/m^3$)

 $[X]_{\text{Small}} = [X]_{\text{total}} - [X]_{\text{L arge}}$

[X]为(NH₄)₂SO₄、NH₄NO₃或OM的质量浓度。

使用 IMPROVE 方法计算出夏季韶关市大气 消光系数范围为 59~338 Mm⁻¹(图 3),平均值为 173±76Mm⁻¹,小于杭州^[25]、邯郸^[16]、西安^[46]、北 京^[47]和广州^[48]的大气消光系数,韶关市大气消光 系数处于较低水平,其中颗粒物散射占大气总消光 系数的 84.1%,是影响大气能见度的主要因素。 NH⁴₄、NO₃、SO²₄和 OC 与大气消光系数显著相 关,相关系数分别为 0.97、0.78、0.97 和 0.97,说有 二次无机离子和有机物浓度上升对大气消光系数 增加有重要作用。

进一步定量分析 PM_{2.5} 中各组分对大气消光系数的贡献,观测期间(NH₄)₂ SO₄和 OM 的散射系数 远大于其他组分,分别为 67±36 Mm⁻¹和 57±33 Mm⁻¹,分别占总消光系数的 38.8%和 33.1%;其 次为 EC 的 8.4%和 NH₄NO₃的 7.0%,其他组分的 占比相对较小。韶关市颗粒物各组分对大气消光 系数贡献与广州和杭州相似,而北方地区部分城市

(例如邯郸、西安和北京)OM 对大气消光系数的贡 献远大于其他组分(表 3)。以世卫组织第二阶段目 标(25 μ g/m³)为限值,对比清洁时段(PM_{2.5} \leq 25 μ g/m³)和非清洁时段(PM_{2.5} > 25 μ g/m³)各组分 消光占比,非清洁时段(NH₄)₂SO₄和 OM 的消光贡 献分别为 40.1%和 35.6%,大于清洁时段的 35.1%和 28.0%,其他组分在非清洁时段消光贡献 略小于清洁时段(图 4)。同时,(NH₄)₂SO₄和 OM 在非清洁时段的散射系数分别是清洁时段的 2.4 倍 和 2.7 倍,增长幅度也高于其他组分。因此,进一步

降低硫酸盐、OM 等重要组分的浓度,成为下一阶段 持续降低韶关市 PM_{2.5} 质量浓度,提高大气能见度 的关键。

采样地点	采样时间	时间 b _{ext} (Mm ⁻¹	、 消光贡献(%)							- `` =			
			(NH4)2SO4	NH₄ NO₃	ОМ	EC	粗离子	瑞利散射	NO2	海盐	土壤尘	- 文献	
	邯郸市	2016.1	780 . 9	11.4	1 1. 3	51.4	1 2. 3	13.6		—	—	—	[16]
	邯郸市	2013. 7/2014. 7	333. 9	50.4	22. 9	1 1. 1	—	12. 9	—	_		2.7	[37]
	西安市	2012. 11	923. 0	13.7	16.2	5 2. 3	11.0	_	_	_	_	6.8	[46]
	北京市	2010. 1	611.0	24.6	1 1. 6	45.5	11.9	—		—		6.4	[47]
	杭州市 2	012.12~2013.1	1 532.8	34.7	26. 1	20.9	6.9	4.8	3. 2	1.9	1.5	—	[25]
	广州市	2008.1~2	342. 0	36. 3	14.5	26.6	17.4	—	—	5.2		—	[48]
	韶关市	2020.7~8	173. 1	38.8	7.0	33.1	8.4	4.5	5.8	1.7	0.7	—	本研究

表 3 本研究不同组分对大气消光贡献与其他研究对比

图 4 清洁时段和非清洁时段各组分消光占比

3 结论

(1)观测期间韶关市 PM_{2.5} 平均质量浓度为
24.9±8.4µg/m³;水溶性离子浓度均值为 8.7±
3.6µg/m³,在 PM_{2.5}中占比为 35.0%,SNA 是 3 种浓度最高的水溶性离子,分别占总水溶性离子和
PM_{2.5}质量浓度的 80.5%和 28.1%。

(2) OC 和 EC 在 PM_{2.5}中的占比分别为 25.7% 和 6.0%。基于 EC 示踪法估算 SOC 占 OC 的 49.9%,表明二次生成对 OC 有重要贡献。

(3) 韶关市夏季 SO₂较 NO₂更易发生二次转化, 较小的 NO₅⁻/SO₄⁻ 比值表明燃煤排放可能是韶关 市当前细颗粒物的主要来源。

(4)观测期间大气消光系数平均值为 173 ± 76Mm⁻¹,(NH₄)₂SO₄和 OM 对消光系数的贡献较 大分别为 38.8%和 33.1%;非清洁时段(NH₄)₂ SO₄和 OM 的消光贡献大于清洁时段,且散射系数 增长幅度明显高于其他组分,(NH₄)₂SO₄和 OM 是 影响韶关市大气消光的主要化学组分。

参考文献

- [1]Forouzaníar M H, Aíshin A, Alexander L T, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015; a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet, 2016, 388(10053); 1659-1724.
- [2] HoekG, Krishnan R M, Beelen R, et al. Long-term air pollution exposure and cardio-respiratory mortality: a review[J]. Environmental Health, 2013, 12(43): 1-15.
- [3] Wang X, Ding X, Fu X, et al. Aerosol scattering coefficients and major chemical compositions of fine particles observed at a rural site hit the central Pearl River Delta, South China [J]. Journal of Environmental Sciences, 2012,24(1); 72-77.
- [4]吴兑,毕雪岩,邓雪娇,等.珠江三角洲大气灰霾导致能
 见度下降问题研究[J]. 气象学报,2006,64(04):
 510-517.
- [5]Fu X, Wang X, Guo H, et al. Trends of ambient fine particles and major chemical components in the Pearl River Delta region: Observation at a regional background site in fall and winter[J]. Science of The Total Environment, 2014,497-498: 274-281.
- [6] Huang R J, Zhang Y L, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222.
- [7] Watson J G. Visibility: Science and regulation[J]. Jour-

nal of the Air & Waste Management Association, 2002, 52(6): 628-713.

- [8] Intergovernmental Panel on Climate Change. Climate change 2013: the physical science basis, Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change [R]. Cambridge University Press, Cambridge, United Kingdom.
- [9] Wang X, Ye X, Chen H, et al. Online hygroscopicity and chemical measurement of urban aerosol in Shanghai, China[J]. Atmospheric Environment, 2014, 95: 318-326.
- [10]Cao J J, Shen Z X, Chow J C, et al. Winter and Summer PM_{2.5} chemical compositions in fourteen Chinese cities
 [J]. Journal of the Air & Waste Management Association, 2012, 62(10): 1214-1226.
- [11]Guo S, Hu M, Zamora M L, et al. Elucidating severe urban haze formation in China[J]. Proceedings of the National Academy of Sciences, 2014, 11 (49): 17373-17378.
- [12]Andreae M O, Schmid O, Yang H, et al. Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou, China[J]. Atmospheric Environment, 2008, 42(25): 6335-6350.
- [13] Tao J, Zhang L, Ho K, et al. Impact of PM_{2.5} chemical compositions on aerosol light scattering in Guangzhouthe largest megacity in South China [J]. Atmospheric Research, 2014, 135-136;48-58.
- [14] Tao J, Zhang L, Gao J, et al. Aerosol chemical composition and light scattering during a winter season in Beijing[J]. Atmospheric Environment, 2015, 110: 36-44.
- [15]Fu X, Wang X, Hu Q, et al. Changes in visibility with PM_{2.5} composition and relative humidity at a background site in the Pearl River Delta region[J]. Journal of Environmental Sciences, 2016, 40: 10-19.
- [16]刘召策,袁琦,胡伟,等.邯郸市冬季一次霾过程中细颗 粒物化学组分的污染特征及消光贡献[J].地球化学, 2020,49(03): 298-305.
- [17] Kelly F J, Zhu T. Transport solutions for cleaner air[J]. Science, 2016, 352(6288): 934-936.
- [18]中华人民共和国生态环境部.2020年12月和1-12月
 全国地表水、环境空气质量状况[R/OL].(2021-01-15)
 [2021-03-03]. http://www.mee.gov.cn/xxgk2018/ xxgk/xxgk15/202101/t20210115_817499.html.
- [19]广东省生态环境厅.广东省城市空气和水环境质量及 排名情况(2020年)[R/OL].(2021-01-26)[2021-03-03]. http://gdee.gd.gov.cn/zlpm/content/post _ 3184886.html.

- [20]王郁,吴玲燕,李磊.深圳市城区大气颗粒物及主要水 溶性无机离子的污染特征[J].环境科学学报,2020,40 (03): 792-802.
- [21] Li S, Zhu M, Yang W Q, et al. Filter-based measurement of light absorption by brown carbon in PM_{2.5} in a megacity in South China[J]. Science of The Total Environment, 2018, 633: 1360-1369.
- [22]赵燕. 广州城区大气 PM_{2.5}化学组成特征研究[J]. 广 东化工,2018,45(10): 85-86..
- [23] Tao J, Zhang L, Cao J, et al. Source apportionment of PM_{2.5} at urban and suburban areas of the Pearl River Delta region, south China-With emphasis on ship emissions[J]. Sci Total Environ, 2017, 574: 1559-1570.
- [24]刘晓迪,孟静静,侯战方,等.济南市夏、冬季 PM_{2.5}中 化学组分的季节变化特征及来源解析[J].环境科学, 2018,39(09):4014-4025.
- [25]吴丹,蔺少龙,杨焕强,等.杭州市 PM_{2.5}中水溶性离子 的污染特征及其消光贡献[J].环境科学,2017,38(07): 2656-2666.
- [26]陈耿,常运华,曹芳,等.上海城乡细颗粒物中碳质、无 机和重金属的全组分特征及来源分析[J].科学技术与 工程,2020,20(29):12218-12225.
- [27] Salameh D, Detournay A, Pey J, et al. PM_{2.5} chemical composition in five European Mediterranean cities: A 1year study [J]. Atmospheric Research, 2015, 155: 102-117.
- [28]张棕巍,胡恭任,于瑞莲,等. 厦门市大气 PM_{2.5}中水溶 性离子污染特征及来源解析[J]. 中国环境科学,2016, 36 (07): 1947-1954.
- [29]戴永立,陶俊,林泽健,等. 2006~2009 年我国超大城 市霾天气特征及影响因子分析[J].环境科学,2013,34 (08): 2925-2932.
- [30] Zhang J K, Sun Y, Liu Z R, et al. Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013[J]. Atmospheric chemistry and physics, 2014, 14(6): 2887-2903.
- [31]Gao J, Tian H, Cheng K, et al. The variation of chemical characteristics of PM_{2.5} and PM₁₀ and formation causes during two haze pollution events in urban Beijing, China [J]. Atmospheric Environment, 2015, 107: 1-8.
- [32] Andreae M O. Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols[J]. Science, 1983, 220(4602): 1148-1151.
- [33]Lin J J. Characterization of water-soluble ion species in urban ambient particles[J]. Environment International, 2002,28(1-2): 55-61.

- [34]Zhang R, Sun X, Shi A, et al. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China [J]. Atmospheric Environment, 2018, 177; 275-282.
- [35]Fu Q, Zhuang G, Wang J, et al. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China[J]. Atmospheric Environment, 2008, 42(9): 2023-2036.
- [36]廖碧婷,吴兑,常越,等. 广州地区 SO^{2−}、NO^{3−}、NH^{4−} 与相关气体污染特征研究[J]. 环境科学学报,2014,34 (06): 1551-1559.
- [37]魏哲,岳亮,侯立泉,等. 邯郸市 PM_{2.5}组分特征及其对 散射系数的影响[J]. 河北工程大学学报(自然科学 版),2017,34(01): 82-87.
- [38]Chow J C, Watson J G, Fujita E M, et al. Temporal and spatial variations of PM_{2.5} and PM₁₀ aerosol in the Southern California air quality study[J]. Atmospheric Environment, 1994, 28(12): 2061-2080.
- [39] Turpin B J, Huntzicker J J. Secondary formation of organic aerosol in the Los-Angeles Basin-a descriptive a-nalysis of organic and elemental carbon concentrations
 [J]. Atmospheric Environment, 1991, 25(2): 207-215.
- [40] 钱若芷,田密,陈阳,等.华北平原典型工业城市秋、冬季大气细颗粒物污染特征[J].地球化学,2021,50 (01):1-11.
- [41]赵晓楠.石家庄市大气颗粒物中碳组分污染特征及来

源解析[D]. 石家庄: 河北科技大学,2019.

- [42] Vicente A, Alves C, Calvo A I, et al. Emission factors and detailed chemical composition of smoke particles from the 2010 wildfire season[J]. Atmospheric Environment, 2013, 71: 295-303.
- [43]韦莲芳,杨复沫,谭吉华,等.大气气溶胶消光性质的研 究进展[J].环境化学,2014,33(05):705-715.
- [44]Pitchford M, Malm W, Schichtel B, et al. Revised algorithm for estimating light extinction from IMPROVE particle speciation data[J]. Journal of the Air & Waste Management Association, 2007, 57(11): 1326-1336.
- [45]Sisler J F, Malm W C. Interpretation of trends of PM_{2.5} and reconstructed visibility from the IMPROVE network[J]. Journal of the Air & Waste Management Association, 2000, 50(5): 775-89.
- [46]周雅清,曹军骥,王启元,等.西安市秋季大气颗粒物散 射特征及其影响因素[J].科技导报,2015,33(06): 37-41.
- [47]朱李华,陶俊,陈忠明,等. 2010年1月北京城区大气 消光系数重建及其贡献因子[J].环境科学,2012,33 (01):13-19.
- [48] 陶俊,张仁健,许振成,等.广州冬季大气消光系数的贡献因子研究[J]. 气候与环境研究,2009,14(05): 484-490.

收稿日期:2021-08-18

作者简介:杨威强,男,1991年出生,博士,研究方向为大气颗粒物污染成因及其环境效应,E-mail:gzdxywq@163.com。