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Sn (W) and Cu-Mo have distinct geochemical behaviors during magmatic evolution, thus these two group de-
posits are seldom superposed. Specially, the Mesozoic granite-related Sn-W/W-Sn and Mo-Cu/Cu-Mo deposits
in south China are spatial overlapped, with some are even temporal-coincided. To reveal the factors controlling
the distribution and the locally coeval occurrence of different mineralization types, here we compared the
ages, sources compositions, and tectonic settings of the Jurassic Zijinshan Sn-rich granite, the Jurassic Gutian por-
phyry Mo-Cu deposit, and the Cretaceous Luoboling porphyry Cu-Mo deposit from the southeastern (SE) China.
The results indicate that the Jurassic Sn-W and Mo-Cu rich magmas were derived from Paleoproterozoic meta-
sedimentary andmeta-basaltic rocks, respectively, throughpartialmelting (>850 °C) along the suture zones trig-
gered by asthenospheric upwelling in the intra-plate extensional setting. The Cretaceous porphyry Cu-Mo de-
posit was formed by water-flux melting (<800 °C) of the mantle wedge metasomatized by the fluids derived
from the subducted Paleo-Pacific plate. A protoliths-controlled distribution model was proposed, namely that
during Jurassic, the suture zones, where were the ancient continental margins containing both meta-
sedimentary and meta-basaltic rocks, favored heat input from upwelling mantle and high temperature melting,
which consumed the both protoliths to formW-Sn and Mo-Cu rich magmas in the same region; shift in tectonic
setting from intra-plate extension to subduction during Cretaceous, introduced mantle or juvenile crust-derived
materials to source, therefore formed Cu-Mo deposits superposing the JurassicW-Sn andMo-Cu ores in SE China.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The ore elements Cu, Au, Mo, and Sn-(W) have distinct geochemical
behaviors in felsic magmatic and hydrothermal processes (Williams-
Jones and Heinrich, 2005; Richards, 2011); therefore, felsic igneous
rock related Cu, Au, Mo, and Sn-(W) mineralizations are formed by dif-
ferent means, i.e., different source rocks, magmatic oxidization states,
and magmatic compositional evolution paths; thus, they are related to
distinct tectonic settings (Ishihare, 1981; Richards, 2011; Romer and
Kroner, 2016).

For instance, Cu, and to a lesser extent Mo, are derived from the
mantle (Audétat, 2010; Richards, 2011) and tend to be concentrated
in oxidized magmas (Liang et al., 2006; Sun et al., 2013), and are
transported into the shallow crust by hydrothermal fluids to formmin-
eralization. Subducted slabs contribute metals, volatile fluxes, and oxi-
dizing elements and compounds to the overriding asthenopspheric
mantle (Richards, 2003; Sillitoe, 2010), where partial melting during
subduction (Mitchell and Garson, 1981), or post-subduction thermal
adjustments (Hou et al., 2003; Richards, 2009) form magmas that
favor porphyry Cu andMomineralization. Therefore, Cu andMominer-
alizations usually develop at active plate boundaries (Cooke et al., 2005;
Hollings et al., 2005; Sillitoe, 2010). Some porphyry deposits, especially
the large Mo deposits, have been formed in intraplate environments,
most of which were likely controlled by extensional zones or deep
fault systems (Huang et al., 2017a; Mao et al., 2013).

Sn-(W) mineralization involves the presence of sedimentary
protoliths, heat sources to drive partial melting of the protoliths, and
subsequent high degrees of fractionation of a reduced magma
(Lehmann, 2004; Romer and Kroner, 2015, 2016). Several researchers
have suggested that separated linear belts of Cu-Mo and Sn-Wminerali-
zationswere affected by subduction, and that the different types ofmin-
eralizationwereduetothedifferentdistancesof thebelts fromthetrench
(Sillitoe, 1972), or due to differences in the angle of the subducting slab
with depth (Mitchell, 1973). However, Sn-(W)mineralization also oc-
curs in awide range of tectonic settings, such as back arc basins (Garson
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andMitchell, 1977), continental collision zones (Mitchell and Garson,
1981), and settings unrelated to active plate margins (Sillitoe, 1974).
Thus, rather than a specific tectonic setting, the essential requirement
for the formation of Sn-(W)mineralization is a former continentalmar-
gin, which has been reworked by crustal extension and rifting and has
ample heat inputs (Romer and Kroner, 2015, 2016).

Since Cu, Au, Mo, and Sn-(W) mineralizations are controlled by dis-
tinct geochemical processes, Cu, Au, Mo, and Sn-(W) mineralization
belts generally have distinct spatial distributions, and when they spa-
tially coincide, they are not generally coeval (Lehmann, 2004; Romer
and Kroner, 2015, 2016).

Mesozoic magmatism widely occurred in southern China and
formed many metallogenic belts/regions with various metal associa-
tions and heterogeneous distributions (Hu and Zhou (2012); Mao
et al., 2013). For example, the Jurassic Sn-W metallogenic province in
the Nanling Range, as well as the Cretaceous porphyry-epithermal Cu-
Au-Mo metallogenic belt in the coastal region of southeastern (SE)
China, were formed in a back-arc extensional setting (Hu and Zhou,
2012; Mao et al., 2013) and in an active continental margin subduction
setting, respectively (Jiang et al., 2013; Wang et al., 2013; Huang et al.,
2018).

In the last decade, Jurassic porphyry Mo-Cu and granite-related Sn-
(W) deposits have been found in the coastal region of SE China, thus
attracting increasing amounts of attention (Fig. 1; Supplemental
Table 1). Unlike the spatial separation of most Sn-(W) and Cu-Mo min-
eralizations around the world, these Jurassic deposits coincide spatially
and temporally. For instance, the newly discovered Gutian Mo-Cu por-
phyry deposit is located ~60 km north of the Zijinshan (ZJS) Sn-
mineralized granites (Fig. 1), which are located in the ZJS Cretaceous
epithermal-porphyry Cu-Au-Mo ore field. The key factors controlling
the simultaneous formation of granite-related deposits with distinct el-
emental associations within the same area remain unknown. Further-
more, whether these coastal Jurassic Sn-(W) and Mo-Cu deposits
formed above an active continental margin, i.e., similar to the tectonic
setting of the Cretaceous Cu-Au-Mo mineralization in the region, or
were formed in a tectonic background similar to that of the Jurassic
Nanling Sn-W metallogenic province inland, is still unclear.

In this study, we determined zircon U-Pb and molybdenite Re-Os
ages, analyzed the zircon- trace element and Hf isotopic composition,
and determined the whole-rock major and trace element composition
and Sr-Nd isotopic compostion of ore related felsic igneous rocks, to-
getherwith previous published data,we compare the Jurassic intrusions
of the Gutian porphyry Mo-Cu deposit, the Jurassic ZJS Sn-mineralized
granite, and the Cretaceous Luoboling Cu-Mo porphyry in the Zijinshan
ore field (ZOF) in terms of their ages, magmatic sources, oxidation
states, petrogenesis, and tectonic backgrounds. The goal of this study
is to investigate the reasons for the spatial coincidence of simultaneous
or diachronous Sn-W and Mo-Cu/Cu-Mo mineralization in SE China,
which provides insight into the metallogenic evolution of southern
China.
2. Regional Geology

The South China Block (SCB) consists of the Yangtze Block and the
Cathaysia Block (Fig. 1a), which were amalgamated during the
Neoproterozoic along the NE-trending Shi-Hang fault zone (Chen and
Jahn, 1998; Shen, 2006). The Cathaysia Block is further divided into
the western and eastern terranes on the two sides of the NE-trending
crustal Zhenghe-Dapu fault (Fig. 1b) (Chen and Jahn, 1998; Xu et al.,
2007). The Cathaysia Block has a widespread Paleoproterozoic base-
ment composed of metamorph volcano-sedimentary, sedimentary,
and igneous rocks (Xu et al., 2007). The MORB-like amphibolites
(1.77–1.85Ga), and the gneissic granite suits with S-type and A-type af-
finities (1.83–1.89 Ga) define a Paleoproterozoic orogenic cycle in the
Cathaysia Block (Li et al., 2000; Xia et al., 2012; Yu et al., 2009).
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Multiple periods of magmatism, including Neoproterozoic (~850Ma),
Paleozoic (~450–250 Ma), and Mesozoic (~90–190 Ma) events, occurred
in the SCB (Li et al., 2013; Xu et al., 2007). In particular, in the Cathaysia
Block, the large-scale Mesozoic magmatism formed a large granite prov-
ince covering an area of more than 100,000 km2 (Li and Li, 2007; Sun,
2006; Zhou and Li, 2000).

The Jurassic igneous rocksmainly occur in the hinterland and consist
of S-type granites (peraluminous granites), some I-type granites, and
subordinate A-type granites (Zhou and Li, 2000; Zhou et al., 2006).
The large scale Sn-Wdeposits associatedwith the Jurassic peraluminous
granites are located in the intra-continental region (Fig. 1, Supplemental
Table 1), especially in the Nanling district (Fig. 1b) (Chen et al., 2016;
Zhang et al., 2006). The SCB also contains Jurassic porphyry-skarn Cu-
Mo-(±Au) deposits, which are mainly located within the Shi-Hang
deep-fault zone (Mao et al., 2013; Hu and Zhou, 2012; Huang et al.,
2017a; Zhou and Li, 2000). Hinterland extension during Jurassic,
which was triggered by asthenosphere upwelling, was suggested to
cause the widespread crustal melting, the formation of a large granitic
province, and the Sn-W metallogenesis in the Nangling Range (Hu
and Zhou, 2012; Yuan et al., 2019). However, the geodynamic mecha-
nism for the hinterland extension remains controversial, that including
intra-plate rifting (Gilder et al., 1991; Li, 2000;Wang et al., 2008), man-
tle plumes (Xie et al., 1996), and subduction of the Paleo-Pacific Plate
(Mao et al., 2013; Zhou and Li, 2000; Zhou et al., 2006; Li and Li, 2007;
Sun et al., 2007).

In the southeastern (SE) China, the Jurassic intrusions are sporadic
(Wang et al., 2012), whose associated Sn-W deposits (such as
Shangfa and Xingluokeng) and porphyry Mo-Cu deposit (such as
Gutian) have been found along the Zhenghe-Dapu fault recently
(Fig. 1). The Cretaceous magmatism resulted in a large NE-SW
trending magmatic belt in the SE China (Zhou et al., 2006). This mag-
matic belt contains large scale volcanics and some granites, which are
mainly of metaluminous (Guo et al., 2012; Zhou and Li, 2000). The
Cretaceous magmatism is mainly associated with porphyry Cu-Mo
or epithermal Au-polymetallic deposits (Mao et al., 2013), such as
the Zijinshan porphyry-epithermal Cu-Au-Mo deposit (Jiang et al.,
2013; So et al., 1998) and the Zhilingtou epithermal Au-Ag deposit
(Wang et al., 2016). The Mesozoic magmatism in the SE China,
which formed several Jurassic intrusions as well as widespread Creta-
ceous igneous rocks, was triggered by the subduction and roll back of
the Paleo-Pacific Plate (Guo et al., 2012; Li and Li, 2007; Li et al., 2014;
Zhou and Li, 2000; Zhou et al., 2006).

3. Ore deposit geology

3.1. Geologic setting of the ZOF

The strata in the ZOF are mainly comprised of Neoproterozoic low
grade metamorphic shallow-marine clastic sediments, Late Devonian
and Early Carboniferous coastal to shallow-marine clastic sediments,
and the volcanic rocks and the Quaternary alluvial sediments of the
Early Cretaceous Shimaoshan Group (Fig. 2). The intrusions in the ZOF
were mainly emplaced in the Middle to Late Jurassic and Early Creta-
ceous (ca. 165 Ma to ca. 93 Ma, Jiang et al., 2013; Zhang et al., 2001).

The Jurassic intrusions include the Zijinshan (ZJS) granite complex
and the Caixi monzogranite. The ZJS granite complex outcrops in the
central part of the ore field with an area of ~18 km2 (Fig. 2); it includes
the Jingmei coarse grained granite, the Wulongsi medium-fine grained
granite, and the Jinlongqiao fine grained granite. The complex has U-
Pb zircon ages of 157 ± 1 Ma to 165 ± 1 Ma (Jiang et al., 2013). The
~90 km2 Caixi monzogranite, which is located in the northeastern part
of the ore field, has a U-Pb zircon age of 150 ± 3 Ma (Zhao et al.,
2007). Some of the greisen- and quartz vein-type Sn mineralization is
reported to have a close spatial relationship with the Wulongsi
medium-fine grained grainte (Fig. 4a) (Zhang et al., 2001), suggesting
that the Sn mineralization is genetically related to the Jurassic granites
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(Liu et al., 2016; Zhang et al., 2001).Given that the granite-related Sn
mineralization mostly occurs at the top of the intrusions (Heinrich,
1990; Linnen, 1998), the large outcrop surface of the Jurassic gran-
ites is in the ZOF, and they underwent large scale denudation, the
original scale of the Sn deposit was larger than the present size of
the deposit.

Cretaceous intrusions occur widely in the ZOF, including the Sifang
granodiorite (U-Pb zircon age of 112 ± 1 Ma) (Jiang et al., 2013) and
the Luoboling granodiorite porphyry (U-Pb zircon age of ca. 103 Ma)
(Huang et al., 2018).

A series of deposits related to Cretaceous magmatism have been
found in the ZOF and have an estimated metallic resource of 399 tons
of Au, 6339 tons of Ag, 4.14 million tons of Cu, and 0.11 million tons of
Mo (Zhang, 2013). From the east to the west, they are the Luoboling
large Cu-Mo porphyry deposit, the Wuziqilong small-scale epithermal
Cu-Ag-Au deposit, the Zijinshan giant high-sulfidation epithermal
3

Au-Cu deposit, the Jinmei small-scale Cu-Mo porphyry deposit, the
Longjiangting large intermediate-sulfide epithermal Cu-Ag-Au de-
posit, and the Yueyang large low-sulfidation Ag-Au-Cu deposit
(Fig. 2). The Luoboling Cu-Mo porphyry deposit is genetically related
to the Luoboling granodiorite porphyry, which is composed of plagio-
clase, quartz, biotite, and hornblende phenocrysts within a ground-
mass of quartz, K-feldspar, plagioclase, and biotite (Fig. 4b). The ore
minerals are mainly pyrite, chalcopyrite, and molybdenite, with
minor amounts of bornite, digenite, and magnetite (Huang et al.,
2013; Zhong et al., 2014).

3.2. Geologic setting of the Gutian Mo-Cu porphyry deposit

The Gutian Mo-Cu porphyry deposit is located about 60 km north-
east of the ZOF. The outcrops in the area are dominated by Holocene
sediments. The Gutian deposit contains multiple stages of intrusions,



Luoboling granodiorite
porphyry

25
09

05

116°21′30″ 116°28′04″

Wuziqilong Cu

Zijinshan Au-Cu

Luoboling Cu-Mo

Jinmei Cu-Mo

Longjiangting Cu

Yueyang Ag-Cu-Pb-Zn

Neoproterozoic
metamorphosed 
clastic sediments
Late Devonian
clasitic sediments

Cretaceous
volcanic rocks

Early Carboniferous
clasitic sediments

Jingmei coarse
grained granite

Caixi
monzogranite 

Sifang granodiorite

Quaternary
sediments

Deposits Faults

ZJ08-2

ZJ27

Drill/Sample location

0 1km

N

S

ZK405

Wulongsi medium-
fine grained granite

Jinlongqiao fine
grained granite

25
°
13

′
52

″

Fig. 2. Geologic map of the Zijinshan ore field (modified after Zhong et al., 2014).

W. Huang, H. Liang, L. Ren et al. Lithos 380–381 (2021) 105816
forming a magmatic complex with an outcrop area of ~20 km2 (also the
Kuokeng complex; Li et al., 2016a). Form early to late, the intrusions are
monzogranite, granodiorite, granodiorite porphyry, and tonalite dikes.
The Mo-Cu mineralization is mainly hosted in the granodiorite and
granodiorite porphyry (Fig. 3). The granodiorite is composed of feldspar,
quartz, amphibole, and biotite (Fig. 4c). The granodiorite porphyry is
composed of plagioclase (30 vol%), K-feldspar (10 vol%), amphibole
4

(10 vol%), biotite (~10 vol%), and quartz (~5 vol%) phenocrysts and a
fine-grained groundmass with a similar mineral association (Fig. 4e).
The ores predominantly occur as veinlets, with minor amounts of dis-
seminatedmineralization in the granodiorite and granodiorite porphyry.
Themetallic minerals mainly include chalcopyrite, molybdenite, and py-
rite (Fig. 4d, f). The gangue minerals are quartz, sericite, K-feldspar, and
chlorite (Li et al., 2016b).
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4. Analytical Methods and results

Detailed analytical methods, zircon trace elements and U-Pb dating,
molybdenite Re-Os isotopic compositions, whole rock geochemical and
Sr-Nd isotopic compositions, and zircon Lu-Hf isotopic compositions are
given in Supplemental Materials. The results are presented in Supple-
mental Tables 2–7. A summary of the results is presented in Table 1.

4.1. Zircon U-Pb ages and trace element compositions

The zirconU-Pb isotopic data are presented in Supplemental Table 2.
Their trace element compositions are presented in Supplemental
Table 3. Representative zircon CL images are shown in Fig. 5.

4.1.1. Luoboling granodiorite porphyry
Twenty-five zircon grains from sample LBL-95 were selected for

analysis. They yielded U-Pb ages of 98.2 ± 1.6 Ma to 146.5 ± 2.3 Ma.
One zircon with an anomalous age of 146.5 ± 2.3 Ma was interpreted
to be an inherited zircon. On the cumulative probability plot, the three
points at the extremes of the range indicate possible Pb loss (98.2 ±
1.6 Ma) or inheritances (109.2 ± 2.0 Ma and 107.5 ± 2.0 Ma). When
these points are excluded, the rest 20 zircon grains yield a weighted
mean age of 103.8±0.6Ma (MSWD=0.74; Fig. 5a). These zircon grains
are characterized byweak Eu anomalies (with EuN/Eu* ratios of 0.5–0.7,
Supplemental Table 3). They also exhibit high Ce4+/Ce3+ ratios of
415–1486 (mean of 878), suggesting the melt was oxidized (Fig. 6,
Supplemental Table 3).

4.1.2. Wulongsi medium-fine grained granite
The zircon grains from sample ZJ08-2 are euhedral and exhibit oscil-

latory zoning in the CL images, suggesting a magmatic origin. Twenty-
six zircon grains were selected for U-Pb dating, yielding Th/U ratios of
0.28–2.0. Of the 26 analytical spots, 19 spots have correlations in
206Pb/238U versus 207Pb/235U > 90% with 206Pb/238U ages of 135.0 ±
2.7 to 843 ± 22.4 Ma (Supplemental Table 2). Two zircon grains with
ages of 375 ± 7.8 Ma and 843 ± 22.4 Ma are inherited, whereas five
grains with ages of <154 Ma plot below the concordia, indicating that
they experienced Pb loss. The rest 12 zircon grains yielded a weighted
mean age of 169.3± 3.3Ma (MSWD=1.4; Fig. 5b). These zircon grains
5

are enriched in HREEs, with strong Eu negative anomalies (EuN/Eu* =
0.18–0.43) and low Ce4+/Ce3+ ratios (17–178), indicating the melt
was reduced.

Twenty-five zircon grains from sample ZJ-27 were analyzed.
Twenty-three of the grains with correlations in 206Pb/238U versus
207Pb/235U > 90% have Th/U ratios of 0.25–1.70 and 206Pb/238U ages of
142.6 ± 4.2 to 199.0 ± 3.9 Ma (Supplemental Table 2). Four of the zir-
con grains with ages of 185.4 ± 4.5 to 199.0 ± 3.9 Ma, and four with
ages of 142.6 ± 4.2 to 152.0 ± 4.0 Ma, are attributed to inheritance
and loss, respectively, since they plot above and below the concordia.
The 14 zircon grains have a weighted mean age of 168.7 ± 4.0 Ma
(MSWD = 2.9; Fig. 5c). These zircon grains have similar geochemical
compositionwith those from sample ZJ08-2, that exhibit strong Eu neg-
ative anomalies with low Ce4+/Ce3+ ratios (Supplemental Table 3).

4.1.3. Gutian granodiorite
Twenty five zircon grains from sample GT-01 were analyzed. Fifteen

of the grains were inherited and have U-Pb ages of 756.9 ± 14.2 to
203.6 ± 9.8 Ma. The rest 10 zircon grains have U-Pb ages of 149.2 ±
5.3 to 174.6 ± 10.2 Ma, with a weighted mean age of 164.4 ± 5.4 Ma
(MSWD = 1.9, Fig. 5d). The 10 Jurassic zircon grains are characterized
by weaker Eu negative anomalies (EuN/Eu* = 0.49–0.70) and higher
Ce4+/Ce3+ ratios (255–1435) (Fig. 6) comparedwith those of the grains
from the Wulongsi medium-fine grained granite.

4.1.4. Gutian granodiorite porphyry
Sample GT-02 included 10 inherited zircon grains with U-Pb ages of

427.6 ± 8.3 to 194.3 ± 5.6 Ma. The rest 15 spots had U-Pb ages of
170.2 ± 4.9 to 154.5 ± 5.2 Ma and a weighted mean age of 162.3 ±
2.9 Ma (MSWD= 1.3, Fig. 5e).

Twenty-five zircon grains from sample GT-03 were analyzed. Thir-
teen of the grains were inherited, with U-Pb ages of 470.6 ± 15.5 to
204.5 ± 11.4 Ma. The rest 12 zircon grains have U-Pb ages of 170.7 ±
5.0 to 154.1 ± 4.0 Ma, with a weighted mean age of 161.8 ± 2.9 Ma
(MSWD = 1.7, Fig. 5f).

The 27 Jurassic zircon grains from the granodiorite porphyry are
geochemically similar to those of the Gutian granodiorite. They have
weak negative Eu anomalies (averaged EuN/Eu* = 0.47) and a mean
Ce4+/Ce3+ ratio of 558 (Fig. 6, Supplemental Table 3), indicating the
melts were relatively oxidized.

4.2. Molybdenite Re-Os isotopic composition

Themolybdenite Re-Os isotopic compositions of three samples from
the Gutian porphyry Mo-Cu deposit are presented in Supplemental
Table 4 and are shown in Supplemental Fig. 1.

The molybdenite samples have very low Re concentrations of less
than 1.0 ppm. They contain 531.0–152.4 ppb of 187Re and 1.4–0.4 ppb
of 187Os, model ages of 151.3 ± 0.6 Ma to 153.9 ± 3.9 Ma, and a
weighted mean age of 151.6 ± 1.6 Ma (MSWD = 0.86). Three of the
samples yielded an isochron age of 155 ± 18 Ma (MSWD= 0.11).

4.3. Whole-rock major and trace element compositions

The new bulk-rock geochemical data for the Luoboling granodiorite
porphyry, the Gutian granodiorite, and the Gutian granodiorite por-
phyry obtained in this study, as well as the previously published data
for these intrusions (Li et al., 2014; Li et al., 2016a, 2016b) and for the
Zijinshan granite complex (Li et al., 2015), are presented in Supplemen-
tal Table 5 and Figs. 7 and 8.

The Luobolingporphyryplots in theandesitefieldon theNa2O+K2O
vs. SiO2 (TAS) diagram (Fig. 7a), and they have a high-K calc-alkaline af-
finity according to the K2O vs. SiO2 diagram (Fig. 7b). They have
metaluminous affinity with molar Al2O3/(CaO + Na2O + K2O)
(A/CNK) ratios of 0.88–0.99 (Fig. 7c). These samples are enriched in
large ions lithophile elements (LILEs), such as Rb, Sr, and Ba, are
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depleted in high field strength elements (HFSEs), such as Nb, Ta and Y
(Fig. 8a), and have Sr/Y ratios higher than 30.0 (average of 33.3). Their
zircon saturation temperature (TZr)was calculated to be 722–791 °C fol-
lowing the method of Watson and Harrison (1983). Their chondrite-
normalized REEs patterns exhibit a moderate enrichment in light rear
earth elements (LREEs) over heavy rear earth elements (HREEs), and
weak negative Eu anomalies (Fig. 8b), with [La/Yb]N mean of 14.6 and
EuN/Eu* values mean of 0.90.

The ZJS granite complex is characterized by high SiO2 concentrations
(>70 wt%) and peraluminous affinity (A/CNK = 1.0 to 3.4), that plots
within the rhyolite/granite field on the TAS diagram (Fig. 7a). The gran-
ite complex has very low CaO (mostly <0.30 wt%), MgO (<0.40 wt%),
6

Fe2O3 (mostly <1.5 wt%) contents, and relatively low Nb/Ta (〈10) and
Sr/Y ratios (mostly <10). The Jinmei coarse grained granite and the
Jinlongqiao fine grained granite have similar trace element composi-
tions (Fig. 8c). They exhibit weak enrichments in LREEs over HREEs
([La/Yb]N = 4.4–11.4) (Fig. 8d) and negative Eu anomalies in
chondrite-normalized REEs patterns, and have TZr of 709–837 °C. The
medium-fine grained Wulongsi granite has ∑REE contents, (La/Yb)N
and EuN/Eu* ratios that are substantially lower than those of the Jinmei
and Jinglongqiao granites (Table 1, Supplemental Table 5), which char-
acterized by a tetrad chondrite-normalized REE pattern (Fig. 8d). It is
also characterized by lower TZr (703–728 °C) compared to the other
two granite phases.
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The Gutian granodiorite has slightly higher SiO2 concentrations than
those of the granodiorite porphyry and the quartz monzonite (Supple-
mental Table 5). These intrusions plot in the granodiorite and quartz-
monzonite fields on the TAS diagram (Fig. 7a), and plot in the high-K
calc-alkaline field on the K2O vs. SiO2 diagram (Fig. 7b). They aremostly
exhibit ametaluminous affinitywith A/CNK ratios of 0.93–1.16 (Fig. 7c).
They also have similar trace-element compositions that exhibit enrich-
ment in LILEs and Pb, and depletion in HFSEs and Ti (Fig. 8e). They have
relatively high Sr/Y ratios of 22.2–53.8 (average of 34.5), and relatively
high TZr of 780–846 °C. Their normalized REEs exhibit a listric pattern,
a moderate enrichment in LREEs over HREEs (with [La/Yb]N =
11.4–22.2, Fig. 8f), and weak negative Eu anomalies (EuN/Eu* =
0.80–1.06).

4.4. Whole-rock Sr-Nd isotopic compositions

The results of the Rb-Sr and Sm-Nd isotopic analyses of the
Luoboling porphyry conducted in this study combined with the pub-
lished Sr-Nd isotopic data for the Luoboling granodiorite porphyry (Li
et al., 2014), the ZJS granite complex (Li et al., 2015), and the Gutian in-
trusions (Li et al., 2016a, 2016b) are presented in Supplemental Table 6
and Figs. 9 and 10a.

The (87Sr/86Sr)i values of the Luoboling granodiorite porphyry are of
0.7066 to 0.7077 (Fig. 9). The ɛNd(t) values range from −2.8 to −5.1
(Fig. 10a), and the corresponding two stage model ages (TDM2 ) range
from 0.95 Ga to 1.28 Ga.

The Jinmei coarse grained granite samples have high Rb/Sr ratios of
up to 8.5, and therefore their variable and low (87Sr/86Sr)i values
(0.7017 to 0.7051) are not taken into account. The rest of the samples
from the ZJS granite complex have consistently high (87Sr/86Sr)i values
of 0.7095 to 0.7132. The Jinmei granite and the Wulongsi granite have
similar ɛNd(t) values of −6.8 to −8.5 and −6.7 to −8.0, respectively,
with TDM ranging from1.5 to 1.6Ga. The Jinlongqiaofine grained granite
has slightly lower ɛNd(t) ratios of−9.3 to−10.3, with TDM2 from 1.7 to
1.8 Ga.

The granodiorite, granodiorite porphyry, and quartz monzonite
from the Gutian have consistent (87Sr/86Sr)i values of 0.7088 to
0.7092, 0.7085 to 0.7096, and 0.7088 to 0.7097, respectively. Most of
these samples yielded identical ɛNd(t) ratios of −8.4 to −9.7, with
TDM2 values of 1.6 to 1.7 Ga.

4.5. Zircon Hf isotopic compositions

The results of the zircon Hf isotopic compositions for the Luoboling
granodiorite porphyry and the Gutian granodiorite porphyry are pre-
sented in supplemental Table 7 and Fig. 10b.

Fifteen zircon grains from the Luoboling granodiorite porphyry
(LBL-95) yielded 176Hf/177Hf ratios of 0.282606–0.282693 and εHf
(t) values of −0.6 to −3.7 (calculated using the weighted mean U-
Pb age of 103 Ma). These zircon grains have associated TDM2 of 1202
to 1397 Ma.

Thirteen zircon grains from the Gutian granodiorite porphyry (GT-
03) yielded 176Hf/177Hf ratios of 0.282214–0.282391 and εHf (t) values
of −10.0 to −16.3 (calculated using the weighted mean U-Pb age of
160 Ma). These zircon grains have associated TDM2 of 1841 to 2237 Ma.

5. Discussion

5.1. Timing of the Jurassic metallogenesis in the coastal region of SE China

Previous studies have reported that the ZJS granite complex was
emplaced 169–149 Ma (Jiang et al., 2013; Zhao et al., 2007). Some of
the greisen-type and quartz vein-type Sn mineralization have a close
spatial relationship to the Wulongsi granite (Zhang et al., 2001); thus,
it has been suggested that they are genetically linked (Liu et al., 2016).
Geochemically, the Wulongsi granite exhibits a tetrad REE pattern
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(Fig. 8d) (Li et al., 2015), which is indicative of the interaction between
granitic melts and magmatic fluids (Huang et al., 2017b; Irber, 1999;
Monecke et al., 2002). This feature further supports the hypothesis
that the Wulongsi granite gave rise to the Sn mineralization in the
8

ZOF. Our new U-Pb zircon ages for the Wulongsi granite (169.3 ±
3.3 Ma to 168.7 ± 4.0 Ma) are within error of previously published
ages (168.0 ± 4.0 Ma to 163.3 ± 4.0 Ma) (Jiang et al., 2013; Li et al.,
2015; Yu et al., 2013), suggesting that the Jurassic magmatic rocks
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associated with the Sn mineralization in the ZOF were emplaced
~163–169 Ma.

The Gutian Mo-Cu porphyry deposit is newly discovered and has
attracted considerable attention (Li et al., 2016a, 2016b). Our U-Pb zir-
con ages for the mineralized granodiorite and granodiorite porphyry
(164.4 ± 5.4 Ma and 161.8 ± 2.9 to 162.3 ± 2.9 Ma, respectively)
agreewellwith publishedU-Pb zircon ages of the granodiorite porphyry
(158.4 ± 1.8 Ma to 161.4 ± 1.3 Ma) and granodiorite (164.1 ± 1.8 Ma)
as well as the Re-Os model ages of the molybdenite from the granodio-
rite porphyry (162.4 ± 2.7 Ma and 163.0 ± 2.3 Ma) (Li et al., 2016a,
2016b). Together, these data indicate that the magmatism and the re-
lated Mo-Cu mineralization of the Gutian deposit occurred at about
161–164 Ma.

Themolybdenite from the quartz-pyrite-molybdenite vein hosted in
the granodiorite porphyry yielded consistent Re-Os isochron ages
(155± 18Ma) andmeanmodel ages (151.6 ± 1.6Ma), which are con-
temporaneous with the age of the youngest mineralized granodiorite
porphyry in the Gutian deposit (U-Pb zircon age of 158.4 ± 1.8 Ma; Li
et al., 2016a) within error. These data suggest that the late episode
magmatism in Gutian also caused the mineralization at ~155 Ma.

Wepropose that two stages ofMo-Cumineralization occurred in the
Gutian deposit. The early stage occurred at ~165–162 Ma, and the late
stage occurred at ~155 Ma. These ages overlap with the ages of the ZJS
Sn-mineralized granite and are similar to those of the recently discov-
ered Sn-W deposits in southeastern China, such as the Xingluokeng
W ± Sn deposit (molybdenite Re-Os age of 156.3 ± 4.8 Ma; Zhang
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et al., 2008), the Shangfang W deposit (molybdenite Re-Os age of
158.1 ± 5.4 Ma; Chen et al., 2013), and the Dadaoshan Sn deposit (mo-
lybdenite Re-Os age of 152.6 ± 1.8 Ma; Qiu et al., 2017) (Fig. 1). Based
on the close spatiotemporal relationships between these Jurassic de-
posits (Fig. 1), we conclude that they constitute an episode of Jurassic
felsic rock related metallogenesis in the coastal region of SE China,
which caused both the Sn-W and Mo-Cu mineralization.

5.2. Factors controlling the diverse Jurassic Sn andMo-Cumineralization in
the coastal region of SE China

The Jurassic ZJS granites are characterized by high SiO2 (Fig. 7), Al2O3

(ACNK>1.1), Isr (0.7095–0.7132) values, un-radiogenic whole-rock Nd
(ɛNd(t) = −6.7 to −10.3) and zircon Hf (ɛHf(t) = −7.1 to −19.0) iso-
topes, and low zircon Ce4+/Ce3+ ratios (mean of 69, Table 1). They are
interpreted to be reduced S-type granites derived from the
Paleoproterozoic crust (TDM2 = 1660 to 2130 Ma) (Jiang et al., 2013;
Li et al., 2015). Their lowmolar CaO/Na2O and CaO/(MgO+FeOT) ratios
and high Al2O3/(MgO + FeOT) ratios further indicate a meta-
sedimentary protolith (Figs. 11a, b) (Beard and Lofgren, 1991;
Sylvester, 1998). Although the Mo-Cu mineralized intrusions in the
Gutian deposits have Nd (ɛNd(t) = −7.8 to −12.5) and zircon Hf
(ɛHf(t) = −10.0 to −16.3) isotopes similar to those of the ZJS granite,
which are consistent with a crustal derivation, they are metaluminous
(Fig. 7c), oxidized (with Ce4+/Ce3+ ratios >600), and have lower Isr ra-
tios (0.7085–0.7097) (Fig. 9) and higher CaO contents (Supplemental
Fig. 2) than the ZJS granite, implying a distinct meta-basaltic protolith
(Fig. 11).

These variations in protolith composition may be the primary factor
causing the diverse Sn mineralization in the ZJS and the Mo-Cu in
Gutian. The weathered continental sediments are usually enriched in
Sn ( Romer and Kroner, 2016), and trend to form reduced melts (Sato
et al., 2004) in which cassiterite is highly soluble (Linnen et al., 1995),
thereby benefiting subsequent Sn-minerlization. On the other hand,
themeta-basaltic rocks weremantle-derived ultimately that would rel-
atively enriched in Cu (Rudnick and Gao, 2003; Sun et al., 2013). Partil
melting of meta-basaltic rocks would lead to oxidized magmas (Sato
et al., 2004) that destabilize the sulfides, thereby promoting magmatic
Cu-Mo enrichment and mineralizaiton (Jugo, 2009; Liang et al., 2009;
Sun et al., 2013; Zou et al., 2017).

Moreover, the magmas of the ZJS Sn granites and the Gutian Mo-Cu
granites underwent different evolutionary paths, which could also be
responsible for their distinct element associations. The ZJS granites ex-
perienced high degrees of fractional crystallization, as indicated by
high SiO2 contents, Nb/Ta of <10 (Table 1) and tetrad REE patterns
(Fig. 8d). Given Sn is incompatible during fractionation (Zajacz et al.,
65 75 
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2008), high degrees of fractional crystallizationwould concentrate Sn in
the residual melts, thereby producing economically viable Sn minerali-
zation (Thomas et al., 2000, 2005; Thomas and Davidson, 2013). The
Gutian intrusions are less evolved than the ZJS granites, but their
magmas were hydrous based on their high Sr/Y ratios and weak nega-
tive Eu anomalies (Table 1, Supplemental Fig. 2), which are consistent
with plagioclase suppression and substantial amphibole fractionation
in a wet magma (Richards et al., 2012). Such a hydrous magma would
favor fluid exsolution and metal extraction from the melt, which
would favor the formation of Mo-Cu porphyry deposits (Richards
et al., 2012; Wang et al., 2017).
10
5.3. Tectonic setting and model for the spatial-temporal coupling of the Sn
and Mo-Cu mineralizations

In addition to an enriched protolith, the heat source is another key
factor controlling the formation and spatial distribution of intrusion-
related mineralization (Romer and Kroner, 2015, 2016). We calculated
zircon saturation temperatures (Tzr) (Watson and Harrison, 1983) of
709–845 °C and 780–846 °C for the ZJS Sn granite and the Gutian Mo-
Cumineralized intrusions, respectively (Table 1, Fig. 12). The differences
in these temperaturesmay reflect the variable degrees of fractional crys-
tallization of the samples, which is supported by a systematic decrease in
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temperature with decreasing Nb/Ta ratio (Fig. 12). Therefore, the least
evolved samples of the ZJS granites and Gutian intrusions best represent
the melting temperatures (Yuan et al., 2019), both of which are
interpreted to be ~850 °C (Fig. 12). High temperatures (>800 °C) are es-
sential for anhydrous melting of hydrous mafic minerals (such as biotite
and amphibole) as well as the breakdown of magnetite, titanite, and ru-
tile at crustal pressures (Weinberg andHasalová, 2015). Therefore, these
high temperatures (~850 °C) were favorable for melting the meta-
basaltic protoliths of the Gutian intrusions and favored the formation of
the Sn-rich magmas of the ZJS granites by consuming the Sn-rich min-
erals (e.g., biotite, magnetite, titanite, and rutile) in theweathered sed-
imentary protolith and subsequently releasing Sn into the melts. We
conclude that high temperature crustalmelting, which simultaneously
melted the metasedimentary and meta-basaltic rocks in the crust, is
the key factor that produced the locally superimposed granite-
related Sn and Mo-Cu porphyry mineralization in the coastal region
of SE China.

High temperature crustal melting requires a heat input from the
mantle (Clark et al., 2011), which can be accomplished by the intrusion
Fig. 10. Plots of (a) ɛNd(t) vs. age (Ma) and (b) zircon ɛHf(t) vs. age (Ma). Igneous rock data for th
symbols and references are as in Fig. 8. Data source of the Sn-Wmineralized granites in the Na
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of mantle melts in subduction or extensional zones, or by the emplace-
ment of ultrahigh-temperature metamorphic rocks within an orogenic
belt (Romer and Kroner, 2015, 2016). However, the ultrahigh-
temperature metamorphic model cannot explain the ZJS granite and
the Gutian intrusions since there was no collisional orogenic event in
the SE China during the Jurassic. Several researchers have suggested
that the SE China was a continental arc formed by the subduction of
the Paleo-Pacific Plate in the Jurassic, and that the area was dominated
by a compressional regime (Jiang et al., 2013; Li et al., 2016a). However,
the sources of the ZJS granite and the Gutian intrusions do not contain
mantle or down-going slab derivedmaterials. In fact, several lines of ev-
idence indicate that the coastal region of SE China was controlled by an
extensional regime: (Audétat, 2010) Middle Jurassic rift-type basins
were widely developed in SE China (Gilder et al., 1991; Shu et al.,
2004); (Beard and Lofgren, 1991) bimodal volcanic rocks with U-Pb zir-
con ages of ~168–139 Ma are well preserved in the Fujian and Guang-
dong provinces (Guo et al., 2012); and (Chen et al., 2008) Middle-Late
Jurassic OIB-like mafic rocks have been found in Fujian Province (Zhou
et al., 2006).

The Jurasic large granitic province and related W-Sn metallogenesis
in theNangling Rangewas formed in hinterland extensional setting that
triggered by asthenosphere upwelling (Hu and Zhou, 2012; Huang et al.,
2015; Yuan et al., 2019). The followingpoints should be noted. (Audétat,
2010) The Jurassic W-Sn and Mo-Cu mineralizations in the coastal re-
gion of SE China are in close proximity to and were coeval with the
W-Sn mineralization in the Nanling Range (~160–150 Ma) (Fig. 1,
Table 1). (Beard and Lofgren, 1991) The ZJS granites, the Gutian intru-
sions, and most of the W-Sn granites in the Nanling Range have similar
sources and were mainly derived from the Paleoproterozoic-
Neoproterozoic basement of the western Cathaysia Block (Table. 1,
Fig. 1, and Fig. 10). (Chen et al., 2008) The Sn specific granites in the
Nanling Range were formed by high temperature melting (>800 °C)
due to the heat from the mantle upwelling through the Shi-Hang litho-
spheric fault system (Yuan et al., 2019).

Based on the observations discussed above, we suggest that the
coastal region of SE China had a hinterland extensional setting similar
to that of the Nanling Range during the Jurassic (Chen et al., 2008;
Huang et al., 2015; Li, 2000; Li and Li, 2007; Wang et al., 2013). The up-
wellingmantle could have provided sufficient heat for the crustal melt-
ing in the coastal region. Similar to the Shi-Hang fault in the Nanling
Range, the Zhenghe-Dapu crustal fault may have acted as an excellent
path for mantle heat transport, thereby promoting high temperature
(>800 °C) melting in proximal areas and the formation of both the
Sn-rich ZJS granite and the Mo-Cu-rich Gutian intrusions.

We conclude that the Jurassic deposits, in both the coastal region of
SE China and the Nanling Range, are products of widespread crustal
melting driven by heat from the upwelling mantle. Shi-Hang and
e coastal region are from Li et al. (2014, and references therein) and Guo et al. (2012). The
nling Range is listed in Supplemental Table 1.
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Zhenghe-Dapu fault systems were the ancient suture zones of Yangtz-
Cathaysia Blocks, and western-eastern Cathaysia terranes (Chen and
Jahn, 1998; Xu et al., 2007; Zhang et al., 2008), respectively. As the for-
mer continent margins with the development of basins and horsts,
Paleoproterozoic arc magams would dominate in the horsts, whereas
sedimentary rocks would dominate in the basins, which formed meta-
sedimentary and meta-basaltic protoliths in the the basement around
the suture zones. On the other hand, these crustal or lithospheric fault
systems provided channels for heat transport from the mantle and in-
creased the local crustal geothermal gradient (Fig. 13a). The region
proximal to the deep fault systemsmay have experienced high temper-
ature melting (>800 °C), which would have consumed the biotite and
12
amphibole in the source of the Sn/Sn-W deposits and a few of the Mo-
Cu deposits. The region farther away from the deep fault systems
would have had a lower geothermal gradient, which caused crustal
melting at temperatures of less than 800 °C. Thus, instead of biotite
and amphibole, muscovite-controlled anhydrous melting would have
dominated under these low temperature conditions, which released
the W from the protolith and formed the W-deposits (Yuan et al.,
2019). Together, these Jurassic deposits form an EW-trending
polymetallic mineralization belt, which is located away from the sub-
duction zone and is controlled by the hinterland extensional setting.

5.4. Tectonic transition-controlled changes in mineralization from the Ju-
rassic to the cretaceous

Most researchers suggest that the SE China was controlled by a sub-
duction setting associated with the westward subduction of the Paleo-
Pacific Plate during the Cretaceous (Li et al., 2014; Li and Li, 2007;
Wang et al., 2013; Zhou and Li, 2000; Zhou et al., 2006). Due to the tec-
tonic transition, the source components and heat source of the Creta-
ceous magmatism were distinct from those of the Jurassic magmatism.

The Cretaceous Luoboling Cu-Mo mineralized porphyry is oxidized
(Fig. 6), and characterized by more radiogenic Nd (with ɛNd(t) = −2.9
to −5.1) and zircon Hf isotopes (with εHf (t) = −0.6 to −3.7) than
those of the Jurassic ZJS Sn granites and Gutian Mo-Cu intrusions
(with ɛNd(t) = −6.7 to −12.5 and ɛHf(t) = −7.1 to −19.0, Fig. 9).
This suggests that the Cretaceous source contained more mantle or ju-
venile crust-derivedmaterials, which had a higher potential for forming
Cu-rich melts rather than Sn-W-rich or high Mo/Cu melts. The Creta-
ceous Luoboling porphyry has zircon saturation temperatures of
<800 °C and Ti-in-zircon temperatures of less than 650 °C, which are
significantly lower than the temperatures required for dehydration
melting (>850 °C; Collins et al., 2016). This suggests that the source
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was melted under water-flux conditions (Wang et al., 2017), likely in
the metasomatized mantle wedge, which is rich in fluids derived from
the down-going slab (Fig. 13b).Water fluxmelting favors the formation
of hydrous and oxidized magmas. Such magmas achieve fluid exsolu-
tion before significant fractional crystallization occurs, which enriches
the melt in incompatible Mo over compatible Cu (Li and Audétat,
2012), leading to the formation of porphyry deposits with high Cu/Mo
ratios. This hypothesis is consistent with the fact that the Cretaceous
Luoboling Cu-Mo porphyry underwent lower degrees of fractional crys-
tallization than the Jurassic GutianMo-Cumineralized intrusions, which
is supported by the fact that the former lacks tight correlations between
SiO2 and most of the oxides (Supplemental Fig. 2), and that the SiO2

contents of the former are lower than those of the later.
Overall, the transition in the tectonic setting of the SE China,

i.e., controlled by hinterland extension during the Jurassic and a subduc-
tion zone during the Cretaceous, caused changes in the magmatic
source components, physical-chemical conditions of magma genera-
tion, and themagmatic composition. These changes resulted in system-
atic changes in the predominant mineralization from Sn-W and Mo-Cu
to Cu-Mo-(Au), which partially spatially overlap (such as in the ZOF).
These changes are also the key factors controlling the heterogeneous
Mesozoic mineralization in the SCB.
13
5.5. Implications of the spatial coincidence of the Sn-W and Mo-Cu/Cu-Mo
mineralizations

Asmentioned above, Sn(W) has geochemical behaviors that are dis-
tinctly different than those of Mo and especially Cu; therefore, Sn-W
and Mo-Cu mineralizations usually occur in distinct belts and seldom
temporally-spatially coincide.

Amodel of two-step melting has been suggested to explain the local
superposition of the Sn and/orWmineralizationwith the Cu and/orMo
mineralization, i.e., early preferential melting of sedimentary rocks to
form reduced Sn-rich melts, followed by more oxidized Cu-Mo rich
melts after the sedimentary protoliths are consumed (Romer and
Kroner, 2016). The two-step melting would form Sn and/or W deposits
slightly older than the Cu and/or Mo deposits, rather than cause the
spatial-temporal overlap of these two groups of mineralizations. In
our study, we propose that the superposition of the simultaneously pro-
duced Mo-Cu porphyry and granite-related Sn deposits is controlled by
high temperaturemelting of crustal protolithswith different lithologies.
Melting of a meta-sedimentary protolith formed the reduced and Sn-
W-rich magma, whereas melting of a meta-basaltic protolith formed
the oxidized and Mo-Cu-rich magma. Thus, melting of mature crust
containing various protoliths combined with heat from the mantle
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provides an alternative explanation for the temporal-spatial coinci-
dence of the Mo-Cu and Sn-W mineralizations.

Overall, the metal associations and spatial distribution of the intru-
sion related deposits are controlled by their source components and
heat supply. The spatial and temporal coincidence of the Sn-W and Cu-
Mo-(Au) mineralizations are primarily controlled by high temperature
crustal melting caused by the same dynamic processes. The spatially
overlapping but diachronous Sn-W and Cu-Mo-(Au) mineralizations re-
flect changes in the source components and geodynamic background,
which suggests a shift in the tectonic framework.

6. Conclusions

The main findings of this study are summarized as follows.

(1) The adjacent Jurassic ZJS Sn-related granites and Gutian Mo-Cu-
related porphyry formed ~155–165 Ma in the coastal region of
southeastern China and were derived from meta-sedimentary
rocks and meta-basaltic rocks, respectively.

(2) The Jurassic Sn mineralized granite and the Mo-Cu mineralized
porphyry in the coastal region of southeastern China were
formed in the same tectonic setting as the Jurassic Sn-W granites
in the Nanling Range, and the mineralization in both locations
was triggered by hinterland extension and asthenospheric up-
welling.

(3) The transition in the tectonic setting is responsible for the spatial
superposition of the Cretaceous Cu-Mo porphyry deposit and the
Jurassic Sn and Mo-Cu mineralizations in SE China.

(4) Partial melting of different protoliths and a transition in the tec-
tonic setting, which could result in changes in the magmatic
source, water concentration, oxidization, and evolution path,
triggered the simultaneous and diachronous superposition of
the Sn(W) and Mo-Cu deposits.
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