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Abstract. Nitrogen-containing organic compounds (NOCs)
substantially contribute to light-absorbing organic aerosols,
although the atmospheric processes responsible for the sec-
ondary formation of these compounds are poorly understood.
In this study, seasonal atmospheric processing of NOCs is in-
vestigated using single-particle mass spectrometry in urban
Guangzhou from 2013 to 2014. The relative abundance of
NOCs is found to be strongly enhanced when they are inter-
nally mixed with photochemically produced secondary ox-
idized organics (i.e., formate, acetate, pyruvate, methylgly-
oxal, glyoxylate, oxalate, malonate, and succinate) and am-
monium (NH+4 ). Moreover, both the hourly detected parti-
cle number and the relative abundance of NOCs are highly
correlated with those of secondary oxidized organics and
NH+4 . Therefore, it is hypothesized that the secondary for-
mation of NOCs is most likely linked to oxidized organics
and NH+4 . Results from both multiple linear regression anal-
ysis and positive matrix factorization analysis further show
that the relative abundance of NOCs could be well predicted
(R2 > 0.7, p < 0.01) by oxidized organics and NH+4 .

Interestingly, the relative abundance of NOCs is inversely
correlated with NH+4 , whereas their number fractions are
positively correlated. This result suggests that although
the formation of NOCs does require the involvement of
NH3/NH+4 , the relative amount of NH+4 may have a neg-
ative effect. Higher humidity and NOx likely facilitates

the conversion of oxidized organics to NOCs. Due to the
relatively high oxidized organics and NH3/NH+4 , the relative
contributions of NOCs in summer and fall were higher than
those in spring and winter. To the best of our knowledge, this
is the first direct field observation study reporting a close
association between NOCs and both oxidized organics and
NH+4 . These findings have substantial implications for the
role of NH+4 in the atmosphere, particularly in models that
predict the evolution and deposition of NOCs.

Highlights.

– NOCs were highly internally mixed with photochemi-
cally produced secondary oxidized organics

– NOCs could be well predicted by the variations of these
oxidized organics and NH+4

– Higher relative humidity and NOx may facilitate the
conversion of these oxidized organics to NOCs
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1 Introduction

Organic aerosols that strongly absorb solar radiation are re-
ferred to as brown carbon (BrC). BrC has a comparable level
of light absorption in the spectral range of near-ultraviolet
(UV) light to black carbon (Andreae and Gelencser, 2006;
Feng et al., 2013; Yan et al., 2018). Nitrogen-containing or-
ganic compounds (NOCs) substantially contribute to the pool
of BrC (Mohr et al., 2013; Li et al., 2019) and have a sig-
nificant effect on atmospheric chemistry, human health, and
climate forcing (Kanakidou et al., 2005; Shrivastava et al.,
2017; De Gouw and Jimenez, 2009). Particulate organic ni-
trogen accounts for a large fraction of total airborne nitro-
gen (∼ 30 %), although the proportion exhibits a high tem-
poral and spacial variability and, therefore, has an influence
on both regional and global nitrogen (N) deposition (Neff et
al., 2002; Shi et al., 2010; Cape et al., 2011). However, the
sources, evolution, and optical properties of NOCs remain
unclear and contribute significantly to uncertainties in the
estimation of their impacts on the environment and climate
(Laskin et al., 2015).

NOCs are ubiquitous components in atmospheric aerosols,
cloud water, and rainwater (Altieri et al., 2009; Desyaterik
et al., 2013; Laskin et al., 2015), spanning a wide range of
molecular weights, structures, and light absorption properties
(Lin et al., 2016). Emissions of primary NOCs have been at-
tributed to biomass burning, coal combustion, vehicle emis-
sions, biogenic production, and soil dust (Laskin et al., 2009;
Desyaterik et al., 2013; Sun et al., 2017; Mace et al., 2003;
Rastogi et al., 2011; Wang et al., 2017). Secondary NOCs,
such as organic nitrates and nitroaromatic compounds, are
believed to be mainly formed in the gas phase by interaction
between volatile organic compounds (VOCs) and oxidants
(e.g., NOx , • OH), followed by condensation to aerosols
(Ziemann and Atkinson, 2012; Seinfeld and Pandis, 2006).
Recently, another group of secondary NOCs, or heterocyclic
NOCs, formed by reactions involving mixtures of atmo-
spheric aldehydes (e.g., methylglyoxal/glyoxal) and ammo-
nium (NH+4 )/amines has been of particular interest (e.g.,
Hawkins et al., 2016; De Haan et al., 2011, 2017). A signifi-
cant portion of heterocyclic NOCs may also be derived from
the heterogeneous aging of secondary organic aerosol (SOA)
with ammonia (NH3)/NH+4 (Liu et al., 2015; Laskin et al.,
2015). Huang et al. (2017) proposed that even trace levels of
NH3 may be sufficient to form heterocyclic NOCs via this
pathway. However, these pathways have not been confirmed
with ambient data, and the relative contribution of hetero-
cyclic NOCs is still uncertain, although they are likely to
be minor (at a level of several nanograms per cubic meter,
ng m−3) in abundance (Teich et al., 2016).

The secondary formation of NOCs is especially prevalent
in environments experiencing high anthropogenic emissions
(Yu et al., 2017; Ho et al., 2015), although further studies are
required to establish the formation mechanisms comprehen-
sively. A major obstacle is that organic and inorganic matrix

effects have a profound impact on the chemistry of organic
compounds in bulk aqueous particles and particles undergo-
ing drying (El-Sayed et al., 2015; Lee et al., 2013). While
real-time characterization studies remain a challenge due to
the extremely complex chemical nature of NOCs, establish-
ing this data along with the covariation of NOCs with other
chemical components would help to identify the sources and
evolution of NOCs. Using single-particle aerosol time-of-
flight mass spectrometry, Wang et al. (2010) observed that
the widespread occurrence of NOCs closely correlated with
particle acidity in the atmosphere in Shanghai (China). In
addition, real-time aerosol mass spectrometry measurements
of the atmosphere in New York (US) indicated a definite
link between the age of organic species and the N/C ratio
(Sun et al., 2011). Further in-depth studies are required to
identify the role of formation conditions, e.g., relative hu-
midity (RH) and pH, for secondary NOCs (Nguyen et al.,
2012; Sedehi et al., 2013; Ortiz-Montalvo et al., 2014). In
the present study, the mixing state of individual particles was
investigated, involving NOCs, oxidized organics, and NH+4 ,
based on online seasonal observations using a single-particle
aerosol mass spectrometer (SPAMS). Our findings show that
the formation of NOCs is significantly linked to oxidized or-
ganics and NH+4 ; this has important environmental implica-
tions regarding the assessment of the impact and fate of these
compounds.

2 Methods

2.1 Field measurements

Sampling was carried out at the Guangzhou Institute of Geo-
chemistry, a representative urban site in Guangzhou (China),
a megacity in the Pearl River Delta (PRD) region. The size
and chemical composition of individual particles were ob-
tained by the SPAMS (Hexin Analytical Instrument Co.,
Ltd., China) in real-time (Li et al., 2011). The sampling
inlet for aerosol characterization was situated 40 m above
ground level. A brief description of the performance of the
SPAMS and other instruments can be found in the Supple-
ment. The sampling periods cover four seasons, including
summer (13 June to 16 July 2013), fall (26 September to
19 October 2013), winter (15 to 25 December 2013), and
spring (21 February to 11 April 2014). The total measured
particle numbers and mean values for meteorological data
and gaseous pollutants are outlined for each season in Ta-
ble S1 in the Supplement and have been described in a pre-
vious publication (Zhang et al., 2019).

2.2 SPAMS data analysis

Fragments of NOCs were identified according to the detec-
tion of ion peaks at m/z− 26 [CN]− or m/z− 42 [CNO]−,
generally due to the presence of C–N bonds (Silva and
Prather, 2000; Zawadowicz et al., 2017; Pagels et al.,
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Figure 1. Representative mass spectrum for NOC-containing particles. The ion peaks corresponding to NOCs and oxidized organics are
highlighted using red bars.

2013). Laboratory produced C–N bond compounds from
bulk solution-phase reactions between the representative ox-
idized organics (i.e., methylglyoxal) and ammonium sulfate
were used to confirm the generation of ion peaks at m/z−26
[CN]− and/or m/z− 42 [CNO]− using SPAMS (Fig. S1 in
the Supplement). Thus, the NOCs herein may refer to com-
plex nitrated organics such as organic nitrates, nitroaromat-
ics, nitrogen heterocycles, and polyphenols. Unfortunately,
how well [CN]−/[CNO]− ions represented NOCs could
not be quantified, although they were the most commonly
reported NOC peaks by single-particle mass spectrometry
(Silva and Prather, 2000; Zawadowicz et al., 2017; Pagels
et al., 2013). In the present study, [CN]−/[CNO]− ions are
among the major peaks detected by the SPAMS (Fig. 1). A
rough estimate from the peak area ratio of [CN]−/[CNO]−

ions and the most likely NOCs fragments (i.e., various
amines and an entire series of nitrogen-containing cluster
ions CnN−, n= 1, 2, 3, . . . ) (Silva and Prather, 2000) shows
that [CN]−/[CNO]− ions may represent more than 90 %
of these NOCs peaks. The number fractions (Nfs) of parti-
cles that contained NOCs ranged from 56 % to 59 % across
all four seasons (Table S1). The number of detected NOC-
containing particles as a function of their vacuum aerody-
namic diameter (dva) is shown in Fig. S2. Most of the de-
tected NOC-containing particles had a dva of between 300
and 1200 nm.

A representative mass spectrum for NOC-containing parti-
cles is shown in Fig. 1. Dominant peaks in the mass spectrum
were m/z 39 [K]+, m/z 23 [Na]+, nitrate (m/z−62 [NO3]

−

or m/z− 46 [NO2]
−), sulfate (m/z− 97 [HSO4]

−), organ-
ics (m/z 27 [C2H3]

+, m/z 63 [C5H3]
+, m/z− 42 [CNO]−,

m/z− 26 [CN]−), NH+4 (m/z 18 [NH4]
+), and carbon ion

clusters (C+/−
n , n= 1, 2, 3, . . . ). NOC-containing particles

were internally mixed with various oxidized organics, repre-
sented as formate at m/z− 45 [HCO2]

−, acetate at m/z−

59 [CH3CO2]
−, methylglyoxal at m/z− 71 [C3H3O2]

−,
glyoxylate at m/z− 73 [C2HO3]

−, pyruvate at m/z− 87
[C3H3O3]

−, malonate at m/z− 103 [C3H3O4]
−, and succi-

nate at m/z− 117 [C4H5O4]
− (Zhang et al., 2017; Zauscher

et al., 2013; Lee et al., 2003). These oxidized organics
showed pronounced diurnal trends with an afternoon max-
imum and were highly correlated (r = 0.72–0.94, p < 0.01)
with each other. Therefore, they were primarily attributed to
secondary oxidized organics from the photochemical oxida-
tion of various volatile organic compounds (VOCs) (Paulot
et al., 2011; Zhao et al., 2012; Ho et al., 2011), and the de-
tails can be found in our previous publication (Zhang et al.,
2019). More information on the seasonal variation range of
the Nfs of oxidized organics, NH+4 , and NOCs is presented
in Fig. S3.

Hourly mean Nfs and relative peak areas were applied
herein to indicate the variations of aerosol compositions in
individual particles. Even though advances have been made
in the quantification of specific chemical species for individ-
ual particles based on their respective peak area information,
it is still quite a challenge for SPAMS to provide quantitative
information on aerosol components, mainly due to matrix ef-
fects, incomplete ionization, and so forth (Qin et al., 2006;
Jeong et al., 2011; Healy et al., 2013; Zhou et al., 2016).
Despite this, the variation of the relative peak area should
be a good indicator for the investigation of atmospheric pro-
cessing of various species in individual particles (Wang et
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Figure 2. The variation in hourly mean Nfs of the oxidized organ-
ics and ammonium (NH+4 ) that internally mixed with NOCs. The
boxes in the box and whisker plot show lower, median, and upper
lines, denoting the 25th, 50th, and 75th percentiles, respectively; the
whiskers denote the 10th and 90th percentiles, respectively.

al., 2010; Zauscher et al., 2013; Sullivan and Prather, 2007;
Zhang et al., 2014).

3 Results and discussion

3.1 Evidence for the formation of NOCs from oxidized
organics and ammonium (NH+

4 )

Figure 2 shows the seasonal variations in Nfs of the oxidized
organics and NH+4 , which were internally mixed with NOCs.
On average, more than 90 % of the oxidized organics and
65 % of NH+4 were found to be internally mixed with NOCs,
except in spring (Fig. S4). As the Nfs of NOCs relative to all
of the measured particles was ∼ 60 %, it could be concluded
that NOCs were enhanced with the presence of oxidized or-
ganics and NH+4 , with the enhancement associated with oxi-
dized organics being the most pronounced.

A strong correlation between both the Nfs and relative
peak areas (RPAs) of NOCs and oxidized organics further
demonstrates their close associations, as shown in Fig. 3.
Compared with the oxidized organics, the Nfs of ammonium-
containing particles internally mixed with NOCs varied
within a broader range (∼ 40 %–90 %). However, there is
still a mixing enhancement of NOCs with NH+4 . A posi-
tive correlation (R2

= 0.50, p < 0.01) is observed between
the hourly detected number of NOCs and NH+4 . It is worth
noting that a negative correlation (R2

= 0.55, p < 0.01) is ob-
tained between the hourly average RPAs of NOCs and NH+4
(Fig. 3).

Based on both the enhancement of NOCs and the high cor-
relations with oxidized organics and NH+4 , it is hypothesized
that interactions between oxidized organics and NH+4 con-
tributed to the observed NOCs. The formation of NOCs from
NH+4 and carbonyls has been confirmed in several laboratory
studies (Sareen et al., 2010; Shapiro et al., 2009; Noziere et
al., 2009; Kampf et al., 2016; Galloway et al., 2009). Sec-
ondary organic aerosols (SOA) produced from a large group
of biogenic and anthropogenic VOCs can be further aged by
NH3/NH+4 to generate NOCs (Nguyen et al., 2012; Bones
et al., 2010; Updyke et al., 2012; Liu et al., 2015; Huang
et al., 2017). In a chamber study, the formation of NOCs
has been shown to be enhanced in an NH3-rich environment
(Chu et al., 2016). While such chemical mechanisms might
be complicated, the initial steps generally involve reactions
forming imines and amines, which can further react with car-
bonyl SOA compounds to form more complex products (e.g.,
oligomers/BrC) (Laskin et al., 2015).

To verify this hypothesis, a multiple linear regression anal-
ysis is performed to test how well the RPAs of NOCs could
be predicted by oxidized organics and NH+4 . As expected,
there is a close association (R2

= 0.71, p < 0.01) between the
predicted RPAs and the observed values of NOCs (Fig. 4),
which supports this hypothesis. A noticeable improvement
in the R2 value implies that a model that uses both oxidized
organics and NH+4 to predict RPAs of NOCs is substantially
better than a model that only uses a single predictor (either
oxidized organics or NH+4 in Fig. 3). The result indicates that
interactions involving oxidized organics and NH+4 could ex-
plain over half of the observed variations in NOCs in the at-
mosphere in Guangzhou. A fraction of the unaccounted for
NOCs could be due to primary emissions and other formation
pathways. This hypothesis could also be supported by the
similar pattern of diurnal variation observed for NOCs and
oxidized organics (Fig. S5), although there is a slight lag for
the NOCs. This diurnal pattern is similar to those observed
in Beijing and Uintah (Yuan et al., 2016; Zhang et al., 2015).
Notably, such a diurnal pattern of secondary NOCs is ade-
quately modeled when the production of NOCs via carbonyls
and NH+4 is included (Woo et al., 2013). In addition to possi-
ble photo-bleaching (Zhao et al., 2015), the lower contribu-
tion of NOCs during the daytime may be partly explained by
the lower RH, as discussed in Sect. 3.2.

Interestingly, the relationship between NOCs and NH+4
is distinctly different from the relationship between NOCs
and oxidized organics (Fig. 3). This implies that the con-
trolling factors regarding the formation of NOCs from NH+4
are different from oxidized organics. On the one hand, the
positive correlation between the detected numbers reflects
that the formation of NOCs does require the participation
of NH3/NH+4 , which is consistent with the enhancement of
NOCs in ammonium-containing particles (Fig. 2) discussed
above. On the other hand, the negative correlation between
the RPAs signifies that the formation of NOCs is most prob-
ably influenced by the relative amount of NH+4 in individ-
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Figure 3. Correlation analysis of (a, c) the RPAs and (b, d) the number of detected NOCs with oxidized organics and ammonium (NH+4 )
in different seasons. Significant (p < 0.01) correlations were obtained for both the total observed data and the seasonally separated data. A
RPA is defined as the fractional peak area of each m/z relative to the sum of peak areas in the mass spectrum and is applied to represent the
relative amount of a species on a particle (Jeong et al., 2011; Healy et al., 2013).

ual particles. Such influence could also be supported by our
data from both filter samples and individual particle analy-
sis. There is a negative correlation between concentrations of
water soluble organic nitrogen (WSON) and NH+4 for the fil-
ter samples (Fig. S6). It can also be seen from Fig. S7 that
lower RPAs of NH+4 correspond to higher Nfs of NH+4 that
internally mixed with NOCs. This inverse correlation could
also serve as evidence to explain the influence of the relative
amount of NH+4 on the formation of NOCs.

An influence of the relative amount of NH+4 on the forma-
tion of NOCs is also theoretically possible, as the formation
of NOCs may be affected by particle acidity (Miyazaki et al.,
2014; Nguyen et al., 2012), which is substantially affected by
the abundance of NH+4 . Higher relative acidity was consis-
tently observed for the internally mixed NH+4 and NOC par-
ticles compared with ammonium-containing particles with-
out NOCs (Fig. S6) and, thus, may influence the formation

of NOCs (Fig. S7). Particle acidity could also play a sig-
nificant role in the gas-to-particle partitioning of aldehydes
(Herrmann et al., 2015; Liggio et al., 2005; Gen et al., 2018;
De Haan et al., 2018; Kroll et al., 2005), which are precursors
for the formation of oxidized organics. However, the higher
relative acidity might also be a result of NOC formation. A
model simulation shows that after including the chemistry of
SOA aging with NH3, an increase in aerosol acidity would
be expected due to the reduction in NH+4 (Zhu et al., 2018).
It is also noted that the particle acidity is roughly estimated
by the relative abundance of NH+4 , nitrate, and sulfate in in-
dividual particles (Denkenberger et al., 2007); thus, it may
not be representative of actual aerosol acidity or pH (Guo
et al., 2015; Hennigan et al., 2015; Murphy et al., 2017). In
addition, NH3 in the gas phase is also efficient at produc-
ing NOCs (Nguyen et al., 2012), which may play an intricate
role in the distribution of NH+4 and NOCs in the particulate
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Figure 4. Comparison between the measured and predicted RPAs
for NOCs.

phase. The formation of NH+4 and NOCs would compete for
NH3, which may also potentially result in a negative corre-
lation between the RPAs of NOCs and NH+4 . Unfortunately,
such a role remains unclear, as the variations of NH3 were
not available in the present study.

3.2 Factors contributing to the NOCs resolved by
positive matrix factorization (PMF) analysis

Figure 5 presents the PMF factor profiles obtained from the
PMF model analysis (detailed information is provided in the
Supplement) (Norris et al., 2009) and their diurnal variations.
Around 75 % of NOCs could be well explained by two fac-
tors, with 33 % of the PMF-resolved NOCs mainly associ-
ated with NH+4 and carbonaceous ion peaks (NH+4 factor),
while 59 % were mainly associated with oxidized organics
(oxidized organics factor). The fraction of NOCs explained
by the NH+4 and oxidized organic factors is consistent with
the linear regression analysis. Furthermore, PMF analysis
provided information on the factor contributions and diurnal
variations, which may help explain the seasonal variations
and processes of NOCs. The ammonium factor showed a di-
urnal variation pattern that peaked during the early morning,
which is consistent with the diurnal variation in RH (Zhang
et al., 2019). This factor contributed to ∼ 80 % (Fig. S8) of
the PMF-resolved NOCs during spring (with the highest RH)
(Table S1), whereas the oxidized organics factor dominated
(> 80 %) in summer and fall. In winter, these two factors had
similar contributions (∼ 40 %). Variation of the ammonium
factor may reflect a potential role of aqueous pathways in
the formation of NOCs, particularly during spring. In con-
trast, the oxidized organics factor showed a pattern of diur-
nal variation, increasing from morning hours and peaking
overnight, that may correspond to the photochemical pro-
duction of oxidized organics and followed interactions with
condensed NH+4 . This pathway may explain the slightly late
peak in NOCs compared with oxidized organics, as NH+4

condensation is favorable overnight (Hu et al., 2008). While
there were similarities in the fractions of oxidized organics
in the oxalate factor and the oxidized organics factor, they
only contributed to 8 % of the PMF-resolved NOCs in the
oxalate factor, which contained ∼ 80 % of the PMF-resolved
oxalate. As previously discussed, these oxidized organics are
also precursors for the formation of oxalate (Zhang et al.,
2019). Therefore, the PMF results suggest that there are two
competitive pathways for the evolution of these oxidized or-
ganics. Some oxidized organics formed from photochemical
activities were further oxidized to oxalate, resulting in a diur-
nal pattern of variation with concentration peaks during the
afternoon (Fig. 5), whereas others interacted with NH3/NH+4
to form NOCs, peaking during the nighttime. However, the
controlling factors for these pathways could not be deter-
mined in the present study. The unexplained NOCs (∼ 25 %)
might be linked to primary emissions, such as biomass burn-
ing (Desyaterik et al., 2013). This could be partly supported
by the presence of potassium and various carbon ion clus-
ters (C+/−

n , n= 1, 2, 3, . . . ) in the mass spectrum of NOC-
containing particles (Fig. 1).

3.3 Seasonal variations in the observed NOCs

There is an evident seasonal variation in NOCs, with higher
relative contributions during summer and fall (Figs. 3,
4), mainly due to the variations in oxidized organics and
NH3/NH+4 . In this region, a more considerable contribution
from secondary oxidized organics is typically observed dur-
ing summer and fall (Zhou et al., 2014; Yuan et al., 2018).
The seasonal maximum NH3 concentrations have also been
reported during the warmer seasons, corresponding to the
peak emissions from agricultural activities and high tem-
peratures, whereas the low NH3 concentrations observed in
colder seasons may be attributed to gas-to-particle conver-
sion (Pan et al., 2018; Zheng et al., 2012). This seasonal vari-
ation in NOCs is also obtained in a model simulation, show-
ing that the conversion of NH3 into NOCs would result in a
significantly higher reduction of gas-phase NH3 during sum-
mer (67 %) than in winter (31 %), due to the higher NH3 and
SOA concentrations present in summer (Zhu et al., 2018).
More primary NOCs may also be present during summer and
fall in the present study, due to the additional biomass burn-
ing activities in these seasons (Chen et al., 2018; Zhang et
al., 2013).

The seasonal variations in NOCs can be adequately ex-
plained by the variations in the concentrations of oxidized
organics and NH+4 (Fig. 4), although the hourly variations
during each season are not well explained, as indicated by the
lower R2 values (Table S2). The correlation coefficients (R2)
range from 0.24 to 0.57 for inter-seasonal variations. Dur-
ing spring, NOCs exhibits a limited dependence on oxidized
organics (Fig. 3a, b), while during summer, the hourly de-
tected number of NOCs shows a limited dependence on NH+4
(Fig. 3d). These seasonal dependences of NOCs are consis-
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Figure 5. (a, b, c) PMF-resolved three-factor source profiles (percentage of total species) and (d, e, f) their diurnal variations (arbitrary unit).

tent with the PMF results, showing that the ammonium fac-
tor explained ∼ 80 % of the predicted NOCs during spring,
whereas the oxidized organics factor dominantly contributed
to the predicted NOCs during warmer seasons (Fig. S8). A
detailed discussion of this issue is provided in the Supple-
ment.

3.4 Influence of RH and NOx

The influence of RH on RPAs of NOCs and peak ratios of
NOCs/oxidized organics are shown in Fig. 6. While NOCs do
not show a clear dependence on RH, the ratio of NOCs to the
oxidized organics shows an apparent increase towards higher
RH. This finding is consistent with the observations reported
by Xu et al. (2017), in which the N/C ratio significantly in-
creases as a function of RH in the atmosphere of Beijing.
Moreover, the diurnal variations of NOCs with peaks val-
ues around 20:00 LT (local time) are also similar to those re-
ported by Xu et al. (2017). The peak ratios of NOCs/oxidized
organics are more obviously enhanced when the RH is higher
than 40 %. These findings imply that aqueous-phase process-
ing likely plays a substantial role in the formation of NOCs.
Significant changes in RH, such as during the evaporation
of water droplets, have been reported to facilitate the forma-
tion of NOCs via NH3/NH+4 and SOA (Nguyen et al., 2012).
In addition, an increase in RH would improve the uptake of
NH3 and the formation of NH+4 , which would also contribute
to the enhancement of NOCs. However, the relatively weak
correlation (R2

= 0.27, p < 0.01) between the peak ratios and

the RH reflects the complex influence of the RH on the for-
mation of NOCs (Xu et al., 2017; Woo et al., 2013).

One may expect that NOCs are formed through the inter-
actions between NOx and oxidized organics in the gas phase,
followed by condensation (Fry et al., 2014; Ziemann and
Atkinson, 2012; Seinfeld and Pandis, 2006). Similar to the
behavior observed for RH, NOCs do not show a clear de-
pendence on NOx (Fig. 6c, R2

= 0.02–0.13); however, the
ratio of NOCs to the oxidized organics shows a clear increas-
ing trend towards higher NOx (Fig. 6d, R2

= 0.18, p < 0.01).
This indicates that NOx may play a certain role in the con-
version of oxidized organics to NOCs, although this cannot
be quantified. It is also noted that low correlation coefficients
between NOx and NOCs might not indicate a limited contri-
bution of NOx to the formation of NOCs. NOx affects the for-
mation of NOCs in various ways (e.g., peroxy radical chem-
istry in VOC oxidation mechanisms and the formation of ni-
trate radicals) (Xu et al., 2015; Zhang et al., 2018) and, thus,
may not linearly contribute to the formation of NOCs.

3.5 Atmospheric implications and limitations

In this study, we showed that secondary NOCs were signif-
icantly contributed by the heterogeneous aging of oxidized
organics with NH3/NH+4 in an urban megacity area, pro-
viding valuable insight into SOA aging mechanisms. In par-
ticular, the effects of NH3/NH+4 on SOA or BrC formation
remain relatively poorly understood. In the PRD region, it
has been shown that oxygenated organic aerosols account for
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Figure 6. The dependence of NOCs and the ratio of NOCs to the oxidized organics on RH and NOx .

more than 40 % of the total organic mass (He et al., 2011),
with high concentrations of available gaseous carbonyls (Li
et al., 2014). Therefore, it is expected that over half of all
water-soluble NOCs in this region might link to secondary
processing (Yu et al., 2017). Furthermore, secondary sources
have been found to contribute significantly to NOC-related
BrC in Nanjing, China (Chen et al., 2018). The results pre-
sented here also suggest that the production of NOCs might
be adequately estimated by their correlation with secondary
oxidized organics and NH+4 . The effectiveness of correlation-
based estimations needs to be examined in other regions be-
fore being generally applied in different environments. How-
ever, this approach may provide valuable insights into the in-
vestigation of NOCs using atmospheric observations. In con-
trast, it has previously been reported that a positive correla-
tion exists between WSON and NH+4 (Li et al., 2012), indi-
cating similar anthropogenic sources. This divergence could
be mainly attributed to the varying contributions of primary
sources and secondary processes to the observed NOCs. Pos-
sible future reductions in anthropogenic emissions of NH3
may reduce particulate NOCs. Understanding the complex
interplay between inorganic and organic nitrogen is an es-
sential part of assessing global nitrogen cycling.

Moise et al. (2015) proposed that with high concentra-
tions of reduced nitrogen compounds, high photochemical
activity, and frequent changes in humidity, BrC formed via
NH3/NH+4 and SOA may become a dominant contributor to
aerosol absorption, specifically in agricultural and forested

areas. However, this study suggests that even in typical urban
areas, BrC formation via NH3/NH+4 and SOA should not be
neglected. In particular, SOA was found to account for 44 %–
71 % of the organic mass in megacities across China (Huang
et al., 2014), with NH3 concentrations in urban areas compa-
rable with those from agricultural sites and 2- or 3-fold those
of forested areas in China (Pan et al., 2018). Additionally,
the acidic nature of particles in these regions would also be
favorable for the formation of NOCs (Guo et al., 2017; Jia et
al., 2018). Considering the formation of NOCs from the up-
take of NH3 onto SOA particles, Zhu et al. (2018) suggested
that this mechanism could have a significant impact on the
atmospheric concentrations of NH3/NH+4 and NO−3 .

4 Conclusions

This study investigated the processes contributing to the sea-
sonal formation of NOCs, involving NH+4 and oxidized or-
ganics in urban Guangzhou, using single-particle mass spec-
trometry. This is the first study to provide direct field obser-
vation results to confirm that the variations in NOCs correlate
well and are strongly enhanced by internal mixing with sec-
ondary oxidized organics. These findings highlight the pos-
sible formation pathway of NOCs via the aging of secondary
oxidized organics by NH3/NH+4 in ambient urban environ-
ments. A clear pattern of seasonal variation in NOCs was
observed, with higher relative contributions in summer and
fall compared with winter and spring. This seasonal varia-
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tion was well predicted by a multiple linear regression model
analysis, using the relative abundance of oxidized organics
and NH+4 as model inputs. More than 50 % of NOCs could be
explained by the interaction between oxidized organics and
NH+4 . The production of NOCs via such processes is facili-
tated by increased humidity and NOx . These results extend
our understanding of the mixing state and the atmospheric
processing of particulate NOCs as well as having substantial
implications for the accuracy of models predicting the for-
mation, fate, and impacts of NOCs in the atmosphere.
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