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Abstract Whether arc magmatism occurs above oceanic subduction zones is the forefront of studies on convergent plate
margins. The most important petrologic issue related to the evolution of arc systems is the origin of arc magmatism, among
which arc basalts are the most important one because they provide insights into mantle enrichment mechanism and crust-mantle
interaction at oceanic subduction zones. Fluids or melts released either by dehydration or by melting of subducting oceanic slab
infiltrate and metasomatize the overlying mantle wedge at varying depth, leading to the formation of source regions of arc
basalts. Such processes make most of arc basalts commonly enriched in large ion lithosphile elements and light rare earth
elements, but depleted in high-field strength elements and heavy rare earth elements. Small amounts of arc basalts are char-
acterized by relatively high Nb contents or by Nb enrichment. Rare basalts with compositions similar to ocean island basalts or
mid-ocean ridge basalt also occur in arc systems. For these peculiar rocks, it remains debated whether their source is affected by
subduction-related components. During their ascent and before their eruption, arc basaltic magmas are subjected to crystal
fractionation, mixing and crustal contamination. In addition to the contribution of subducting slab components to the mantle
source of arc basalts, the materials above the subducting slab at forearc depths would have been transported either by drag or by
subduction erosion into the subarc mantle and into the source of arc magmas. Heats and materials brought by corner flows also
play important roles in the generation of arc basalts. Despite the important progresses made in recent studies of arc basalts,
further efforts are needed to investigate subarc mantle metasomatism, material recycling, the formation of arc magma sources,
geodynamic mechanism in generating arc basalts, and their implicationd s for the initiation of plate tectonics on Earth.
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1. Introduction

One of the most important achievements of the modern plate
tectonics theory is the generation of arc magmatism by
subduction of oceanic plate (Frisch et al., 2011). However,
arc magmatism occurs in only about half of the circum-Pa-
cific subduction zone, thereby raising the question as to how

arc magmatism is generated along oceanic subduction zones,
which represents one of the forefronts of studies on con-
vergent plate margins. The most important petrologic issue
related to the evolution of arc systems is the origin of arc
magmatic assemblages which include basalt, andesite, dacite
and rhyolite (Ringwood, 1974). The pioneering study on arc
magmatic systems can be traced back to the end of 19th
century. For instance, at that time, boninite, which is closely
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related to intra-oceanic arc system, has already been identi-
fied, defined and described (Kikuchi, 1888, 1890). As early
as in the early 20th century, researches have been carried out
for igneous petrology of the Japanese island, and Tomita
(1935) had discovered Cenozoic low-Si alkaline volcanics in
the areas surrounding the Sea of Japan and named them as
circum-Japan Sea province of alkaline rocks. One of the
most important progresses in petrologic studies in the last
century was the finding that basalt is derived from partial
melting of the upper mantle (Kushiro, 1959, 1968; Green and
Ringwood, 1969). Kuno (1960) found the lateral variation in
the nature of Japanese arc volcanism: tholeiite occurs mainly
in the side towards the Pacific Ocean, whereas alkali basalt
occurs mainly in the side towards the Japan Sea, and he
proposed that the former came from the shallower mantle
than the latter. Since 1960’s, the application of high-pressure
and high-temperature piston cylinder apparatus to the geo-
logical field greatly improved the study on the origin of arc
basalts, and subsequent experiments approved the Kuno’s
model (Yoder and Tilley, 1962; Kushiro, 1968). Based on the
inversion calculation of primary basalts from Japanese island
and experimental petrology study, Tatsumi et al. (1983)
proposed that the formation depth of tholeiite, high-Al basalt
and alkali basalts are 35, 45–50 and 50–70 km, respectively,
and suggested that basaltic melts are generated at tempera-
tures greater than 1300°C. Meanwhile, the role of water in
the genesis of arc basalts is also demonstrated: water can not
only lower significantly the solidus temperature of mantle
peridotites, but also change melt’s composition (Kushiro,
1968; Grove et al., 2012).
A general consensus is that the formation of arc basalts is

closely related to the thermal evolution and the metasoma-
tism of the subarc mantle wedge by fluids/melts ultimately
derived from the downgoing plate. Nevertheless, debates
persist regarding the formation mechanism of arc basalts.
Some researchers proposed that arc basalts are derived via
partial melting from the subarc mantle wedge metasomatized
by fluids released from the downgoing oceanic crust (Gill,
1981; Tatsumi et al., 1986; Tatsumi, 1989; Hawkesworth et
al., 1993; Ulmer and Trommsdorff, 1995; Grove et al., 2002),
whereas others thought that high-Nb or Nb-rich basalts are
generated by partial melting of the mantle wedge metaso-
matized by subducting slab-derived melts (e.g., Defant and
Drummond, 1990; Defant and Kepezhinskas, 2001; Defant
et al., 2002). As the most important rock type of the arc
system, arc basalts capture a great wealth of information
regarding enrichment and dynamic processes in the mantle
underneath oceanic subduction zones and thus represents
unique lithoprobe into the important processes such as
mantle metasomatism, chemical recycling and deep geody-
namic processes (Zheng et al., 2020). This paper reviews
major progresses and existing issues regarding genesis of arc
basalt, and then identifies some of research opportunities in

the future.

2. Arc types and related basalts

Volcanic arcs are classified into intra-oceanic arc and con-
tinental arc based on the locations of arc magma. Intra-
oceanic arc occurs where an oceanic lithosphere is subducted
beneath another ocean lithosphere to create a volcanic island
arc system built on oceanic crust (Frisch et al., 2011) (Figure
1). Examples for Cenozoic intra-oceanic arc systems mainly
occur in the northern and western margins of the Pacific
circum, including Aleutian, Izu-Bonin-Marinana (IBM),
Philippine-Luzon, Banda, Vanuatu, Fiji-Tonga-Kermadec,
and the Lesser Antilles and South Sandwich in the Atlantic
(Figure 1). Nevertheless, recent studies suggest that the up-
per plate in oceanic arc system may contain continental
fragments (e.g., Wu et al., 2019). Continental arc occurs
where an oceanic lithosphere is subducted beneath a con-
tinental lithosphere, whose basement is mainly composed of
continental crust (Si-Al materials) (Frisch et al., 2011). Ty-
pical continental arcs occur at the western margin of the
North and South American, and the Sunda arc in the north-
eastern margin of the Indian Ocean, where oceanic litho-
sphere is subducted beneath continental lithosphere without
a marine basin behind the volcanic arc; rather, the arc is built
directly on the adjacent continent. Continental margin island
arc is developed when it is separated from continent by
formation of a marine basin due to back-arc spreading in-
duced by oceanic plate subduction. Examples for Cenozoic
continental margin island arcs include the Kuril, and Japa-
nese-Rykyu arcs in the northwestern margin of the Pacific
circum (Figure 1).
Three principal types of arc basalts can be distinguished:

tholeiitic (low-K) basalt, calc-alkaline basalt and shoshonite
(Figure 2). Different types of arc basalts show distinct mi-
neralogical and geochemical characteristics. In addition,
three types of arc systems (intra-oceanic, continental arcs
and continental margin island arcs) show different rock as-
semblages, geochemical features and petrogenesis.

2.1 Intra-oceanic arc basalts and associated rock as-
semblages

Intra-oceanic arc rocks include predominant basalts, and
subordinate andesites and dacites, and some peculiar rocks
such as high-Mg andesites and adakites (Kelemen et al.,
2003). Basalts in the intra-oceanic arcs are mainly tholeiitic
and calc-alkaline basalts, although minor shoshonitic basalts
are also present (e.g., Hochstaedter et al., 2000; Ishizuka et
al., 2003; Tatsumi et al., 2008; Stern, 2010). Tholeiitic ba-
salts mainly occur at fore-arc and back-arc settings, with type
examples in the IBM (Ishizuka et al., 2006, 2009; Reagan et
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al., 2010).
Tholeiitic basalts generally show an aphyric texture and

rarely a porphyritic texture, and their phenocrysts include
olivine, plagioclase and augite, with minor orthopyroxene
and magnetite. Although enriched in large ion lithophile
elements (LILEs) and depleted in high field-strength ele-
ments (HFSEs), tholeiitic basalts show weakly fractionated
rare earth elements (REE) patterns and weak enrichment of
light REE (LREE), and thus do not show a typical arc
signature. Except for Nb-Ta depletions and weak LILE
enrichment, the spidergram of intra-oceanic tholeiitic ba-
salts show a smooth distribution pattern (Figure 3a and 3b).
The origin of tholeiitic basalts in intra-oceanic arc is gen-

erally attributed to melting of the mantle wedge above
subducting slab in conjunction with variable additions of a
hydrous slab component (Kelemen et al., 2003; Reagan et
al., 2010).
Calc-alkaline basalts generally occur at mature intra-

oceanic arc, such as Vanuatu and Solomon arcs (Peate et al.,
1997; Schuth et al., 2009; Beaumais et al., 2016). Sometimes
they have high Al2O3 contents and can be classified as high-
Al basalts (Stern, 2010). They generally show porphyritic
texture, with phenocrysts of plagioclase, olivine, augite,
magnetite, and occasional amphibole. Calc-alkaline basalts
show similar geochemical characteristics to tholeiitic basalts,
but with much stronger enrichment in LILEs and LREE, and
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with larger geochemical variations (Figure 3a and 3b). Most
calc-alkaline basalts show slightly enriched Nd-Hf isotopic
compositions relative to mid-oceanic ridge basalt (MORB),
which might be related to the involvement of the subducted
oceanic sediments in their sources (Beaumais et al., 2016).
However, at present, it is generally believed that tholeiitic
and calc-alkaline basalts have similar petrogenesis, albeit
with different degrees of melting in the mantle wedge
(Schmidt and Jagoutz, 2017).
Shoshonitic basalts are relatively rare in the intra-oceanic

arc, and are largely confined to the locations far from the

trench (i.e., rear-arc), with only a few examples at Fiji, Papua
New Guinea and Philippine (Müller et al., 2001; Scherbarth
and Spry, 2006; Leslie et al., 2009; Wolfe and Cooke, 2011).
Their phenocrysts mainly consist of olivine and augite, with
minor amphibole, magnetite and plagioclase. Shoshonitic
basalts are strongly enriched in LREEs and LILEs with
distinct REE fractionation compared with tholeiitic and calc-
alkaline basalts (Leslie et al., 2009). Thus, shoshonitic ba-
salts are likely derived from low degree melting of enriched
mantle sources metasomatized by subducted oceanic sedi-
ments (Leslie et al., 2009).
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2.2 Continental arc system basalts and associated rock
assemblages

During the formation of continental arc system, the con-
tinental lithosphere often occurs as a hanging wall due to its
low density and high buoyancy. The geometric configuration
of such a subduction zone (e.g., Andean-cordillera orogenic
belt) is similar to those of an intra-oceanic arc. During the
subduction of oceanic lithosphere, owing to the addition of
continental materials into the subduction system and rela-
tively thick continental crust and lithosphere, continental arc
basalts show slightly different compositions from intra-
oceanic arc basalts. In the continental margin arc, there are
abundant andesitic rocks with some dacites and rhyolites,
and some calc-alkaline basalts, which can be further divided
to low-, middle-, and high-K calc-alkaline and shoshonitic
compositions and are different from basaltic rocks from the
intra-oceanic arc (Wilson, 1989; Winter, 2014). So far, the
most of reported continental arc tholeiitic basalts are from
the Cascades volcanic arc, western Northern America
(Schmidt and Jagoutz, 2017; Mullen et al., 2017). High-Al
olivine-bearing tholeiitic basalts have major and trace ele-
ment compositions similar to MORB (Figure 3e–3f), but
display higher Al2O3 (>17.0 wt%) and CaO and lower SiO2

and H2O (<0.2 wt% ) contents than MORBs (Bacon et al.,
1997; Le Voyer et al., 2010; Sisson and Layne, 1993). They
are likely generated by low-degree (6–10%) partial melting
of hydrous spinel peridotites (Baker et al., 1994). Calc-al-
kaline basalts are widespread in continental arcs in the world,
with typical examples in the Andean arc and the Cordillera
orogenic belt in the west of Northern and Southern Amer-
ica. Continental margin arc tholeiitic basalts have higher
incompatible element contents but lower HFSEs than
MORBs (Figure 3e–3f). Compared with intra-oceanic arc
basalts, the continental margin arc tholeiitic basalts have
higher K/Rb and Fe/Mg ratios and more variable 87Sr/86Sr
and 143Nd/144Nd and Pb isotope compostions. This is
probably related to the introduction of terrigenous sedi-
ments, accumulated in or near the trench, to mantle sources
of the continental margin arc magmas (Winter, 2014; Zheng
et al., 2020). Shoshonitic rocks in continental margin arcs
generally occur at the location far away from the trench, and
from far to near locations from the trench, shoshonitic, calc-
alkaline and tholeiitic rocks are distributed approximately
perpendicularly to arc (Morrison, 1980; Bloomer et al.,
1989; Lin et al., 1989). In the Andean region, shoshonitic
rocks occur after calc-alkaline and tholeiitic rocks, re-
presenting the youngest magmatism (Müller et al., 1992;
Scherbarth and Spry, 2006; Beccaluva et al., 2013).
Sometimes, calc-alkaline and shoshonitic rocks may occur
in the same location of a volcanic arc, which was possibly
caused by sudden steeping of subducting slab (Morrison,
1980; Beccaluva et al., 2013).

2.3 Continental margin island arc basalts and asso-
ciated rock assemblages

Although continental margin island arc is a part of the con-
tinental lithosphere, the thickness of its continental crust is
limited. Continental margin island arc volcanic rocks mainly
consist of calc-alkaline, and subordinate tholeiitic and
shoshonitic rocks (Tatsumi et al., 2008; Shuto et al., 2015;
Lai et al., 2017). Furthermore, some special rock assem-
blages occur in continental arcs, including oceanic island
basalt (OIB)-like basalts, Nb-enriched basalts, sanukites and
adakites (Kimura and Ariskin, 2014; Hanyu et al., 2002;
Tatsumi, 2006). Tholeiitic basalts mainly occur in the intra-
oceanic arcs, such as Mariana and Tonga arcs (Ishizuka et al.,
2003; Meffre et al., 2012), but they may also occur in some
continental margin island arcs, such as Kuril and Japanese
arcs (Shuto et al., 2015; Kuritani et al., 2008).
A remarkable feature of continental margin island arcs is

the cross-arc variations in geochemical compositions; fore-
arc basalts mainly consist of tholeiitic basalts and minor calc-
alkaline basalts, while back-arc basalts are mainly composed
of calc-alkaline basalts and minor alkaline basalts (Tatsumi
et al., 2008). The tholeiitic basalts in continental margin is-
land arc consist of olivine, plagioclase, augite and ortho-
pyroxene. They show typical subduction zone magma
geochemical features (Figure 3c and 3d), characterized by
weakly REE fractionated and moderately enriched LILE
patterns, with negative Nb-Ta and positive Sr-Pb anomalies
(Figure 3c and 3d). The tholeiitic basalts in continental
margin island arcs are slightly more enriched in LILE and
LREE compared with their counterparts in intra-oceanic arcs
(Figure 3c and 3d). The alkaline basalts generally occur in
the rear-arc of the continental margin island arc, such as in
the rear-arc of the NE Japan arc (Shuto et al., 2015). The
calc-alkaline basalts from the continental margin island arcs
and intra-oceanic arcs show similar geochemical character-
istics, but the former have more enriched LREEs and LILEs
(Figure 3c and 3d), but lower HFSE than the latter.
Such geochemical difference is not related to subducted

slab components, but is likely due to melting degree of the
mantle wedge. The frontal-arc magmas are generally gen-
erated by higher degrees of melting of the shallower asthe-
nospheric mantle, whereas the rear-arc magmas result from
lower degrees of melting of the deeper part of asthenospheric
mantle (Shuto et al., 2015). Shoshonitic basalts rarely occur
in continental margin island arcs, which mainly consist of
augite, orthopyroxene, hornblende, phlogopite and feldspar.
These shoshonitic basalts are believed to be mainly from
melting of the enriched lithospheric mantle (Elburg and
Foden, 1999).
Basaltic rocks from intra-oceanic arc, continental arc and

continental margin arc systems exhibit clearly different Sr-
Nd isotope compositions (Figure 4): basaltic rocks from in-
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tra-oceanic arcs show depleted Sr-Nd isotope compositions
(Figure 4a), whereas those from continental margin island
arcs have much larger Sr-Nd isotope variations, ranging from
depleted to enriched ones (Figure 4b). In the continental arc
system, tholeiitic and calc-alkaline basaltic rocks show
slightly depleted Sr-Nd isotope compositions, but shosho-
nitic rocks have enriched isotope compositions (Figure 4c).
From intra-oceanic arc via continental margin island arc to

continental arc systems, the Sr-Nd isotope compositions of
the basaltic rocks vary from depleted to enriched, and from
narrow to wide ranges (Figure 4). Compared with shosho-
nitic rocks from intra-oceanic and continental margin island
arc systems, those from continental arcs are characterized by
more enriched Sr-Nd compositions (Figure 4). This reflects
that their mantle source either is ancient lithospheric mantle
or contains more sediment components (e.g., Carlier et al.,
2005; Winter, 2014).
Continental margin island arc and continental arc systems

are different in tectonic characteristics and magma types: the
former (e.g., Japan and Kurile island arcs) is associated with
back-arc extensional basins, and basalts and andesites,
whereas the latter (e.g., Andean arc) lacks back-arc exten-
sional processes and is mainly associated with andesites
(Frisch et al., 2011). The main factors responsible for above
differences include ages of subducted slab, subduction an-
gles and deep geodynamic processes of subduction (Winter,
2014; Frisch et al., 2011; Wang et al., 2020). In the western
Pacific Ocean, due to its old age and relatively high density,
the oceanic slab is subducted at high angles, and the slab roll-
back often occurs, triggering back-arc extension and conse-
quently large-scale upwelling of the asthenosphere, leading
to the formation of back-arc basins and basalts and andesites
in Japan and Kurile island arcs. In contrast, due to its young
age and relatively low density, the oceanic slab in the eastern
Pacific Ocean is subducted at low angles, which results in a
small (or no) asthenospheric wedge, and creates a com-
pressional tectonic setting and the lack of back-arc basins in
the hanging wall. In this circumstance, the arc crust is
thickened, and magmas generated by partial melting of
subducted oceanic slab, melange, or mantle, underwent
complex evolutions such as multiple melting, assimilation,
storage and homogenization (MASH) processes, forming an
Andean type rock assemblage. Nevertheless, the subducting
angle may vary with time. In the west Pacific, the subducting
slab may have experienced a two-stage evolution from a low
angle to a high angle subduction, whereas a three-stage
process is proposed for the east Pacific, where subducting
angle varied from gentle to steep and to gentle again.

3. Some special basaltic rocks in arc systems

3.1 High-Nb or Nb-enriched arc basalts

The term of high-Nb arc basalts was firstly proposed by
Defant et al. (1991, 1992) when they studied Cenozoic arc
basalts in east Pacific. Some absarokites and shoshonites
were found in continental arcs such as Baja California,
Mexico, Southern Washington Cascades, and Panama. These
rocks are characterized by high Nb contents (>20 ppm, 1
ppm=1 μg g–1) or negligible Nb anomalies in trace element
spiderdiagram (Figure 5) (Defant et al., 1991, 1992), which
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are different from those “normal arc basalts” with typical low
Nb contents or strong depletion in Nb-Ta-Ti (Figure 3). Sa-
jona et al. (1993, 1994, 1996) named the term of “Nb-en-
riched arc basalts” to denote those rocks with relatively high
Nb contents (Nb=7–16 ppm, Na/La>0.5) or negligible Nb
anomalies (Figure 5). Nb-enriched arc basalts mainly occur
in the Zamboanga peninsula and the Mindanao island of the
Philippines arc in west Pacific, and the Ecuador arc of
Southern America to the east Pacific (Figure 5) (Beate et al.,
2001; Bourdon et al., 2003). High-Nb or Nb-enriched arc
basalts are often associated with high-Mg andesites and
adakites, and are considered to have been generated by
partial melting of slab-derived adakitic melt-metasomatized
mantle wedge peridotites (e.g., Sajona et al., 1993, 1996;
Defant and Kepezhinskas, 2001; Defant et al., 2002; Wang et
al., 2007).

3.2 OIB-type arc basalts

OIB-type arc basalts show trace element compositions si-
milar to OIBs; on the one hand, they resemble arc basalts in
showing LILE enrichment and strong fractionation between
LREE and HREE, but show no obvious depletions in Nb and
Ta on the other hand. This type of rock mainly occurs in the
following special subduction settings: (1) An arc influenced
by a nearby mantle plume, as exemplified by the northern
termination of the Tonga Arc (Falloon et al., 2007; Price et
al., 2014). The Samoa plume flows westward into the nearby
Tonga back-arc region, resulting in the formation of OIB-
type basalts with elevated 3He/4He ratios. (2) A slab window
(i.e., active ridge subduction), as represented by the Northern
Cordilleran arc (Mullen and Weis, 2013; Thorkelson et al.,
2011). Decompression melting is then triggered by upwel-
ling of the hot asthenospheric mantle through the slab win-
dow. (3) An abnormally hot subduction zone as exemplified

by the Cascades arc (Leeman et al., 2005; Carlson et al.,
2018). The young, hot oceanic slab of Juan de Fuca has been
completely dehydrated in the forearc region, and the sub-arc
mantle wedge is less affected by subduction components. The
mantle sources of these OIB-type arc basalts in the above-
mentioned Cenozoic subduction zones lack slab-derived hy-
drous fluids but contain abundant slab-derived hydrous melts.
It is commonly believed that the mechanism inducing mantle
melting involves decompression upwelling of relatively dry
and hot mantle, which is similar to the case of mid-ocean
ridges or mantle plumes, so that the generated magmas will
not have typical “arc signature” such as HFSE depletions. This
explanation has been questioned by Zheng (2019), who sug-
gested that rutile breaks down during melting of subducting
slab at >1200°C, generating melts rich in HFSEs. The mantle
wedge peridotites metasomatized by such melts are the source
of OIB-type arc basalts.
Since OIB-type arc basalts commonly occur in the sub-

duction zones which are associated with hot mantle upwel-
ling, it has been proposed, on the basis of geophysical,
geochemical, and laboratory-based studies, that there may be
deep-sourced mantle plumes in these subduction zones.
However, these views still remain controversial. For ex-
ample, it is not clear whether the Cascades arc volcanoes and
the High Lava Plains volcanic chain were related to the
Yellowstone plume (Liu and Stegman, 2012; Kincaid et al.,
2013). Some high-Nb or Nb-enriched arc basalts show no
obvious negative Nb anomalies or even positive Nb
anomalies, similar to OIB. These basalts were thought to be
generated by melting of enriched mantle components in the
mantle wedge (Castillo et al., 2002), the upwelling asthe-
nospheric mantle through the slab window (Gorring et al.,
2003; Thorkelson et al., 2011; Tang et al., 2010), or deep
mantle metasomatized by rutile-undersaturated melts de-
rived from subducted oceanic crust (Ringwood, 1990; Zheng
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et al., 2020).

3.3 E-MORB-type basalts

In some fore-arcs (e.g., IBM and Central America arcs),
there occur basalts with trace element characteristics similar
to those of MORB (DeBari et al., 1999; Reagan et al., 2010;
Ishizuka et al., 2011; Shervais et al., 2019; Whattam, 2018).
In addition, these MORB-type basalts occasionally occur in
island arc settings (e.g., the Vanuatu arc) and are associated
with arc basalts (Sorbadere et al., 2013b). Like MORB, these
MORB-type arc basalts can also be divided into normal and
enriched types, similar to N-MORB and E-MORB, respec-
tively. Specifically, these E-MORB-type arc basalts are
characterized by no depletion in HFSE and relatively high
Nb contents similar to Nb-enriched basalts (Figure 5). Their
mantle source was only metasomatzed by tiny amounts (~0.2
wt%) of subducted oceanic slab-released fluids (Sorbadere et
al., 2013a). Moreover, some MORB-type basalts also occur
in some special arcs (e.g., Alaska and western America),
which are associated with the subduction of spreading
oceanic ridge (Cole and Stewart, 2009). The Alaska basalts
and the western American show the geochemical character-
istics of N-MORB and E-MOR-type basalts, respectively
(Cole and Stewart, 2009). The formation of these MORB-
type basalts in the subduction zones is related to the strong
extension of thin arc crust, e.g., deep faults in the crust, the
subduction of spreading mid-oceanic ridge and the extension
induced by initial subduction of oceanic crust. The special
basalts represent the decompression melting of the upwelling
mantle.

3.4 High aluminum basalts

Early studies found a large number of high-Al basalts (Al2O3

>16 wt%) in subduction zones, which have MgO contents
usually less than 7 wt%. They are distinguished from tho-
leiitic basalts by widespread occurrence of anorthite (Kuno,
1960; Himilton, 1964; Crawford et al., 1987). These high Al
basalts were initially thought to be generated by very high-
degree partial melting of subducted eclogitic slab, but this
view was gradually abandoned (Brophy, 1989). It is now
generally accepted that high-Al basalts are differentiated
products of water-rich (>2 wt%) primitive arc basalts by
fractionation of olivine and clinopyroxene without plagio-
clase (Beard and Lofgren, 1992; Blatter et al., 2013; Mele-
khova et al., 2015; Pichavant and MacDonald, 2007; Sisson
and Grove, 1993; Xie et al., 2016). Parman et al. (2011)
compiled the experimental results of fractional crystal-
lization of magma with different water contents, and con-
cluded that the peak in Al2O3 contents of the differentiated
melts is proportional to water contents of magmas. The
higher the water content is, the more significantly delayed

crystallization of feldspar happens, and the higher the peak
Al2O3 contents of the differentiated melts are. Pichavant and
MacDonald (2007) also suggested that the Al2O3 contents of
plagioclase-saturated hydrous basaltic melts (<4 kbar) are
positively correlated with the water contents of magma. In
addition, the crystallization experiments of hydrous basaltic
magmas under different pressures (0.4–0.9 GPa) show that
the suppression of plagioclase crystallization under high-
pressure conditions favors the formation of low-magnesium,
high-Al basalts (Blatter et al., 2013).

4. Petrogenesis of arc basalts

Petrogenesis of arc basalts involves mantle source char-
acteristics, partial melting and fractional crystallization
processes.

4.1 Matasomatism of the sub-arc mantle wedge and
formation of basalt source

4.1.1 Dehydration of subducted slab and fluid metaso-
matism
The typical arc basalts commonly exhibit the enrichment in
LILEs (e.g., Cs, Rb, K, Ba, Pb and Sr) and LREE, and de-
pletion in HFSEs (e.g., Ta, Nb, Zr and Ti) and HREE (Figure
3). These trace element geochemical characteristics are ty-
pical of mantle sources of arc basalts, which are metaso-
matized by subducted slab-released fluids (e.g., Tatsumi et
al., 1986; Tatsumi, 2005; Zheng, 2019). Subducted oceanic
slab mainly consists of sedimentary rocks, basalts, gabbros
and peridotites, which contain many hydrous minerals with
H2O contents varying from 2.0 to 18.0 wt%, such as mica
group (phengite, biotite, and paragonite), amphibole group
(richterite, glaucophane, barroisite and pargasite), lawsonite,
zoisite, epidote, chloritoid, chlorite, talc, and serpentine
(Schmidt and Poli, 2014). These minerals can be subducted
to different depths (from 30 to 250 km and even more than
250 km) and undergo dehydration, which generates fluids to
metasomatize the overlying mantle wedge to form the source
of arc basalts (Tatsumi et al., 1986; Brenan et al., 1995;
Keppler, 1996; Schmidt and Poli, 2014; Zheng et al., 2016).
Geophysical data revealed that subducted oceanic slab-re-
leased fluids entered the mantle wedge and triggered arc
magmatism beneath some Cenozoic continental arcs (e.g.,
Mount Rainier of northern America) (McGary et al., 2014).
The experiments on the element distribution between hy-
drous fluids and eclogite assemblage minerals (garnet, clin-
opyroxene and rutile) under the conditions of 900–1200°C
and 3.0–5.7 GPa suggested that both garnet and pure clin-
opyroxene cannot lead to the differentiation of HFSEs from
LILEs, but 1.5% rutile-bearing eclogites-released fluids can
cause selective enrichment in LILEs and depletion in HFSEs
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in the mantle wedge (Stalder et al., 1998; Foley et al., 2000).
Recent studies on non-traditional stable isotope geochem-
istry provide supporting evidence for the above viewpoints.
For example, some basalts from intra-oceanic arc (e.g.,
Lesser Antilles arc in Central America) have heavy Mg
isotope compositions, which probably resulted from meta-
somatism of slab-derived fluids (Figure 6a; Teng et al.,
2016). Arc basalts have variable Li isotope compositions
(δ7Li=−8.4‰ to 11.4‰; Su et al., 2016), most of them are
similar to those of MORB. However, the basalts from con-
tinental arc (e.g., Central America) and intra-oceanic arc (e.g.,
Lesser Antilles and IBM) show significantly different Li
isotopes, which are attributable to the metasomatism of slab-
related melts/fluids, slab dehydration and water-rock inter-
action (Moriguti and Nakamura, 1998; Chan et al., 2002;
Agostini et al., 2008; Bouvier et al., 2008, 2010; Tang et al.,
2014). Cenozoic arc basalts have variable B isotope com-
positions (δ11B=−9‰ to +16‰; De Hoog and Savov, 2017).
B isotope fractionation during the subduction of oceanic slab
can be interpreted by Rayleigh fractionation. The fluids re-
leased from slab are enriched in heavy B isotopes. Thus, slab
dehydration decreases the B concentrations and B isotopes in
the subducted slab (Figure 6b) (De Hoog and Savov, 2017).
Heavy δ11B of arc volcanic rocks can be formed by meta-
somatism of slab-derived fluids/melts, as well as melting of
fluid-modified serpentinized mantle or mélange in the fore-
arc (Benton et al., 2004; Savov et al., 2005, 2007; Pabst et al.,
2011; Tonarini et al., 2011; Scambelluri and Tonarini, 2012;
Spandler and Pirard, 2013; Konrad-Schmolke et al., 2016;
Martin et al., 2016; Zhang et al., 2017; Prigent et al., 2018).
Traditionally, the formation of mantle source for arc magmas
is considered to be related to the processes that slab-released
fluids metasomatize the mantle wedge, and slab-released
fluid flux gradually decreases with the increasing subducting
depth of slab (e.g., Ishikawa and Nakamura, 1994). How-
ever, in the Mariana fore-arc of western Pacific Ocean, the
subducted oceanic slab has lost 5.5 wt% H2O beneath the
fore-arc (blueschist facies condition) (Schmidt and Poli,

1998), and 13% fore-arc mantle rocks have been serpenti-
nized at the depths of 20–60 km (Savov et al., 2007). These
serpentinized mantle rocks can be brought into deep mantle
by subduction-slab pull or subduction erosion, and play an
important role in the formation of mantle-derived magmas.

4.1.2 Melting of subducting slab and melt-related meta-
somatism
In addition to release fluids, the subducting slab can also melt
to generate adakitic melts if the oceanic crust is young and
hot enough (Defant and Drummond, 1990; Peacock et al.,
1994). Nicholls and Ringwood (1973) were the first to pro-
pose that the mantle wedge may be metasomatized by sub-
ducting slab-derived melts. Elliott et al. (1997) also proposed
that the mantle wedge can be metasomatized by slab melts
and considered metasomatized peridotites as a potential
source of arc basalts. Experimental petrology and studies of
sub-arc mantle peridotite xenoliths suggest that slab melts
are more enriched in HFSE than hydrous fluids (e.g., Ke-
pezhinskas et al., 1995, 1997; Keppler, 1996; Defant and
Kepezhinskas, 2001), and melt-peridotite reactions can
produce an amphibole-, phlogopite- and HFSE-rich mantle
source (Kepezhinskas et al., 1997; Wang et al., 2008). On the
other hand, subducting slab-derived melts formed outside the
rutile stability field are characterized by high HFSEs (e.g.,
Ringwood, 1990; Zheng, 2019) and the partial melting of the
mantle wedge metasomatized by such melts would generate
Nb-enriched or high-Nb basalts, as recorded in some Cen-
ozoic arcs (e.g., Philippine, Panama, Baja California and
Kamchatka) (e.g., Sajona et al., 1996; Defant and Ke-
pezhinskas, 2001; Aguillón-Robles et al., 2001). The asso-
ciation of Nb-enriched basalt, high-Mg andesite and adakite
in these regions is different from basalt-andesite-dacite-
rhyolite assemblages formed by melting of fluid-modified
mantle wedge (Sajona et al., 1996; Defant and Kepezhinskas,
2001; Defant et al., 2002; Wang et al., 2007). Mo isotopes
can efficiently trace the contributions of different types of
subducting slab-derived components. Lavas originating from
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the mantle wedge modified by slab fluids have high δ98Mo
values (−0.1‰ to +0.24‰), and those originating from the
slab melt-modified mantle wedge have low δ98Mo values
(−0.72‰ to −0.1‰) (Freymuth et al., 2015; König et al.,
2016). In addition, lavas originating from mantle wedge
modified by melts of subducted reduced sediments (e.g.,
black shale) have high δ98Mo values (+0.02‰ to +0.34‰)
than those originating from mantle wedge modified by oxi-
dized sediment-derived melts (−0.88‰ to −0.06‰) (Frey-
muth et al., 2016; Gaschnig et al., 2017).
Partial melting of subducting slab and subsequent melt-

peridotite reactions are potentially common in arc system (e.g.,
Spandler and Pirard, 2013; Kelemen et al., 2014; Schmidt
and Jagoutz, 2017; Zheng et al., 2020). Petrology of ophiolite
and mantle xenoliths indicates a variety of melt-peridotite
reactions (Ertan and Leeman, 1996; Varfalvy et al., 1996;
McInnes et al., 2001; Tamura and Arai, 2006; Bénard and
Ionov, 2013). Felsic melts are formed by melting of sub-
ducting slab in the sub-arc mantle (Rapp and Watson, 1995;
Rapp et al., 1999; Hermann and Spandler, 2008; Spandler et
al., 2010; Duncan and Dasgupta, 2014; Schmidt, 2015; Sis-
son and Kelemen, 2018). These melts ascend due to their
buoyancy and metasomatize the surrounding mantle peri-
dotites. In addition, mafic magmas, which are derived from
the metasomatized mantle, can further react with mantle
peridotites during their upward migration (Van den Bleeken
et al., 2010, 2011; Lambart et al., 2012; Wang et al., 2013,
2016).

4.1.3 Transfer of slab-derived fluids/melts to the mantle
source of arc basalts
There are three main ways that slab components are trans-
ferred to the mantle source of arc basalts (see Spandler and
Pirard, 2013 and references therein): (1) Porous flow along
the grain boundaries of mantle minerals; (2) Channelled/
focused flow through mantle fractures; and (3) Diapiric flow
driven by the buoyancy of solid mélanges in subduction
channels. The subduction components rise at different rates
in these different ways, and the extent to which subduction
components and the surrounding mantle peridotite are
modified is also different. It is worth noting that a large
amount of hydrous metasomatic minerals will be produced
during porous flow, which will cause the trace element
characteristics of residual fluids to deviate significantly from
arc basalts. Therefore, the fluids residual to infiltration re-
action are not the main component of source of arc basalts
(Pirard and Hermann, 2015). However, the previously
formed metasomes can be the source of arc basalts.

4.2 Partial melting and thermal structure of the subarc
mantle

Partial melting of the mantle requires one of three possible

events to occur: an increase in temperature, a decrease in
pressure, or an addition of water to the system (Xu, 1999;
Niu, 2005). Analyses on phenocryst melt inclusion of global
island arc magmas reveal that the water content of island arc
magma is ~2–6 wt%, with an average of 3.9±0.4 wt% (Plank
et al., 2013), which is much higher than the water content in
MORBs. Experimental studies show that the addition of
water greatly lowers the solidus of mantle peridotite, and
basaltic magma can be generated by partial melting of water-
fluxed mantle peridotite under high pressure (>2.5 GPa) or at
low pressure but high degree of melting (>25%) (Green,
1973; Gaetani and Grove, 1998; Irving and Green, 2008;
Tenner et al., 2012; Green et al., 2014). Therefore, addition
of water is the main factor to induce partial melting of the
sub-arc mantle.
At present, the solidus temperature of wet peridotite ob-

tained by different experiments varies greatly. At pressure of
3 GPa, the solidus temperature of wet peridotite can be as
low as ~800°C (Grove et al., 2006; Till et al., 2012), or as
high as 1000–1100°C (Green et al., 2010, 2012). Such con-
siderable solidus temperature difference affects our under-
standing of arc magma genesis. If the wet solidus is as low as
~800°C, it means that dehydration melting of chloritic
peridotite or melting of water-saturated peridotite can take
place at the bottom of the mantle wedge (Grove et al., 2009;
Till et al., 2012), that is, slab-released water enters the fore-
arc mantle and the bottom of the mantle wedge, resulting in
the formation of chloritic peridotite, and arc magmas would
be formed within the P-T area between the dehydration curve
of chlorite and the solidus of water-saturated peridotite.
However, if the wet solidus is as high as 1000–1100°C, the
mantle wedge above the subducting plate will not melt im-
mediately when water is added. Most researchers believed
that the subduction components (fluid/melt) derived from the
subducing plate need to pass through the wet subsolidus
peridotite at the bottom of the mantle wedge, and then enter
the core of the mantle wedge, which has high temperature
and is the source region of arc basalts (Spandler and Pirard,
2013; Pirard and Hermann, 2015; Prigent et al., 2018). Al-
ternatively, subduction components first metasomatize the
peridotite at the bottom of the mantle wedge to form meta-
somes, which subsequently melt to form basalts (Manning,
2004; Grove et al., 2009; Zheng et al., 2016). Therefore, the
generation of island arc magma is not only controlled by
dehydration of the subducting plates, but also is closely re-
lated to the thermal structure and thermal evolution of the
subduction zone (Zheng, 2019). The hydrated peridotite
melts only when it is heated at a later stage where the de-
coupling between the subducting plate and the mantle wedge
and the lateral filling of the asthenospheric mantle occur
(Manning, 2004; Zheng et al., 2016). Such hydrated meta-
somatized peridotite can even be stored in the lithospheric
mantle without melting during the oceanic subduction, but it

1978 Xu Y, et al. Sci China Earth Sci December (2020) Vol.63 No.12



melts at the latter extension stage after continental collision
(Xu et al., 2004; Zheng et al., 2015).
Some special rock types, such as fore-arc basalt (FAB) and

boninite, are generated during subduction initiation. Fore-arc
basalts are typical products of decompressional melting of
the mantle at the early stage of subduction with almost zero
contribution of the subducting plate, whereas the depleted
mantle was later metasomatized by fluid or melt derived
from the subducting plate, giving rise to the boninite mag-
matism. Fore-arc basalt and boninite have been regarded as
petrological evidence of subduction initiation (Reagan et al.,
2010; Xia et al., 2012; Li et al., 2019). Except for the special
fore-arc settings, the thermal structure of the mature sub-
duction zone is mainly related to the age of the subducting
plate, subduction rate and subduction angle, rate of shear
heating in subduction zones and the properties of mantle
wedge (Syracuse et al., 2010; Zheng, 2019). In the cold
subduction zone, the subducting oceanic crust does not de-
hydrate significantly when passing through the fore-arc
mantle, but it dehydrates extensively at a great subarc depth
to metasomatize the overlying mantle wedge, which starts to
melt upon heating to form arc basalt (Zheng et al., 2016). In
the hot subduction zone, the oceanic crust that already ex-
perienced extensive dehydration in the fore-arc mantle does
not dehydrate significantly at the sub-arc depth, but the re-
treat of the subducting plate could induce the lateral flow of
the asthenosphere, leading to decoupling between the bottom
of the mantle wedge and the plate surface as well as the
increase of their temperature (Kincaid and Griffiths, 2003),
which could induce melting of the slab at sub-arc depth. The
generated melts metasomatize the overlying mantle wedge to
form basalts (Zheng, 2019). The corner flow caused by the
retreat of subducting oceanic plate and interaction between
the hot subarc asthenosphere and the cold mantle wedge play
a crucial role in the generation of arc magmas (Hoernle et al.,
2008; Turner et al., 2017; Zheng, 2019).
Big data analyses of the global rear-arc volcanic rocks

recently reveal that the ambient mantle wedge before meta-
somatism by subduction components is highly hetero-
geneous (Turner et al., 2017). After eliminating the possible
effects of the subduction inputs, Turner et al. (2017) ac-
counted for the isotopic variations by mixing of two end-
member components, one being similar to the depleted
MORB mantle source, the other having EMI like isotopic
characteristics. They proposed that the enriched component
is the ancient continental lithospheric mantle that was me-
tasomatized by low degree melts of the asthenosphere. This
lithospheric mantle component was transported to the subarc
asthenospheric mantle by the corner flow of the astheno-
spheric mantle wedge. Similarly, pyroxenites formed from
early arc magmas in the lithospheric mantle can interact with
late arc magma derived from the asthenosphere (Carlson et
al., 2018; Hickey-Vargas et al., 2016). In fact, in addition to

the material contribution, the heat brought by the corner flow
of subarc asthenospheric mantle plays a significant role in
the generation of arc magmas (Figure 7). Moreover, the
complexity of sub-arc (vertical or parallel trench) corner
flow of the asthenospheric mantle wedge will cause material
flows at different directions in the sub-arc mantle and con-
sequently change the composition of the sub-arc mantle
source (e.g., Hoernle et al., 2008).
Foden et al. (2018) found that the Fe isotope composition

of global basalt-andesite samples from the intra-oceanic arc
and continental arc was negatively correlated with the ther-
mal parameters of the arc (the product of plate age and
vertical subduction rate, which is a parameter used to char-
acterize the relationship between subduction plate tempera-
ture and its geometry; Kirby et al., 1996): the subarc mantle
with high thermal parameter has a stronger corner flow and
experienced greater melt extraction, resulting in loss of
heavy Fe isotopes. Diffusion-induced kinetic fractionation
also contributes significantly to the enrichment of light iso-
topes. The Fe isotopic variation of these rocks was mainly
subjected to partial melting and fractional crystallization.
Their primitive magmas are enriched in light Fe isotopes,
which is due to the source depletion and subduction related
metasomatism. In addition to the above-mentioned dynamic
mechanisms, processes such as retreat, tearing, detachment/
delamination of the subducting plate, subduction of spread-
ing ridge, aseismic ridge or oceanic plateau, and subduction
erosion also play roles in the generation of arc magmas
(Wang et al., 2020; and references therein).
A diapir model of island arc magma genesis was proposed

on the basis of recent experiments and numerical simula-
tions. During subduction, mechanical mixing of altered
oceanic crust, sediment, serpentinized peridotite and mantle
wedge peridotite occurs at the slab-mantle wedge interface
(i.e., subduction channel), resulting in the formation of
mélange (Hall and Kincaid, 2001; Gerya and Yuen, 2003;
Zhu et al., 2009). The mélange could rise into the core of the
hot mantle wedge as diapirs due to its buoyancy, and then
melts partially to form arc magmas (Behn et al., 2011;
Marschall and Schumacher, 2012). Such mélange melts have
geochemical characteristics akin to those natural arc magmas
(Castro et al., 2010; Behn et al., 2011; Marschall and
Schumacher, 2012; Nielsen and Marschall, 2017; Codillo et
al., 2018; Cruz-Uribe et al., 2018). Partial melting of sedi-
ment-dominated mélange forms calc-alkaline basaltic ande-
site-andesite sequences (Cruz-Uribe et al., 2018; Codillo et
al., 2018), whereas partial melting of serpentinite-dominated
mélange produces tholeiitic basalts (Codillo et al., 2018).
Nevertheless, it remains unclear how the mélange diapir
enters the interior of the relatively cold mantle wedge.
Previous studies have suggested that partial melts of sub-

ducting plates could metasomatize the mantle wedge peri-
dotite to form orthopyroxene-rich pyroxenite or websterite
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(Ertan and Leeman, 1996; Varfalvy et al., 1996; Tamura and
Arai, 2006), and these pyroxenites are more prone to partial
melting than peridotite. Therefore, under the same P-T
conditions, partial melting of pyroxenite would produce
more melts (Pertermann and Hirschmann, 2003; Hirschmann
et al., 2003; Lambart et al., 2009) which will react with the
surrounding mantle peridotite to form clinopyroxene or
amphibole veins (Pilet et al., 2008; Lambart et al., 2012) or
Si-undersaturated basaltic magmas with high CaO/Al2O3

(>1) (Médard et al., 2006; Sorbadere et al., 2013a).

4.3 Evolution and eruption of arc basaltic magmas

Determining primitive magma compositions is of critical
importance in basalt studies (Schmidt and Jagoutz, 2017;

Zheng et al., 2020). In general, the composition of primary
basalts is in equilibrium with mantle peridotite in which
olivines have Fo (Mg/(Mg+Fe2+)) values of 0.87–0.91 and Ni
contents of 2000–4000 ppm (Korenaga and Kelemen, 2000).
Thus, primitive magma compositions can be obtained using
the Fe-Mg exchange coefficient that is equal to 0.3 (Roeder
and Emslie, 1970). Samples that have Mg# of 0.65–0.75 and
Ni contents of 150–500 ppm can be considered as primitive
magmas. Moreover, the primitive magmas with SiO2 of 49
wt% commonly have MgO≥9 wt%. Compared with these
characteristics, most erupted arc basalts have been modified
subsequently by differentiation processes. The separation of
early crystallized crystals from arc basaltic magmas can
occur easily because of low viscosity and high magmatic
H2O content (Plank et al., 2013). Because only a small pro-
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portion of arc basalts have an ability to ascend to the surface,
the scale of arc basalts is much smaller than those of mid-
ocean ridges, ocean islands, and continental flood basalts
(Rogers, 2015). High magmatic water content also results in
the distinct evolution path of arc basalts. Plagioclase appear-
ance is suppressed in H2O-rich arc magmas (Sisson and
Grove, 1993), whereas crystallization of Fe-Ti oxides is pro-
moted by high oxygen fugacity, leading to continuous deple-
tion of FeO in evolved melts, i.e., calc-alkaline magma series
(Arculus, 2003; Zimmer et al., 2010). Under some circum-
stances, such as in the Izu-Bonin-Mariana arc, multiple stages
of crystallization have been recognized by Fe isotope studies
that olivine and pyroxene crystallized early and magnetite and
sulfide precipitated subsequently (Williams et al., 2018).
Unlike ocean island H2O-poor, tholeiitic basalts, the evolution
of arc basalts is sensitive to pressure (Cashman and Edmonds,
2019). For example, during the path of isobaric cooling under
high pressure, change in melt composition is controlled by
crystallization of mafic minerals, resulting in strong decrease
in MgO and increase in Al2O3, but minor increase in K2O
(Figure 8a and 8b). The MgO content in melts in which pla-
gioclase saturates has a clear correlation with pressure, as
evidenced by the maximum Al2O3 content in melts (Figure
8b). A rapid steepening of the MgO–K2O curve indicates an
increase in bulk crystallinity. In contrast, isothermal decom-
pression produces a different compositional trend that MgO
content increases initially due to decompression-driven melt-
ing of clinopyroxene, followed by a rapid increase in K2O and

decreases in Al2O3. It records extensive decompression-driven
crystallization of plagioclase (Figure 8c and 8d). In addition,
liquid lines of descent also change after degassing during
magma ascent (Blundy et al., 2006).
Unlike viscous silicic magmas that can produce explosive

eruptions, arc basalts commonly occur as effusive volcan-
ism, particularly in high-pressure submarine settings (Bran-
ney and Acocella, 2015). However, explosive basaltic
eruptions have also been observed in the Rota-1 volcano,
Marianas arc (Chadwick et al., 2008). The influence of water
on arc basalt eruptions has received great attention, but more
and more studies began to emphasize the role of CO2 in
magma dynamics of arc basalts (Collins et al., 2009; Blundy
et al., 2010; Caricchi et al., 2018). It is difficult for a basalt
batch to ascend to the surface directly from source, and most
arc basalts will form magma reservoirs in shallow crust be-
fore eruption (Cashman and Edmonds, 2019). However,
there are exceptions that eruptions were connected with the
mantle directly (Ruprecht and Plank, 2013). With the de-
velopment of microanalytical methods, quantitative con-
straints of time scales concerning the dynamics of basaltic
magmas will be critical in future studies (e.g., Lynn et al.,
2018; Ruth et al., 2018).

5. Remaining questions and new perspectives

Despite many important achievements made in recent years
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on arc basalt genesis, a number of scientific questions are
needed to be answered. Four directions require particular
attentions in the future.

5.1 Sub-arc mantle metasomatism and formation of
arc magma source

As discussed previously, the sub-arc mantle wedge is meta-
somatized by fluids/melts released from downgoing plate
either by dehydration or melting, leading to the formation of
the source of arc basalts. In actual, subducting plate is
compositionally complex, including, in addition to basaltic
oceanic crust, overlying pelagic sediments (and carbonates
and terrestrial sediments) and underlying oceanic litho-
spheric mantle. In addition, sediments in accretionary prism
and those above the downgoing plate can also be transported
to the deep part of mantle wedges through subduction, drag
or subduction erosion. Meanwhile, the subducting plate itself
may be water-bearing, or become enriched in water due to
epidotization, serpentinization and amphibolization, and
consequently can carry huge amount of water into deep
mantle. Therefore, due to the complexity of origin of fluid or
melt and their compositions, the sub-arc mantle metasoma-
tism would be more complex than previously imagined. For
example, how the enriched mantle source of shoshonitic or
Si-undersaturated potassic rocks formed remains hotly de-
bated. It is suggested that K is largely retained in phengite
during progressive metamorphism of sediment-bearing
oceanic plate to eclogite facies, and the release of appre-
ciated amount of K into the mantle wedge takes place only
when phengite breaks down and starts to melt. In the later
scenario, metasomatism of the sub-arc mantle results in
formation of K-rich source for potassic volcanics (Schmidt,
1996, 2015; Conticelli et al., 2009; Spandler and Pirard,
2013). Alternatively, it has been proposed, based on melting
experiments involving mixture made of peridotite and hy-
drous sediments, which sediment-derived Si-rich melts,
when reacted with peridotites, would evolve to potassic ba-
saltic melts similar to those occurring in subduction zones
(Mallik et al., 2015, 2016). Both opinions emphasize sedi-
ments as the main source of K, but they are different in the
way of participating in the evolution of arc magmatism.
The products of interaction between mantle peridotites and

melts are dependent on melt composition, melt/peridotite
ratio, and temperature and pressure conditions. When peri-
dotites are reacted with Si-saturated or high αSiO2 magmas,
the reaction can be described as the following equation
(Johnston andWyllie, 1989; Rapp et al., 1999; Lambart et al.,
2012; Mallik and Dasgupta, 2012; Wang et al., 2016, 2019):
Melt 1+olivine=orthopyroxene+Al-rich phase±melt 2;

The reaction involving low αSiO2 magma is as follows
(Morgan and Liang, 2003; Beck et al., 2006; Tursack and
Liang, 2012; Lambart et al., 2012; Saper and Liang, 2014):

Melt 1+orthopyroxene=olivine+Al-rich phase+clinopyr-
oxene+melt 2;
The reaction is as follows when all orthopyroxene is con-
sumed:
Melt 1+olivine=clinopyroxene+Al-rich phase±melt 2;

where the extent of reaction depends on melt/peridotite ratio
(i.e., Rapp et al., 1999). When melt/peridotite ratio is low, the
reaction results in metasomatism of small amount of peri-
dotites; when it is high, residual melts formed after the re-
action can erupt to the surface to form arc magmatism.
Depending on the composition of initial reactive melts, re-
sultant melts include high-Mg# andesite and dacite, boninite,
alkali basalts, tholeiitic basalt and ultrapotassic rocks (Car-
roll and Wyllie, 1989; Lambart et al., 2012; Mallik and
Dasgupta, 2012; Mallik et al., 2015, 2016). The Al-rich
phase includes garnet, spinel and plagioclase, depending on
reaction pressures; it is garnet when pressure is high, and it is
spinel or plagioclase under low pressure (Lambart et al.,
2012; Saper and Liang, 2014). If melt is rich in K, reaction
products may contain minor phlogopite (Woodland et al.,
2018). High water contents in melts would form amphibole
during metasomatism (Gervasoni et al., 2017; Corgne et al.,
2018). The melt/rock ratio plays critical roles in crust-mantle
interaction at subduction zones; on the one hand, it effec-
tively controls the petrologic processes of metasomatic re-
actions, forming various types of metasomes. The fusibility
of the reaction products ensures that it is easy to melt and to
become the major source of subduction-related magmas. On
the other hand, it significantly affects the composition of arc
magmas, accelerates arc magmatic evolution and promotes
continental crustal growth (Su et al., 2019; Zheng et al.,
2020).
Slab-derived components may be supercritical fluids at

given depth of subduction (Kessel et al., 2005; Mibe et al.,
2011; Kawamoto et al., 2012). This is because with in-
creasing pressure and temperature (above the second critical
point), hydrous fluid and hydrous silicate melt become
completely miscible and one single phase, which has element
transport capability similar to melts (Kessel et al., 2005).
Although water and silicate contents in this miscible phase
mostly vary between 30 and 70 wt% (Ni et al., 2017), it can
have strong element solubility only when complete mis-
ciblization of hydrous fluid and hydrous melt takes place
(Zheng, 2019). It should be pointed out that supercritical
fluids cannot stay long at mantle depth and during its ascent
it will decompress again to form separate hydrous fluid and
hydrous silicate melt (Kawamoto et al., 2012). This probably
accounts for the presence of several subduction components
in the mantle source of arc basalts.
In addition to hydrous fluid and hydrous melt, CO2-bearing

fluids or carbonatite melt can also metasomatize the mantle.
It remains hotly debated as to the mechanism of dec-
arbonization of subducting plate and its contribution to arc
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basalts. Studies on melt inclusions of arc basalts and volcanic
gases suggest that primary arc basalts contain at least >3000
ppm CO2 (Wallace, 2005; Blundy et al., 2010). Studies on
sub-arc mantle xenoliths (Kamchatka arc, Kepezhinskas and
Defant, 1996) show that subducted carbonates react with
mantle wedge peridotites to form lherzolites or metasome
veins composed of apatite, amphibole and phlogopite, sug-
gesting obvious decarbonization during subduction (Sano
and Williams, 1996). However, phase equilibria experiments
and thermodynamic modeling predict that decarbonization
cannot take place during subduction due to the cold sub-
ducting slab (Dasgupta et al., 2004, 2005; Thomsen and
Schmidt, 2008; Tsuno and Dasgupta, 2011, 2012; Thomson
et al., 2016), and consequently a large amount of carbonates
can be transported to deep mantle via subduction. This is
apparently at odds with high CO2 contents in arc basalts and
petrologic evidence for carbonatite metasomatism of the sub-
arc mantle. In fact, mafic carbonatite is stable in the source of
arc basaltic magma at depth of 80–160 km and it does not
decarbonize significantly until in the mantle transition zone
(Dasgupta, 2013; Thomson et al., 2016). To account for such
discrepancy, Dasgupta (2013) put forward three mechanisms
including mélange diapir, decompression/melting of H2O
+CO2 rich sediments and hot subduction. New experimental
petrology and field observation lend supports to decom-
pression of carbonates promoted by defluidization of hy-
drous sediments, which result in significant decarbonization
of subducting slab at relatively shallow depths (Gorman et
al., 2006; Frezzotti et al., 2011; Ague and Nicolescu, 2014;
Duncan and Dasgupta, 2014). This mechanism potentially
accounts for high CO2 content in arc basalts.

5.2 Generation of arc basalts and evolution of magma
reservoir

It is generally accepted that melting of the mantle wedge at
subduction zones is triggered by ingression of volatile
components released from subducting oceanic plate (Tatsumi
et al., 1986; Tatsumi, 2005). At mid-oceanic ridges, de-
compression melting is induced by adiabatic upwelling of
the asthenospheric mantle which allows intersection of
geotherm and solidus (Klein and Langmuir, 1987). This
decompression melting mechanism can also explain melting
of sub-arc mantle (Tatsumi et al., 1983, Plank and Langmuir,
1988). Indeed, some arc basalts contain very low water
contents, in agreement with the decompression melting
model in the absence of water (Elkins-Tanton et al., 2001).
However, how the relatively solid mantle wedge decom-
presses is an unsolved problem. Only in some sub-arc en-
vironments, asthenosphere mantle can rise to the thinned
mantle wedge so that decompression takes place under an-
hydrous, high temperature conditions. For example, in the
Japanese arc, rapid, high angle subduction of oceanic plate

caused opening of back-arc basin-the Japan sea, during
which the asthenosphere mantle arises and melts due to de-
compression (Tatsumi et al., 1983). Melting mechanisms
other than decompression are needed to account for the
generation of hydrous magmas, including water-induced
melting and hydrous iso-thermal decompression melting
(Figure 9). No matter which process is, the precise de-
termination of solidus of wet peridotites is of critical im-
portance in understanding formation mechanism of arc
basaltic magmatism. So far, considerable difference exists
between different experiments. To solve this problem, ad-
ditional experiments work under different pressures and
temperatures are highly desired.
The formation of peculiar arc basalts requires special

mantle metasomatism or dynamic processes. For example,
the arc basalts carrying OIB characteristics are likely either
from a mantle wedge metasomatized by subduction-derived
melts, or enriched components in the mantle wedge or up-
welled mantle. Possible dynamic scenarios for generation of
such magmas include ridge subduction, slab window due to
slab breakoff (Mullen and Weis, 2013; Thorkelson et al.,
2011) or upwelling of deep mantle such as mantle plume
(Nakajima and Hasegawa, 2007), or partial melting of back-
arc mantle metasomes. Those arc basalts carrying MORB
signature is commonly formed in slab-window environment
created by ridge subduction (Cole and Stewart, 2009).
Once generated, basaltic magmas would experience a

series of evolution processes during their transport through
the mantle and the crust to the surface. The arc basalt-an-
desite-dacite-rhyolite assemblage is traditionally considered
as a result of fractional crystallization, coupled with crustal
contamination (AFC) or melting-assimilation-storage-
homogenization (MASH) of fluid-induced basaltic magma-
tism. However, recent studies show that magma reservoir in
the crust is mainly present in the form of crystal mush, rather
than in magma chamber full of melts as traditionally en-
visaged (e.g., Cooper and Kent, 2014; Cashman et al., 2017).
Because of rapid heat loss of magma in cold shallow crust
and the viscosity barrier caused by pressure-decrease in-
duced crystallization (Annen et al., 2006), single vertical
magma pulse does not allow the eruption. As a consequence,
large-scale volcanic eruption, especially supervolcanoe’s
eruption requires magma storage at certain scale in the
middle-upper crust (Bachmann and Bergantz, 2008). As
such, as for erupted basalt at the surface, its composition
evolution is not only dependent on its mantle source, but also
on pre-eruption processes. Taking high-Al arc basalt as an
example, the caveat is that they are formed as a result of
fractional crystallization of hydrous basalt during which
crystallization of plagioclase is delayed. However some ex-
periments show that relatively high pressure (0.7–1.2 GPa)
will also delay the crystallization of plagioclase in anhydrous
basaltic magmas (Gust and Perfit, 1987; Draper and John-
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ston, 1992; Husen et al., 2016; Villiger et al., 2004), in other
words, pyroxene crystallizes prior to plagioclase. As such
differentiation of some anhydrous magmas can also lead to
high-Al basalts (Gust and Perfit, 1987; Draper and Johnston,
1992; Villiger et al., 2004). Good example has been given by
Eason and Sinton (2006) who discovered anhydrous tho-
leiitic high-Al basalt at oceanic ridges formed by high
pressure fractionation of pyroxene.

5.3 Geochemical recycling associated with arc basaltic
magmatism

Subduction zone is the principle location of geochemical
recycling and is termed as subduction factory (Tatsumi,
2005). Here, sediments, oceanic crust and lithospheric
mantle, together with the materials sitting above the down-
going plate, are transported to deep mantle via subduction,
drag and subduction erosion. These deeply subducted ma-
terials would release fluids and/or melts to metasomatize the
overlying mantle wedge, or mechanically mix with the
mantle to form the source of arc basalts. Arc volcanism
brings these deeply subducted materials back to the surface
again (Figure10). Normal arc basalt is commonly char-
acterized by LILE and LREE enrichment, and HFSE and
HREE depletion (Figure 3), which is attributable to fluid
mantle metasomatism (e.g., Tatsumi, 2005; Zheng, 2019).
Tatsumi and Kogiso (2003) attributed the “arc signature” of
arc basalts as a result of ingression of fluids to the mantle
wedge, released by dehydration and progressive meta-
morphism of sediments and oceanic plate. In addition, evi-
dence exists for the involvement of melt components in arc

basalts, which are derived from sediments, basaltic oceanic
crust and the materials sitting above the downgoing slab
(Peacock et al., 1994; Elliott et al., 1997; Kay et al., 2005;
Wang et al., 2020; Zheng et al., 2020). Even the crustal
components in arc belts have been identified in many arc
basalts. For instance, Nd-Hf isotopic compositions argue
against trench sediments in the mantle source of arc basalts
in Central Mexico but require granodiorite recycled from
fore-arc through subduction erosion (Straub et al., 2015).
Hence, effective identification of recycled components in the
source of arc basalts, in particular, the estimation of flux of
recycled materials (Figure 10), represents a thematic issue in
geoscience.

5.4 Dynamic trigger of arc basalt formation and in-
itiation of plate tectonics

“The present is the key to the past” is the principle of
geology. Numerous studies compare Archean magmatic
rocks with modern arc magmas and then argue that plate
tectonics (i.e, oceanic subduction) occurred already in the
Archean, and the timing of initiation is constrained at 3.0–
2.5, 3.5–2.5 and >3.5 Ga (Shirey and Hanson, 1984; Smithies
et al., 2003, 2004; Martin et al., 2005, 2014; Hastie et al.,
2015). The core question related to the onset of plate tec-
tonics on Earth is when the plate tectonics which are similar
to modern subduction system started.
In Cenozoic subduction zones, the subduction of oceanic

plate not only forms the mantle wedge structure, but also
generates arc basalt from the mantle wedge (Figure 3). The
interaction between slab-derived melts and the mantle wedge
generates high-Nb or Nb-rich basalt, high magnesian ande-
site and adakites (Wang et al., 2020; and references therein).
Some basalts formed at ~3.0 Ga are found enriched in LILE
but depleted in HFSE. This finding led to the proposal that
the plate tectonics in the sense of modern subduction me-
chanism was initiated as early as in 3.0 Ga (Smithies et al.,
2003, 2004). Likewise, the discovery of the late Archean
assemblage of boninite-high-Mg andesite-Nb-rich basalts
and adakites, very similar to modern arc magmatic suites,
which resulted from strong interaction between oceanic slab-
derived melts and mantle wedge peridotites led to the pro-
posal that plate tectonics was already operational at least
since the late Archean (e.g., Polat and Kerrich, 2002;
Smithies et al., 2004; Martin et al., 2005, 2014).
Turner et al. (2014) found that the volcano-stratographic

sequence in 4.4 or 3.8 Ga green belt in Quebec, Canada are
geochemically comparable to those in IBM, a type example
of modern oceanic subduction zone. The basalts from this
stratigraphic sequence are characterized by flat REE and
HFSE, resembling fore-arc basalts which are formed as a
result of decompression melting of the asthenosphere sub-
sequent to the rupture of subducted oceanic crust. Accord-
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ingly they suggested that plate tectonics may have been in-
itiated as early as in 4.4 or 3.8 Ga. On the basis of the
presence of negative Nb and Ta anomalies and LILE-en-
richment in basalts of Archean (3.5–3.3 Ga) Onverwacht
greenstone belt in South Africa, Furnes et al. (2013) specu-
lated an origin by partial melting of a sub-arc mantle. In this
sense, the early Archean already saw the operation of plate
tectonics involving modern subduction system. Never-
theless, all these inferrences are geochemistry-based and
require further supporting evidence from tectonics, sedi-
mentology, and high-pressure to ultrahigh pressure meta-
morphism. The geodynamic mechanism by which arc basalts
are generated and the initiation of plate tectonics on Earth
remain one of unsolved major scientific problems in
geoscience community.
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