广州大气颗粒物水溶性有机氮的粒径分布特征 和来源分析

鲁慧莹^{1,2}, 彭 龙^{1,2}, 张国华^{1*}, 毕新慧¹, 王新明¹, 彭平安¹, 盛国英¹

(1. 中国科学院 广州地球化学研究所 有机地球化学国家重点实验室, 广东省环境资源利用与保护重点实验室, 广东 广州 510640; 2. 中国科学院大学, 北京 100049)

摘 要:水溶性有机氮(WSON)在大气化学和气候变化中具有重要作用,目前鲜有针对 WSON 粒径分布的研究。本研究利用大流量采样器在 2014 年 9 月至 2015 年 7 月期间采集了广州市各个季节 PM₁₀ 中不同粒径段 (<0.49 μm、0.49~0.95 μm、0.95~1.5 μm、1.5~3.0 μm、3.0~7.2 μm、7.2~10 μm)大气颗粒物样品共 100 个,分析 了其中的水溶性总氮(WSTN)、WSON 以及水溶性无机氮(WSIN)含量。结果表明,各个粒径段中 WSON 的浓度 呈现相似的季节变化特征,秋、冬季较高,春、夏季较低。WSON 主要分布在细颗粒物上,PM₃ 中 WSON 的季 节平均浓度在 1.15~2.62 μg/m³范围内,占 PM₁₀ 中 WSON 总量的 63%~71%。WSON 的粒径分布呈现单峰分布,主 要富集在 0.49~1.5 μm 粒径段。主成分分析/绝对主成分得分(PCA/APCS)分析表明,<0.49 μm 颗粒物上的 WSON 主要来源于本地化石燃料的燃烧排放;0.49~0.95 μm 颗粒物的 WSON 主要来源于建筑扬尘和光化学氧化二次生成过程;0.95~1.5 μm 颗粒物的 WSON 主要来源于光化学氧化二次生成过程。研究结果增加了目前对于 WSON 粒径分布特征和来源的认识。

关键词: 大气颗粒物; 水溶性有机氮; 主成分分析; 粒径分布; 广州

中图分类号: P593; X513 文献标识码: A 文章编号: 0379-1726(2019)01-0057-10 DOI: 10.19700/j.0379-1726.2019.01.005

Size distribution and sources of water-soluble organic nitrogen associated with atmospheric particles in Guangzhou

LU Hui-ying^{1,2}, PENG Long^{1,2}, ZHANG Guo-hua^{1*}, BI Xin-hui¹, WANG Xin-ming¹, PENG Ping-an¹ and SHENG Guo-ying¹

1. State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection,

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: Water-soluble organic nitrogen (WSON) plays an important role in atmospheric chemistry and climatic change. However, few studies have focused on WSON in size-segregated particles. In this study, size-segregated particle samples in the size ranges of <0.49 μ m, 0.49–0.95 μ m, 0.95–1.5 μ m, 1.5–3.0 μ m, 3.0–7.2 μ m, 7.2–10 μ m were collected in Guangzhou, China from September 2014 to July 2015 by a high-volume sampler. Samples were analyzed for water-soluble total nitrogen (WSTN), WSON and and water-soluble inorganic ions (WSIN). The concentrations of WSON in each size range showed a similar seasonal trend with higher concentrations in autumn and winter and lower concentrations in spring and summer. The seasonal average concentrations of WSON in PM₃ ranged from 1.15 to 2.62 μ g/m³, contributing to 63%–71% of the WSON in PM₁₀. The concentrations of WSON in particles <3 μ m exhibited a unimodal distribution in four seasons, enriching in the 0.49–0.95 μ m

基金项目:国家自然科学基金(41775124);广州市科技计划项目(201803030032)

收稿日期(Received): 2018-01-17; 改回日期(Revised): 2018-03-17; 接受日期(Accepted): 2018-03-19

作者简介: 鲁慧莹(1991-), 女, 硕士研究生, 环境科学专业。E-mail: 1552935872@qq.com

^{*} 通讯作者(Corresponding author): ZHANG Guo-hua, E-mail: zhanggh@gig.ac.cn; Tel: +86-20-85291509

particles. The principal component analysis (PCA)/absolute principal component scores (APCS) analysis showed that WSON can be mainly attributed to the burning of local fossil fuels in particles < $0.49 \mu m$, to construction dust and photochemical oxidation leading to its secondary formation in $0.49-0.95 \mu m$ particles; and to photochemical oxidation leading to secondary formation alone in $0.95-1.5 \mu m$ particles. Our research improves our understanding of the environmental geochemical processes of organic nitrogen compounds.

Key words: atmospheric particulates; water-soluble organic nitrogen; principal component analysis; size distribution; Guangzhou

0 引 言

大气颗粒物中的含氮组分对气候变化、生态环 境和人体健康均有着重要的影响[1-3]。含氮组分可以 分为两类:无机氮(IN)和有机氮(ON)^[4]。以往对含氮 组分的研究主要是关于无机氮、近年的研究表明有 机氮广泛存在于雨水、大气颗粒物中^[5-6]。但有机氮化 合物种类繁多、能够被定量分析的仅占非常少的一部 分,目前已解析出的大气含氮有机物包括氨基酸、尿 素、硝基苯酚、氮杂环生物碱、有机硝酸盐和有机胺 等。大部分的有机氮物质均是水溶性的、即水溶性有 机氮(WSON)。WSON 是大气颗粒物的重要组成部分, 可以通过改变颗粒物的缓冲能力和酸碱度、进而影 响气溶胶的物理化学特性、对能见度和气候变化产 生影响。某些 WSON, 如卤代乙腈、亚硝基二甲胺、 硝基苯酚和含氮杂环化合物均是致癌物质、摄入过 多会导致人体病变^[7]。而且,大气颗粒物上附着的污 染物质(例如 WSON), 其粒径分布特征对于呼吸系统 健康风险的评估是一个非常重要的参数^[8]。

目前研究对于不同地区颗粒物中 WSON 浓度的 认识已较为全面、如美国亚特兰大、教堂山、佛罗 里达、大西洋、希腊及中国北京、青岛、西安和上海 等地区^[9-17]。欧美地区大气颗粒物中的 WSON 浓度 明显低于中国地区的浓度、中国内陆地区如西安、 北京的 WSON 浓度高于沿海地区。文献报道 WSON 占 水溶性总氮(WSTN)的比例在 10%~80%范围内、其中 海洋气溶胶中 WSON 的占比较小, 在 20%以下^[18-19]。 城市气溶胶中 WSON 的贡献较大^[20],偏远地区大气 气溶胶中 WSON/WSTN 比值更大, 可达 40%左右^[21]。 然而、针对 WSON 粒径分布研究的报道仍极为有 限。在意大利地区^[22],将 PM₁₀颗粒物分为 5 个粒 径段,对其中的 WSON 分别进行研究,其中 WSON 在<1.2 μm 的颗粒物中浓度显著高于 1.2~10 μm 粒 径段。目前还没有文献对中国地区大气颗粒物中的 WSON 和 WSON/WSTN 比值分更细的粒径段进行

研究。

大气颗粒物中 WSON 的来源可以分为一次排放 源和二次生成、一次排放源有自然源和人为源; 二次 生成主要是通过 NO, 和挥发性有机物反应生成有机 硝酸酯等。目前关于大气颗粒物中 WSON 来源解析 的研究还比较有限、已有的研究大多是对粗、细粒物 分别进行研究, 通过分析 WSON、典型源或二次生成 源示踪物的相关性来判别 WSON 的可能来源。Violaki et al.^[13]分析 WSON 与钒、草酸根离子、NH4⁺、 $nss-SO_4^2$ 离子的相关性、说明化石燃料燃烧、生物质 燃烧和人为源是当地 WSON 的可能来源。Rastogi et al.^[11]通过分析 WSON 与 SO₄²⁻、Na⁺、左旋葡聚糖、 CO、 SO_2 、NO 的相关性, 表明亚特兰大地区 PM_{25} 中 WSON 可能来源于生物质燃烧、燃煤火力发电厂、 海洋气溶胶。Yu et al.^[23]用 PMF 方法分析了广州地区 PM25中的 WSON 可能来自二次生成、扬尘、船和机 动车尾气排放、生物质燃烧。Miyazaki et al.^[24]通过 分析发现夏季日本阔叶林颗粒物中的 WSON 主要是 二次生成,秋季主要来自一次生物质燃烧源。目前的 研究对于不同粒径 WSON 来源的认识仍存在不足。

颗粒态 WSON 是珠三角区域大气气溶胶的重要 组成部分^[25-26],目前大部分研究是通过分析 WSON 和无机离子示踪物之间的相关性来判别 WSON 的来 源。本研究拟分粒径段对广州地区大气颗粒物 PM₁₀ 中的 WSON 和水溶性无机氮(WSIN)进行分析,并采 用主成分分析/绝对主成分得分(PCA/APCS)的方法 对不同粒径细颗粒(<1.5 μm)中的 WSON 分别进行源 解析,并比较解析出的各个源的相对贡献大小,为 更深入地理解广州地区大气颗粒物中含氮有机物质 的环境地球化学过程提供科学依据。

- 1 材料与方法
- 1.1 样品采集

采样点设在中国科学院广州地球化学研究所标

本楼九楼楼顶(离地高度 40 m)。本研究使用 Anderson SA235 大流量采样器(流量均为 1.13 m³/min),分别 采集 2014年9~10月、2014年12月至 2015年1月、 2015年3~4月以及 2015年6~7月的6个粒径段 (<0.49 µm、0.49~0.95 µm、0.95~1.5 µm、1.5~3.0 µm、 3.0~7.2 µm和7.2~10 µm)24h大气颗粒物样品,每 个季度采集样品数分别为:29(夏季)、27(秋季)、24 (冬季)、20(春季)。采样前将石英纤维滤膜 (QM-Whatman, 20.3Whatm cm)于450℃下灼烧4h, 以除去残留碳和其他杂质。采样结束后,恒温恒湿 (25℃,相对湿度50%)24h并称重,再放入-40℃ 冰柜中储存,待仪器分析。

1.2 样品分析

将 6 cm² 滤膜样品分别用 7 mL 的超纯水 (>18 M Ω ·cm)超声萃取 2 次,将 2 次的萃取液合并, 再用 0.45 μ m 滤头进行过滤,滤液用于水溶性物质的分析。

1.2.1 水溶性无机氮的测定

使用离子色谱(Met Rohm 883 IC plus)测定样品 中的 WSIN (NH₄⁺、NO₂⁻和 NO₃⁻),其中阴离子用 Metrosep A Supp5-150/4.0 6.1006.520 分离柱(150 mm × 4.0 mm)和 Metrosep RP2 6.1011.030 保护柱(1.0 mm × 3.5 mm),阳离子用 Metrosep C4-50 6.1050.410 分离 柱(100 mm×4.0 mm)。

1.2.2 水溶性有机氮的测定

实验中用于测定样品 WSTN 的仪器是德国 Elementar 公司 vario TOC 分析检测仪。大气颗粒物 中 WSON 的浓度根据公式 WSON=WSTN-WSIN 计 算得到,其中 NH₄⁺、NO₂⁻和 NO₃⁻三类离子的氮含量 总和为 WSIN。文中用 μ g/m³表示每立方米大气中所 含氮的质量浓度。

1.3 PCA/APCS 受体模型

PCA 是将多指标问题转化为较少的综合指标统 计方法。在保留原始数据绝大部分信息的前提下, 通过主成分分析得到少数互不相关的综合指标。 APCS 被用于估计源对某种污染物质的贡献量。 该技术被广泛用于大气科学。主要步骤为:首先对 所有物质含量进行标准化,如下式所示:

$$Z_{ij} = \frac{C_{ij} - \overline{C_i}}{\sigma_i}$$

式中: Z_{ij} 为标准化后的浓度值(无量纲); $\overline{C_i}$ 和 σ_i 分别 为物质 *i* 的平均浓度和标准偏差。从 PCA 得到的是归 一化的因子分数, 然后, 对所有物质引入一个浓度为 零的人为样本, 计算得到该浓度样本的因子分数为:

$$\left(Z_0\right)_i = \frac{0 - \overline{C_i}}{\sigma_i}$$

每个样本的因子分数减去零浓度样本的因子分 数得到每种物质的 APCS; 再用特定物质数据对 APCS 作多元线性回归得到如下的线性拟合方程:

$$C_i = b_{0i} + \sum_{p=1}^{n} (\text{APCS}_p \times b_{pi})$$

式中: C_i 代表物质 *i* 的浓度; b_{0i} 为对物质 *i* 作多元线 性回归所得的常数项; b_{pi} 是源 *p* 对物质 *i* 的多元回 归系数; APCS_p 为调整后的因子分数。关于绝对主 成分得分分析的详细描述可参见 Thurston *et al*.^[27] 的研究。

2 结果与讨论

2.1 WSIN 和 WSTN 的分布特征

广州在各个季节中,6个粒径段 NH4⁺-N、NO2⁻-N、NO3⁻-N、WSTN 的年平均浓度值如表 1 所示,粒径 段从小到大为<0.49 μ m、0.49~0.95 μ m、0.95~1.5 μ m、1.5~3.0 μ m、3.0~7.2 μ m 和 7.2~10 μ m。NH4⁺-N 的浓 度在 0.04~1.02 μ g/m³之间; NO3⁻-N 浓度在 0.05~0.35 μ g/m³之间; WSTN 的浓度在 0.54~1.75 μ g/m³之间。6个粒径段中,NH4⁺-N 占 WSTN 的百分比依次 是 58%、69%、43%、13%、5.3%和 8.4%; NO3⁻-N 浓度占总 WSTN 的百分比依次是 15%、25%、17%、23%、34%和 8.9%,各个粒径段中 NO2⁻-N 的浓度均 很低,在WSTN 中的比例非常小,可以忽略。

表 1 各个粒径段 NH₄⁺-N、NO₂⁻-N、NO₃⁻-N、WSTN 的年平均浓度值(µg/m³)

	Table I Annua	l concentrations (µg/m	(1) of NH ₄ -N, NO ₂ -N	N, NO ₃ -N and WSTN	in each size range	
粒径	<0.49 µm	0.49~0.95 μm	0.95~1.5 μm	1.5~3.0 μm	3.0~7.2 μm	7.2~10 μm
NH_4^+ -N	1.02 ± 0.80	0.95 ± 0.49	0.36±0.24	0.09 ± 0.06	$0.04{\pm}0.04$	0.05 ± 0.04
NO ₂ ⁻ -N	0.002 ± 0.004	0.0005 ± 0.002	0.0005 ± 0.002	0.0003 ± 0.002	0.0005 ± 0.002	0.0003 ± 0.002
NO ₃ ⁻ -N	0.26±0.88	0.35 ± 0.90	$0.14{\pm}0.32$	0.16 ± 0.08	0.27 ± 0.06	0.05 ± 0.05
WSTN	1.75±0.94	1.37±0.47	0.85±0.37	0.69±0.25	0.80±0.26	0.54±0.24

各个季节各个粒径段的 NH₄⁺、NO₃⁻和 WSTN 分布特征如图 1 所示,各个季节的 NH₄⁺, WSTN 主 要富集在粒径 1.5 μm 的细颗粒物上, 1.5 μm 颗 粒物中的 NH₄⁺占 PM₁₀颗粒物中总 NH₄⁺含量的 90% 以上,甚至在秋季可以达到 95%, 1.5 μm 颗粒物 中的 WSTN 占 PM₁₀颗粒物中总 WSTN 含量的 64% 以上。各个季节 NH₄⁺、NO₃⁻和 WSTN 的粒径分布 如图 2a~图 2c 所示, NH₄⁺、WSTN 的峰值粒径段均 位于 0.49~0.95 μm。从 6 个粒径段的季节分布来看, NH₄⁺和 WSTN 的含量均是秋、冬季较高,春、夏季 较低,可能是由于冬季燃煤和生物质燃烧排放增加, 北方内陆地区的污染物向南扩散,引起含氮污染物 浓度上升,而春、夏季降雨频繁,冲刷作用强,且 春、夏季从南海带来的洁净空气会稀释广州大气污 染物的浓度^[28]。

各个季节的 NO₃⁻主要富集在粒径 1.5 μm 的 细颗粒物和 3.0~7.2 μm 粒径段, 1.5 μm 颗粒物中 的 NO₃⁻占 PM₁₀ 颗粒物中总 NO₃⁻含量的 40%以上,

Fig.1 Seasonal concentration distributions of nitrogen-containing componds in each size range

图 2 各个季节含氮物质浓度的粒径分布特征

Fig.2 Seasonal and size range-based distributions of nitrogen-containing compounds concentration

Geochimica Vol. 48 No. 1 pp. 57–66 Jan., 2019

甚至高达 70%。从 1.5 μ m 粒径段的 NO₃⁻季节分布 来看,春、冬季较高,夏、秋季较低。对比相关学者 在其他地区的水溶性离子浓度,发现 PM₁₀中,广州 地区的 NH₄⁺、NO₃⁻浓度显著高于长三角地区,与香 港的浓度水平基本相当^[29]。

2.2 WSON 浓度、WSON/WSTN 的季节和粒径分 布特征

2.2.1 WSON 和 WSON/WSTN 的季节分布特征

各个季节各个粒径段 WSON 浓度(均值 ±标准 差)的分布如表 2 所示。WSON 在不同粒径段的浓度 变化范围分别为<0.49 μm (0.20~0.97 μg/m³)、0.49~ 0.95 μm (0.31~0.69 μg/m³)、0.95~1.5 μm (0.16~0.55 μg/m³)、 1.5~3.0 μm (0.21~0.67 μg/m³)、3.0~7.2 μm (0.25~ 0.72 μg/m³)和 7.2~10 μm (0.19~0.69 μg/m³)。WSON 秋、冬季的浓度较高,春季较低,夏季最低,大部分 粒径段存在显著的季节差异性。气候影响因素与 IN 部分类似^[15,30,31]。

与其他研究相比, PM_{10} 中广州四季的 WSON 浓 度均显著高于意大利冬季的浓度^[22]。大多数研究分 析了 $PM_{2.5}$ 中 WSON 的浓度, 与本研究 PM_3 中的 WSON 浓度相比, 广州 PM_3 中 WSON 的浓度与上海 相当^[3], 显著高于美国加利福尼亚、亚特兰大、佛罗 里达、美国教堂山, 低于中国西安此粒径段^[22,32–35]。

表 3 列出了各个粒径段 WSON 对 WSTN 贡献 的季节分布特征,可以看出其与WSON的季节变化趋 势有明显不同。其中部分粒径段(<0.49 μm 和 0.95~ 1.5 μm)夏季 WSON/WSTN 比值显著高于春、冬季, 可能是由于夏季二次反应比较强,颗粒态二次 ON 的生成量增加^[7]。

2.2.2 WSON 和 WSON/WSTN 的粒径分布特征

由于 WSON 的浓度根据 WSTN 和 WSIN 计算 得到,粗颗粒段浓度较低,故本研究只分析<3 μ m 颗粒物中 WSON 的粒径分布特征,如图 2d 所示。各 个季节 WSON 的粒径分布呈现单峰分布,春季的峰 值粒径段位于 0.49~0.95 μ m,夏季的峰值粒径段位 于 0.49~1.5 μ m;秋、冬两季,峰值粒径段位于 0.95~ 1.5 μ m;说明 WSON 主要富集在细颗粒物上,尤其 是 1.5 μ m 的粒径段上,与 NH4⁺和 WSTN 的粒径分 布特征类似。

广州地区<3 µm 颗粒物中 WSON/WSTN 比值的 粒径分布特征如下所示(见表 4)。随着粒径的增加, 该比值呈增长趋势, 说明相对 WSTN, WSON 更偏 向于向大粒径段偏移。与前人的研究对比发现, 广 州细颗粒物中 WSON/WSTN 的比值高于美国佛罗 里达、加利福尼亚、亚特兰大, 塔斯马尼亚, 希腊, 中国上海及东部地区, 与中国西安、美国教堂山基 本相当^[1,3,33,34,39-41]。

3 影响广州细颗粒物中 WSON 分布的 主要因素

为了探讨影响广州颗粒物中 WSON 分布的主要 因素,本研究利用 PCA/APCS 对各个季节不同粒径 段的数据进行降维分析。分析中选择的主要影响因 素包括水溶性组分(Na⁺、K⁺、Ca²⁺、Cl⁻、SO₄²⁻、NO₃⁻ 和 NH₄⁺)、在线痕量气体(CO、NO₂、O₃和 SO₂)、气象

表っ	冬 个季节冬个粒径的	WSON 的分布特征及显茎性检验结里(ug/m^3)
1x 2	合一字户合一位任权	WSON的力作符准及业者性性型组术(μg/Ⅲ)

粒 径	<0.49 µm	0.49~0.95 μm	0.95~1.5 μm	1.5~3.0 μm	3.0~7.2 μm	7.2~10 μm
春	0.20±0.10	0.55±0.35	$0.16{\pm}0.08$	$0.24{\pm}0.07$	0.25±0.12	0.30±0.01
夏	0.33±0.21	0.31 ± 0.38	0.22 ± 0.06	0.21±0.09	0.25±0.18	$0.19{\pm}0.08$
秋	$0.38 \pm 0.25*$	$0.69 \pm 0.69 *$	0.55±0.17**	0.67±0.04**	0.72±0.23*	0.62±0.11**
冬	0.97±1.04*	0.57±0.39*	0.45±0.19*	0.63±0.24**	0.72±0.31**	0.69±0.15**

注: * α < 0.05; **α < 0.01, 显著性检验结果: 秋、冬季 WSON 浓度显著高于春、夏季

表 3	各个季节各个粒径段的 WSON/WSTN	比值
F.1.1. 2	General mainting of WOON/WOTN is seek at	

粒 径	<0.49 µm	0.49~0.95 μm	0.95~1.5 μm	1.5~3.0 μm	3.0~7.2 μm	7.2~10 μm
春	0.28±0.19	0.45 ± 0.30	0.30±0.20	0.51±0.17	0.50±0.26	$0.89{\pm}0.05$
夏	0.36±0.15**	$0.40{\pm}0.22$	0.61±0.17**	$0.58{\pm}0.18$	0.46 ± 0.20	0.71±0.30
秋	0.17±0.11	$0.42{\pm}0.39$	0.51±0.22*	$0.76{\pm}0.12$	0.72 ± 0.16	0.84±0.15
冬	0.27 ± 0.22	0.38±0.25	0.40 ± 0.19	0.66±0.23	0.70 ± 0.22	0.88 ± 0.18

注: * α < 0.05; **α < 0.01, 显著性检验结果: 夏、秋季 WSON/WSTN 比值显著高于春、冬季

地球化了

表 4 不同地区颗粒物中 WSON 浓度的比较 Table 4 Comparison of the concentrations of WSON in particles from different regions					
地 点	颗粒物粒径	WSON 浓度(µg/m ³)	WSON/WSTN	参考文献	
	0.050~0.14 μm	0.06		[22]	
	0.14~0.42 μm	0.31		[22]	
意大利 San Pietro Capo Fiume	0.42~1.2 μm	1.07		[22]	
	1.2~3.5 μm	0.35		[22]	
	3.5~10 µm	0.04		[22]	
	0.050~0.14 μm	0.055		[22]	
意大利 Bologna	0.14~0.42 µm	0.435		[22]	
	0.42~1.2 μm	1.53		[22]	
美国加利福尼亚	PM _{2.5}	0.218±0.190	0.2	[20]	
澜十利亚摆斯马尼亚包	PM_1	0.006	0.24	[36]	
英八利亚 珀别 为 尼亚司	PM_{1-10}	0.014	0.12	[36]	
中国东部	PM _{2.5}	0.756±0.504	0.24	[10]	
美国佛罗田计	PM _{2.5}	0.0714±0.0406	0.128±0.067	[37]	
天西师夕至迟	PM _{2.5-10}	0.0364±0.0112	/	[37]	
北大西洋	PM_1	0.0364 ± 0.0434		[12]	
圣胜古田县内	PM _{1.3}	0.1624±0.196	0.13	[13]	
巾朋兄王付词	PM _{1.3-10}	0.077±0.0546	0.13	[13]	
亚刀动分地	PM ₁₀ 湿季	0.049 ± 0.0644	0.45	[21]	
业与小益地	PM ₁₀ 干季	0.854±0.938	0.43	[21]	
美国亚特兰大	PM _{2.5}	0.02~0.60	0.1	[11]	
日本 Sapporo Hitsujigaoka Experimental Forest	总悬浮颗粒物(TSP)	0.16±0.13	0.20±0.11	[24]	
大西洋	总悬浮颗粒物(TSP)	0.00~0.56	0.25	[18]	
美国教堂山	PM _{2.5}	0.16	0.33	[38]	
中国北京	总悬浮颗粒物(TSP)	3.17±2.02	0.3	[14]	
中国青岛	总悬浮颗粒物(TSP)	6.02±5.56	0.37±0.22	[15]	
中国西安	PM _{2.5}	12.0±9.4	0.47±0.1	[16]	
中国上海	PM _{2.5}	1.29±0.69	0.18±0.08	[17]	
中国广州(城区)	PM _{2.5}	0.50±0.45	0.13±0.10	[23]	
中国广州(城区)	PM _{2.5}	0.47±0.36	0.12±0.10	[23]	
中国广州(郊区)	PM _{2.5}	0.73±0.57	0.20±0.11	[23]	
中国广州(郊区)	PM _{2.5}	0.71±0.43	0.34±0.18	[23]	
	<0.49 µm	0.47±0.30	0.27±0.06	本研究	
由国产型	0.49~0.95 μm	0.53±0.14	0.41±0.02	本研究	
中国)加	0.95~1.5 μm.	0.34±0.16	0.45±0.12	本研究	
	1.5~3.0 μm	0.44±0.21	0.63±0.09	本研究	

条件(温度、相对湿度、风速、大气压和能见度)及元 素碳。由于 NO_3^- 、 NH_4^+ 、WSTN 和 WSON 主要富 集在 $PM_{1.5}$ 颗粒物上,为了降低数据分析的误差,本 研究仅对<0.49 μm、0.49~0.95 μm、0.95~1.5 μm 的 数据作 PCA/APCS 分析。

PCA/APCS 分析得到各个粒径段方差最大化正 交旋转后的因子载荷矩阵。基于特征值大于 1 的原 则提取出主要影响因子,并对各因子的主要贡献参 数和方差贡献率进行了总结,如表 5 所示。在因子载 荷矩阵中,原变量的载荷越高表示该变量对特定因子

		Table 5	Main contributors to	each factor		
粒 径	因 子	F_1	F_2	F_3	F_4	F_5
		Cl ⁻ (0.736)	SO4 ²⁻ (0.905)			
		NO ₃ ⁻ (0.887)	$NH_4^+(0.880)$	Na ⁺ (0.966)	元素碳(0.812)	WSON(0.896)
<0.40	主要贡献参数	NO ₂ (0.801)	O ₃ (0.894)	K ⁺ (0.930)	温度(0.383)	能见度(0.290)
<0.49 µm		大气压(0.756)	SO ₂ (0.638)	Ca ²⁺ (0.944)	风速(-0.812)	
		CO(0.584)	相对湿度(-0.918)			
	累计贡献率(%)	24.986	48.099	66.836	78.228	85.034
粒径	因子	F_1	F_2	F_3	F_4	F_5
		元素碳(0.886)	WSON(0.381)			
	主要贡献参数	K ⁺ (0.933)	Ca ²⁺ (0.703)	${\rm SO_4}^{2-}(0.542)$		
		Cl ⁻ (0.838)	O ₃ (0.777)	温度(0.613)	CO(0.734)	${\rm NH_4^+}(0.921)$
0.49~0.95 μm		NO ₃ ⁻ (0.901)	SO ₂ (0.794)	风速(-0.856)		
		NO ₂ (0.777)	大气压(0.727)	Na ⁺ (0.255)		
		能见度(-0.719)	相对湿度(-0.956)			
	累计贡献率(%)	30.126	52.713	64.551	75.892	85.795
粒径	因子	F_1	F_2	F_3	F_4	F_5
		SO4 ²⁻ (0.955)	Cl ⁻ (0.857)	WSON(0.903)	Na ⁺ (0.900)	温度(0.560)
	主要贡献参数	元素碳(0.712)	NO ₃ ⁻ (0.820)	O ₃ (0.699)	K ⁺ (0.683)	风速(-0.842)
0.05 1.5		$NH_4^+(0.973)$	NO ₂ (0.787)	SO ₂ (0.774)	Ca ²⁺ (0.788)	
0.95~1.5 μm		能见度(-0.789)	CO(0.467)	大气压(0.558)		
				相对湿度(-0.924)		
	累计贡献率(%)	25.179	45.338	64.851	79.298	87.228

表 5 各因子的主要贡献参数

的贡献越大。< $0.49 \ \mu m$ 、 $0.49 \sim 0.95 \ \mu m$ 和 $0.95 \sim 1.5 \ \mu m$ 粒径段均解析得到 5 个主要影响因子($F_1 \sim F_5$),不同 粒径段的 $F_1 \sim F_5$ 所代表的影响因素有一定区别,具 体如下所述。

<0.49 µm 粒径段, 在因子 1 中, Cl⁻, NO₃⁻, NO₂、 大气压和 CO 具有较高的正荷载, Cl⁻、NO₃⁻和 NO₂ 主要与本地化石燃料的燃烧有关^[17],故因子1代表 本地化石燃料的燃烧和大气压的混合贡献;在因子 $2 \text{ 中}, \text{SO}_4^{2-}, \text{NH}_4^+, \text{O}_3 \text{和 SO}_2$ 具有较高的正荷载,相 对湿度有较高的负荷载、SO₄²⁻和 NH₄⁺是典型人为 燃烧源排放物的二次转化产物^[42], O3可以促进光化 学氧化二次生成, 故因子 2 代表光化学氧化二次生 成、人为源排放物的二次转化、相对湿度的混合贡 献;在因子 3 中, Na^+ 、 K^+ 和 Ca^{2+} 具有较高的正荷载, Na^+ 代表海盐来源, K^+ 代表生物质燃烧来源, Ca^{2+} 主 要和建筑扬尘有关^[14,43,44],故因子3代表海洋源、生 物质燃烧和建筑扬尘的混合贡献;在因子4中,元素 碳和温度具有较高的正荷载、风速具有较高的负荷 载、故因子4代表一次排放、温度和风速的混合贡献; 在因子 5 中, WSON 和能见度具有较高的正荷载。

0.49~0.95 μm 粒径段, 因子 1 代表本地化石燃

料的人为燃烧、生物质燃烧及能见度的混合贡献; 因子 2 代表建筑扬尘、光化学氧化二次生成、大气 压和相对湿度的混合贡献;因子 3 代表人为源排放 物的二次转化、温度和风速的混合贡献;在因子 4 中,CO具有较高的正荷载;因子5中,NH₄⁺具有较高 的正荷载,可以解释为人为源的二次转化来源。

0.95~1.5 μm 粒径段,因子 1 代表人为源排放物 的二次转化、一次排放和能见度的混合贡献;因子 2 可以解释为本地化石燃料的人为燃烧排放来源^[17]; 在因子 3 中,WSON、O₃、SO₂和大气压具有较高的 正荷载,其中相对湿度具有较高的负荷载,说明这 个粒径段的WSON主要来源于光化学氧化二次生成, 而且受大气压和相对湿度的影响比较显著;因子 4 代表海盐、生物质燃烧和建筑扬尘的混合贡献;因 子 5 代表温度和风速的混合贡献。

分别以各个粒径段 5 个主因子的 APCS 为自变 量,估算对应粒径段 WSON 浓度的多元线性回归拟 合方程,如表 6 所示。各个因子回归系数的正、负 分别代表此因子对 WSON 的正、负贡献,从多元线 性回归方程中各项回归系数大小可比较出各个因子 的相对贡献大小。

地球化了

表 6 估算各个粒径段 WSON 浓度的多元线性回归拟合方程

	Table 6 Multiple linear regression equations for predicting the concentration of WSON using APC	S
粒径段	拟合方程	相关性(R ²)
<0.49 µm	$Y = -4.182 + 0.064 \times APCS_1 - 0.001 \times APCS_2 - 0.065 \times APCS_3 + 0.055 \times APCS_4 + 0.393 \times APCS_5$	0.809*
0.49~0.95 µm	$Y = -4.860 - 0.055 \times APCS_1 + 0.137 \times APCS_2 + 0.080 \times APCS_3 + 0.225 \times APCS_4 - 0.604 \times APCS_5$	0.910*
0.95~1.5 μm	$Y = -2.497 - 0.036 \times \text{APCS}_1 + 0.020 \times \text{APCS}_2 + 0.196 \times \text{APCS}_3 - 0.005 \times \text{APCS}_4 + 0.041 \times \text{APCS}_5$	0.805*

注: APCS;(*i*=1, 2, 3, 4, 5)是各个粒径段解析出的因子 *i* 的 APCS (三个粒径段中 *i* 相同的 APCS;均不同); *表示在 0.01 水平(双侧)上显著相关

<0.49 µm 粒径段, F1, F4, F5 均对 WSON 浓度具 有正贡献,它们的相对贡献大小依次为: $F_5 > F_1 > F_4$; 说明本地化石燃料的燃烧是此粒径段 WSON 最主要 的来源。综合气象条件(大气压、温度、风速和相对 湿度)在此粒径段各因子 F_i(i=1, 2, 3, 4, 5)上的载荷 和线性回归方程中 F_i系数的正、负来判断气象条件 对此粒径段 WSON 的影响。<0.49 μm 粒径段, 大气 压、温度、相对湿度与 WSON 浓度具有正相关关系, 风速与 WSON 具有负相关关系。0.49~0.95 µm 粒径 段, F_2 、 F_3 和 F_4 对 WSON 的浓度具有一定的正贡献, 它们的贡献大小依次为: $F_4 > F_2 > F_3$, 说明建筑扬尘、 光化学氧化二次生成对这个粒径段 WSON 的浓度贡 献最显著,人为源排放物的二次转化也有一定的正贡 献,但并不显著。大气压和温度与此粒径段的 WSON 浓度具有正相关关系、相对湿度和风速与此粒径段的 WSON 浓度具有负相关关系。0.95~1.5 µm 粒径段, F2、 F_3 和 F_5 对 WSON 的浓度具有一定的正贡献, 它们的 贡献大小依次为: F₃>F₅>F₂; 且 APCS₃ 回归系数的绝 对值明显高于其他因子的回归系数、说明光化学氧化 二次生成是这个粒径段 WSON 最主要的来源,本地化 石燃料的燃烧排放来源也有一定贡献, 气象条件对此 粒径段 WSON 浓度的影响与 0.49~0.95 μm 粒径段类 似。

综合上述 PCA/APCS 的分析结果可以看出, 广 州大气细颗粒物中 WSON 的主要来源有明显差异: <0.49 μm 颗粒物中的 WSON 主要来源于本地化石燃 料的燃烧排放; 0.49~0.95 μm 颗粒物中的 WSON 主 要来源于建筑扬尘、光化学氧化二次生成; 0.95~1.5 μm 颗粒物的 WSON 主要来源于光化学氧化二次生成。 除此之外, 气象条件对 3 个粒径段 WSON 的浓度影 响有一定差异, 说明细颗粒物中不同粒径段 WSON 的主要来源和形成机制可能有一定的差异性, 有待 进一步研究。

4 主要结论

(1) 6 个粒径段 WSON 的浓度均是秋、冬季较高,

春、夏季较低。

(2) 各个季节<3 μm 颗粒物中 WSON 浓度的粒 径分布呈现单峰分布,主要富集在细颗粒物上,尤 其是 0.49~1.5 μm 粒径段; PM₃中 WSON/WSTN 比值 的范围是 0.17~0.76,随粒径增加而增大。

(3) PCA/APCS-多元线性回归分析结果表明,
 广州大气细颗粒物中WSON的主要来源有明显差异,
 <0.49 μm颗粒物中的WSON主要来源于本地化石燃料的燃烧排放,0.49~0.95 μm颗粒物中的WSON主要来源于建筑扬尘、光化学氧化二次生成,0.95~
 1.5 μm颗粒物中的WSON主要来源于光化学氧化二次生成。

参考文献(References):

- Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z C, Freney J R, Martinelli L A, Seitzinger S P, Sutton M A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889–892.
- [2] Murphy S M, Sorooshian A, Kroll J H, Ng N L, Chhabra P, Tong C, Surratt J D, Knipping E, Flagan R C, Seinfeld J H. Secondary aerosol formation from atmospheric reactions of aliphatic amines[J]. Atmos Chem Phys, 2007, 7(9): 2313–2337.
- [3] Laskin A, Smith J S, Laskin J. Molecular characterization of nitrogen-containing organic compounds in biomass burning aerosols using high-resolution mass spectrometry[J]. Environ Sci Technol, 2009, 43(10): 3764–3771.
- [4] Ho K F, Ho S S H, Huang R J, Liu S X, Cao J J, Zhang T, Chuang H C, Chan C S, Hu D, Tian L W. Characteristics of water-soluble organic nitrogen in fine particulate matter in the continental area of China[J]. Atmos Environ, 2015, 106: 252– 261.
- [5] Cornell S, Mace K, Coeppicus S, Duce R, Huebert B, Jickells T, Zhuang L Z. Organic nitrogen in Hawaiian rain and aerosol[J]. J Geophys Res Atmos, 2001, 106(D8): 7973–7983.
- [6] Zhang Q, Anastasio C. Free and combined amino compounds in atmospheric fine particles (PM_{2.5}) and fog waters from Northern California[J]. Atmos Environ, 2003, 37(16): 2247– 2258.
- [7] Landvik N E, Gorria M, Arlt V M, Asare N, Solhaug A, Lagadic-Gossmann D, Holme J A. Effects of nitrated-polycyclic aromatic hydrocarbons and diesel exhaust particle extracts on cell signalling related to apoptosis: Possible implications for their mutagenic and carcinogenic effects[J]. Toxicology, 2007,

第1期

231(2/3): 159-174.

- [8] Luo P, Ni H G, Bao L J, Li S M, Zeng E Y. Size distribution of airborne particle-bound polybrominated diphenyl ethers and its implications for dry and wet deposition[J]. Environ Sci Technol, 2014, 48(23): 13793–13799.
- [9] Zhang Q, Anastasio C. Chemistry of fog waters in California's Central Valley-Part 3: Concentrations and speciation of organic and inorganic nitrogen[J]. Atmos Environ, 2001, 35(32): 5629– 5643.
- [10] Nakamura T, Ogawa H, Maripi D K, Uematsu M. Contribution of water soluble organic nitrogen to total nitrogen in marine aerosols over the East China Sea and western North Pacific[J]. Atmos Environ, 2006, 40(37): 7259–7264.
- [11] Rastogi N, Zhang X L, Edgerton E S, Ingall E, Weber R J. Filterable water-soluble organic nitrogen in fine particles over the southeastern USA during summer[J]. Atmos Environ, 2011, 45(33): 6040–6047.
- [12] Facchini M C, Decesari S, Rinaldi M, Carbone C, Finessi E, Mircea M, Fuzzi S, Moretti F, Tagliavini E, Ceburnis D, O'Dowd C D. Important source of marine secondary organic aerosol from biogenic amines[J]. Environ Sci Technol, 2008, 42(24): 9116–9121.
- [13] Violaki K, Mihalopoulos N. Water-soluble organic nitrogen (WSON) in size-segregated atmospheric particles over the Eastern Mediterranean[J]. Atmos Environ, 2010, 44(35): 4339– 4345.
- [14] Duan F, Liu X, He K, Dong S. Measurements and characteristics of nitrogen-containing compounds in atmospheric particulate matter in Beijing, China[J]. Bull Environ Contam Toxicol, 2009, 82: 332–337.
- [15] 石金辉, 韩静, 范得国, 祁建华, 高会旺. 青岛大气气溶胶 中水溶性有机氮对总氮的贡献[J]. 环境科学, 2011, 32(1): 1-8.

Shi Jin-hui, Han Jing, Fan De-guo, Qi Jian-hua, Gao Huiwang. Contribution of water soluble organic nitrogen to total nitrogen in atmospheric aerosols in Qingdao[J]. Environ Sci, 2011, 32(1): 1–8 (in Chinese with English abstract).

- [16] 程玉婷, 王格慧, 孙涛, 成春雷, 孟静静, 任艳芹, 李建军. 西安冬季非灰霾天与灰霾天 PM_{2.5} 中水溶性有机氮污染特 征比较[J]. 环境科学, 2014, 35(7): 2468–2476.
 Cheng Yu-ting, Wang Ge-hui, Sun Tao, Cheng Chun-lei, Meng Jing-jing, Ren Yan-qin, Li Jian-jun. Characteristics of water-soluble organic nitrogen of PM_{2.5} in Xi'an during wintertime non-haze and haze periods[J]. Environ Sci, 2014, 35(7): 2468–2476 (in Chinese with English abstract).
- [17] 徐玢花,杜艳,胡俊超,孙文文,冯加良.上海 PM_{2.5}中水 溶性有机氮的污染特征[J].地球化学,2016,45(2):190-198.

Xu Bin-hua, Du Yan, Hu Jun-chao, Sun Wen-wen, Feng Jialiang. Characteristics of water-soluble organic nitrogen in PM_{2.5} in Shanghai[J]. Geochimica, 2016, 45(2): 190–198 (in Chinese with English abstract).

[18] Lesworth T, Baker A R, Jickells T. Aerosol organic nitrogen over the remote Atlantic Ocean[J]. Atmos Environ, 2010, 44(15): 1887–1893.

- [19] Shi J H, Gao H W, Qi J H, Zhang J, Yao X H. Sources, compositions, and distributions of water-soluble organic nitrogen in aerosols over the China Sea[J]. J Geophys Res, 2010, 115(D17303). doi: 10.1029/2009JD013238
- [20] Zhang Q, Anastasio C, Jimemez-Cruz M. Water-soluble organic nitrogen in atmospheric fine particles (PM_{2.5}) from northern California[J]. J Geophys Res Atmos, 2002, 107(D11): AAC 3-1–AAC 3-9.
- [21] Mace K A. Water-soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons[J]. J Geophys Res Atmos, 2003, 108(D16). doi: 10.1029/2003JD003557
- [22] Montero-Martinez G, Rinaldi M, Gilardoni S, Giulianelli L, Paglione M, Decesari S, Fuzzi S, Facchini M C. On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy[J]. Sci Total Environ, 2014, 485/486: 103–109.
- [23] Yu X, Yu Q Q, Zhu M, Tang M J, Li S, Yang W Q, Zhang Y L, Deng W, Li G H, Yu Y G, Huang Z H, Song W, Ding X, Hu Q H, Li J, Bi X H, Wang X M. Water soluble organic nitrogen (WSON) in ambient fine particles over a megacity in South China: Spatiotemporal variations and source apportionment[J]. J Geophys Res Atmos, 2017, 122(23): 13045–13060.
- [24] Miyazaki Y, Fu P Q, Ono K, Tachibana E, Kawamura K. Seasonal cycles of water-soluble organic nitrogen aerosols in a deciduous broadleaf forest in northern Japan[J]. J Geophys Res Atmos, 2014, 119(3): 1440–1454.
- [25] Li J, Fang Y T, Yoh M, Wang X M, Wu Z Y, Kuang Y W, Wen D Z. Organic nitrogen deposition in precipitation in metropolitan Guangzhou city of southern China[J]. Atmos Res, 2012, 113: 57–67.
- [26] Tao J, Zhang L M, Cao J J, Zhong L J, Chen D S, Yang Y H, Chen D H, Chen L G, Zhang Z S, Wu Y F, Xia Y J, Ye S Q, Zhang R J. Source apportionment of PM_{2.5} at urban and suburban areas of the Pearl River Delta region, south China-With emphasis on ship emissions[J]. Sci Total Environ, 2017, 574: 1559–1570.
- [27] Thurston G D, Spengler J D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metro-politan Boston[J]. Atmos Environ, 1985, 19(1): 9–25.
- [28] 黄欢. 广州城区气溶胶中水溶性有机物分布特征及氧化潜能浅析[D]. 广州:中国科学院广州地球化学研究所, 2016. Huang Huan. The characterization of water-soluble organic matter and oxidative potential of atmospheric aerosols at the urban area of Guangzhou[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2016 (in Chinese with English abstract).
- [29] Cheng Z L, Lam K S, Chan L Y, Wang T, Cheng K K. Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996[J]. Atmos Environ, 2000, 34(17): 2771–2783.
- [30] 龚识懿. 上海大气 PM_{2.5} 中有机氮污染特征及来源解析[D]. 上海: 上海大学, 2013.
 Gong Shi-yi. The distribution and sources of organic nitrogen in PM_{2.5} in Shanghai, China[D]. Shanghai: Shanghai University,

2013 (in Chinese with English abstract).

- [31] 徐玢花. 上海 PM₂₅中水溶性有机氮的浓度特征和来源解析[D]. 上海: 上海大学, 2015.
 Xu Bin-hua. Characteristics and sources of water-soluble organic nitrogen in PM_{2.5} in Shanghai, China[D]. Shanghai: Shanghai University, 2015 (in Chinese with English abstract).
- [32] You Y, Kanawade V P, de Gouw J A, Guenther A B, Madronich S, Sierra-Hernandez M R, Lawler M, Smith J N, Takahama S, Ruggeri G, Koss A, Olson K, Baumann K, Weber R J, Nenes A, Guo H, Edgerton E S, Porcelli L, Brune W H, Goldstein A H, Lee S H. Atmospheric amines and ammonia measured with a chemical ionization mass spectrometer (CIMS)[J]. Atmos Chem Phys, 2014, 14(22): 12181–12194.
- [33] Miller S L, Anderson M J, Daly E P, Milford J B. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data[J]. Atmos Environ, 2002, 36(22): 3629–3641.
- [34] Guo H, Lee S C, Li W M, Cao J J. Source characterization of BTEX in indoor microenviron-ments in Hong Kong[J]. Atmos Environ, 2003, 37(1): 73–82.
- [35] Guo H, Wang T, Louie P K K. Source apportionment of ambient non-methane hydrocarbons in Hong Kong: Application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model[J]. Environ Pollut, 2004, 129(3): 489–498.
- [36] Mace K A. Organic nitrogen in rain and aerosol in the eastern Mediterranean atmosphere: An association with atmospheric dust[J]. J Geophys Res, 2003, 108(D10), 4320. doi: 10.1029/ 2002JD002997
- [37] Calderon S M, Poor N D, Campbell S W. Estimation of the particle and gas scavenging contributions to wet deposition of organic nitrogen[J]. Atmos Environ, 2007, 41(20): 4281–4290.
- [38] Lin M, Walker J, Geron C, Khlystov A. Organic nitrogen in

PM_{2.5} aerosol at a forest site in the Southeast US[J]. Atmos Chem Phys, 2010, 10(5): 2145–2157.

- [39] Chen H Y, Chen L D. Importance of anthropogenic inputs and continental-derived dust for the distribution and flux of water-soluble nitrogen and phosphorus species in aerosol within the atmosphere over the East China Sea[J]. J Geophys Res, 2008, 113(D11303). doi: 10.1029/2007JD009491
- [40] Duce R A, LaRoche J, Altieri K, Arrigo K R, Baker A R, Capone D G, Cornell S, Dentener F, Galloway J, Ganeshram R S, Geider R J, Jickells T, Kuypers M M, Langlois R, Liss P S, Liu S M, Middelburg J J, Moore C M, Nickovic S, Oschlies A, Pedersen T, Prospero J, Schlitzer R, Seitzinger S, Sorensen L L, Uematsu M, Ulloa O, Voss M, Ward B, Zamora L. Impacts of atmospheric anthropogenic nitrogen on the open ocean[J]. Science, 2008, 320(5878): 893–897.
- [41] Zhang J, Zhang G S, Bi Y F, Liu S M. Nitrogen species in rainwater and aerosols of the Yellow and East China seas: Effects of the East Asian monsoon and anthropogenic emissions and relevance for the NW Pacific Ocean[J]. Global Biogeochem Cy, 2011, 25(GB3020). doi: 10.1029/2010GB003896
- [42] Tao J, Gao J, Zhang L, Zhang R, Che H, Zhang Z, Lin Z, Jing J, Cao J, Hsu S. C. PM_{2.5} pollution in a megacity of southwest China: source apportionment and implication[J]. Atmos Chem Phys, 2014, 14(16): 8679–8699.
- [43] Yu Q Q, Gao B, Li G H, Zhang Y L, He Q F, Deng W, Huang Z H, Ding X, Hu Q H, Huang Z Z, Wang Y J, Bi X H, Wang X M. Attributing risk burden of PM_{2.5}-bound polycyclic aromatic hydrocarbons to major emission sources: Case study in Guangzhou, south China[J]. Atmos Environ, 2016, 142: 313–323.
- [44] Srinivas B, Sarin M M, Sarma V V S S. Atmospheric dry deposition of inorganic and organic nitrogen to the Bay of Bengal: Impact of continental outflow[J]. Mar Chem, 2011, 127(1-4): 170-179.