
1. Introduction
Stable isotopes (e.g., δ18O and δ13C) and elemental ratios (e.g., Sr/Ca, Mg/Ca, U/Ca) in massive reef-building 
coral skeletons are excellent proxies for tracing past seawater environments, such as surface seawater tem-
perature (SST) and surface seawater salinity, thus are widely used in the reconstruction of tropical ocean 
paleoclimate (Beck et al., 1992; Gagan et al., 2000; Lough, 2010; Smith et al., 1979). Advances in analytical 
instruments and techniques over the past two decades have allowed nontraditional stable isotopes to be 
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used as unique tracers of different cosmochemical, geological, and biological processes (Teng et al., 2017). 
Under such context, nontraditional stable isotopes have been broadly applied in coral geochemistry studies, 
including B (Pelejero et al., 2005; Wei et al., 2009), Ca (Bohm et al., 2006; X. F. Chen et al., 2016), Mg (Sae-
nger et al., 2013; Yoshimura et al., 2011), stable Sr (Fruchter et al., 2016; Rüggeberg et al., 2008), Mo (Voege-
lin et al., 2009; Z. B. Wang et al., 2019), Cr (Pereira et al., 2016), and Ba (Liu et al., 2019; Pretet et al., 2015). 
These isotopic systems have created new opportunities for coral-based paleoclimate research. For example, 
they may be used as proxies to identify climate and environmental changes (Bohm et al., 2006; Fruchter 
et al., 2016; Pelejero et al., 2005; Wei et al., 2009), responses of coral biological activities to climate change 
(X. F. Chen et al., 2016; Z. B. Wang et al., 2019) and oceanic elemental cycling (Liu et al., 2019).

Zinc (Zn) is a trace element in coral skeletons, which can be preserved in the aragonite skeleton by replacing 
Ca2+ during the calcification process of the coral (Esslemont, 2000; Fallon et al., 2002). In recent decades, 
Zn contents in coral skeletons have usually been used to track the pollution history of seawater during coral 
growth (Al-Rousan et al., 2007; T. R. Chen et al., 2010; Nour & Nouh, 2020; B. S. Wang et al., 2011). How-
ever, the characteristic and significance of Zn isotopes of coral skeletons have not been reported so far. Zn 
has five naturally stable isotopes: 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn (Rosman, 1972). Zn isotope composition is 
expressed in delta notation, that is, δ66Zn = (66Zn/64Znsample/66Zn/64Znstandard−1) × 1,000, which is the relative 
deviation of the 66Zn/64Zn ratio of a sample from Zn reference material in parts per 1,000.

Although excess Zn is toxic, Zn is still an essential nutrient element for coral growth because it is an impor-
tant cofactor for many enzymes (e.g., superoxide dismutase and carbonic anhydrase) in corals and endo-
symbiotic zooxanthellae, which are important for the photosynthesis of zooxanthellae and calcification of 
polyps (Ferrier-Pagès et al., 2005, 2018). Therefore, Zn isotopic fractionation may occur during its participa-
tion in biological activities of symbiotic zooxanthellae and coral polyps, and the heat stress-induced change 
in the Zn isotopic composition in coral symbionts and host tissues has been identified (Ferrier-Pagès et al., 
2018). Considering coral biological processes are largely controlled by the changes of environment in which 
they live, the coral skeletal δ66Zn could possibly be used as a proxy for climate and environmental change.

Aiming to explore the possibility of coral skeletal δ66Zn as a proxy for climate and environmental change, 
we measured monthly resolved δ66Zn and other geochemical proxies (Sr/Ca, δ18O, and δ13C) in the skeleton 
of a modern Porites coral from the Great Barrier Reef (GBR) of Australia to study the relationships between 
δ66Zn values and instrumental environmental parameters (SST, river runoff, and chlorophyll a concentra-
tion) as the coral grew. We also measured the bulk δ66Zn values in skeletons of different coral species from 
the Luhuitou (LHT) Reef in Sanya Bay of the northern South China Sea (SCS) to identify possible Zn iso-
topic fractionation related with coral biological activities. According to current knowledge, this is the first 
study reporting the Zn isotope compositions in shallow-water coral skeletons, which will benefit the under-
standing of the Zn isotope fractionation in biogenic carbonate and the developing of new potential proxy in 
coral-based climate and environmental research.

2. Materials and Methods
2.1. Coral Sampling

The GBR coral core 10AR2 was extracted in April 2010 using an underwater pneumatic drill from a living 
Porites colony at a water depth of ∼ 4 m on the Arlington Reef (16°38′17″S, 146°06′13″E), which is a mid-
dle-shelf crescentic reef located ∼44 km offshore from the Barron River mouth in northeastern Australia 
(Figures 1a and 1b). The coral core was first cut into slabs of 7 mm thick. Then, X-ray photographs were tak-
en to reveal regular and well-defined annual density bands, which were used to guide the subsampling pro-
cess. Next, the coral slabs were soaked in 10% H2O2 for 24 h to remove organic matter followed by ultrasonic 
cleaning in deionized water for 30 min (×3 times) to remove surface contaminates (Wei et al., 2007). Powder 
samples for geochemical analysis (Sr/Ca, δ13C, δ18O, Zn content, and δ66Zn) were collected from the top of 
the skeleton at 1–2 mm intervals along the main growth axis using a milling machine with a high speed steel 
drill bit, and ultrapure water and dust-free paper were used to clean the drill bit between sample collections. 
A total of 52 subsamples were collected, covering a time span of ∼4–5 years. Each subsample was further 
ground using an agate mortar to evenly mix the sample, and the pestle and mortar were washed with dilute 
acid and ultrapure water to avoid cross-contamination between samples. The coral core had been previously 
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used for monthly to annual resolution studies of elemental ratios and isotopic compositions, including Sr/
Ca, Mg/Ca, δ13C, δ18O, δ44/40Ca, and δ98Mo (X. F. Chen et al., 2016; Deng et al., 2014; Z. B. Wang et al., 2019).

Six different species of living scleractinian corals were used for the bulk skeletal δ66Zn analysis. These sam-
ples were collected in June of 2014 from the LHT Reef platform in Sanya Bay located at the southernmost 
edge of Hainan Island in the northern SCS (18°12′-18°13′, 109°28′-109°30′E; Figures 1a and 1c), and have 
been used to investigate δ98Mo compositions in coral reef systems (Z. B. Wang et al., 2019). The sampling 
work was carried out on the same reef platform by divers at a water depth of ∼5 m, which means that these 
samples were grown under similar environmental conditions. Pretreatments of these samples followed the 
strategy described above for the coral core 10AR2.

2.2. Geochemical Analysis

Zn content analyses were performed on a Thermo Fisher iCAP RQ inductively coupled plasma-mass spec-
trometry at Guizhou Tongwei Analytical Technology Co., Ltd. Approximately 50 mg of each coral powder 
sample was poured into a Teflon PFA beaker which was preadded with 0.5 ml ultrapure water. After 15.34 
N HNO3 was added dropwise into the beaker until there was no foaming, an additional 300 μl was added 
to ensure complete digestion of the sample. The dissolution was maintained on an oven at 90°C for half an 
hour, and after cooling down, 5 ml 2% HNO3 was added into the digested sample solution. Finally, sample 
solution was diluted to 2,000 times with 2% HNO3 and added with 6 ppb Rh, In, and Re internal spikes. 
USGS standard W-2a was used as reference standard and crossed checked with Basalt, Hawaiian Volcanic 
Observatory-2 and other reference materials. Instrument drift and mass bias were corrected with internal 
spikes and external monitors. The external precision for Zn content was generally better than 1.52% (relative 
standard deviation [RSD]).

The separation and measurement of Zn isotopes in coral samples were carried out following the methods 
described by J. B. Chen et al. (2009). Acids used in this study were further purified by subboiling distillation 
in Teflon stills. All solutions were prepared with ultrapure water (18.25 MΩ·cm resistivity) obtained from 
a Millipore water purification system. All work was carried out under clean laboratory conditions in “class 
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Figure 1. Satellite image of the sampling site for coral samples. (a) Regional location map of the GBR and Sanya Bay, Hainan Island, (b) the 10AR2 sampling 
site in Arlington Reef, (c) the LHT coral sampling site. Yellow stars indicate sampling locations. Red solid circles represent the observation locations for the data 
of Barron River runoff (A), chlorophyll a (B), and SST (C), and they are about 55, 8.5, and 10 km away from the sampling site of coral 10AR2, respectively. GBR, 
Great Barrier Reef; LHT, Luhuitou; SST, surface seawater temperature.
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100” clean hoods. First, ∼0.2 g of fine coral powder was directly dissolved in 3 ml 6N HCl and was evapo-
rated to dryness. Then, the evaporated sample was dissolved in 1.2 ml 6 N HCl again and used for further 
chemical separation. Finally, an aliquot of the dissolved sample (1 ml) was loaded onto a column filled 
with 1.6 ml AGMP-1M anion resin (Bio-Rad). After matrix elution with 10 ml 6 N HCl, Cu, Fe, and Zn were 
collected from 20 ml 6 N HCl, 10 ml 2 N HCl, and 10 ml 0.5 N HNO3, respectively. The final Zn fraction was 
evaporated and conditioned for isotopic measurement (dissolution in 2% HNO3 and Cu addition).

Zn isotopic analyses were carried out using a Neptune Plus multiple-collector ICP-MS (Thermo-Fisher Scien-
tific). All Zn isotope ratios were measured relative to the standard reference material Zn (Alfal Aesar solution) 
from the Institut de Physique du Globe de Paris (IPG) and reported relative to the Johnson Matthey (JMC) 
Lyon Zn isotopic standard (δ66ZnIPG/JMC = 0.04 ± 0.03%, Guinoiseau et al., 2016). Replicate analyses of the 
NIST SRM 683 standard yielded a reproducibility of 0.06% (δ66ZnSRM683/JMC = 0.11 ± 0.06%, n = 131, n is rep-
licated times of the same solution, 2 standard deviation [SD]). In addition, coral standards JCp-1 (an interna-
tional coral standard sample, Inoue et al., 2004) and AR-std (an in-house coral standard sample) were repeat-
edly measured in this study using the above chemical and analytical protocols for quality control. The δ66Zn 
values of JCp-1 and AR-std were −0.05 ± 0.12% (n = 6, 2 SD, n is replicated times of the whole procedure) and 
0.56 ± 0.10% (n = 6, 2 SD, n is replicated times of the whole procedure), respectively, which are first reported 
in this study. The total Zn procedural blank was less than 10 ng, representing <10% of all Zn in the samples.

Coral skeletal δ18O and δ13C analyses were conducted using a GV Isoprime II stable isotope ratio mass 
spectrometer coupled with a MultiPrep carbonate device that used 102% H3PO4 at 90°C to extract CO2 from 
the coral samples following the procedures described by Deng et al. (2009). Isotope data were normalized 
to Vienna Pee Dee Belemnite using the NBS-19 standard. Multiple measurements conducted based on this 
standard yielded a reproducibility of 0.05% for δ13C and of 0.07% for δ18O.

Analyses of Sr/Ca ratios were conducted on a Varian Vista Pro inductively coupled plasma atomic emission 
spectrometer using the method reported by Wei et al. (2007). The standard reference material for calibra-
tion is the JCp-1 Porites standard. All Sr/Ca data were normalized to JCp-1 with Sr/Ca = 8.838 mmol/mol 
(Hathorne et al., 2013). Replicate analyses of an in-house Porites coral standard solution BH-7 showed ex-
cellent levels of reproducibility with an external precision of 0.16% (RSD).

2.3. Chronology Construction

To perform a comparative study of coral skeletal δ66Zn values and other geochemical proxies or monthly 
instrumental records, the chronological years of the coral 10AR2 were constructed using the Sr/Ca ratios 
which track changes in ambient seawater temperature and while assuming that each Sr/Ca cycle represents 
1 year (Deng et al., 2009; X. J. Wang et al., 2018). Minima of Sr/Ca ratios were assigned to the start of each 
year, which is generally the hottest period (January) in the southern hemisphere. Monthly data from each 
chronological year were obtained by linear interpolation (for an annual cycle with <12 data points) or near-
est neighbor smoothing (for an annual cycle with >12 data points) in each Sr/Ca cycle assuming the linear 
growth of corals (X. J. Wang et al., 2018). According to the drilling time and after removing the upper three 
data points that may be subject to organic contamination, the final growth chronology for this study was 
assigned to January 2006 to January 2010.

2.4. Climatic and Environmental Records

As recent in situ instrumental climatic and environmental records for the Arlington Reef were not avail-
able, those from neighboring areas were employed to evaluate the controlling factors and fractionation 
mechanisms of δ66Zn in the skeleton of the 10AR2 coral. Monthly SST data at a 0.01° spatial resolution 
centered on 16.71°S, 146.16°E were extracted from the Multiscale Ultra-high Resolution SST data set 
(https://coastwatch.pfeg.noaa.gov/erddap/griddap/jplMURSST41mday.html). Monthly resolution Barron 
River runoff records for the nearest Myola station (∼27.1 km away from the Barron River estuary) were ac-
quired from the Water Monitoring Information Portal of the Queensland Government (https://water-mon-
itoring.information.qld.gov.au/). Monthly chlorophyll a (Chl a) concentrations at a 0.1° spatial resolution 
centered on 16.71°S, 146.13°E were obtained from the Sea-viewing Wide Field-of-view Sensor data set 
(https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdSW2018chlamday.html).
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2.5. Statistical Analysis

To explore potential factors affecting the Zn isotopic variations in coral skeletons, correlation analyses were 
performed between the monthly δ66Zn and geochemical and instrumental parameters by the Excel Pearson 
function. As serial correlation in time series regression will reduce the degrees of freedom for the calcula-
tion of the significance level, the p values were calculated according to Hu et al. (2017) to avoid overestima-
tion of significance level.

3. Results
The geochemical results for 10AR2 are reported in Table 1 and plotted in Figure 2. Skeletal Zn content rang-
es from 0.38 to 2.54 μg/g with an average of 0.77 μg/g (Figure 2a). With the exception of sample 10AR2-50, 
which shows abnormally high levels of Zn content relative to the other samples, all other 10AR2 samples 
have a Zn content level of less than 2 μg/g (Figure 2a). Therefore, this sample is an outlier and will not be 
considered in the following discussion of the data. The δ66Zn values in the skeleton of 10AR2 do not have 
pronounced annual cycles showing in Sr/Ca, δ18O, and δ13C time series over time, and display a large varia-
tion of 0.62% (from −0.01% to 0.61%) with an average of 0.39 ± 0.27% (n = 52, 2 SD, Figure 2).

Based on the chronological frame constructed by Sr/Ca ratios, other monthly geochemical time series in-
cluding δ18O, δ13C, and δ66Zn series for January 2006 to January 2010 for the 10AR2 coral were obtained by 
linear interpolation or nearest neighbor smoothing, and they are shown with monthly instrumental climat-
ic and environmental records including SST, river runoff, and Chl a concentration records for the same time 
period (Figure 3). Although some of the correlations are significant, the strengths of linear correlation be-
tween δ66Zn values and other climate and environmental proxies and instrumental environmental variables 
are weak or very weak (i.e., r values are far from +1 or −1; Figure 4).

The elemental contents and isotopic compositions of Zn in the skeletons of six different coral species in 
LHT are listed in Table 2 and plotted in Figure 5. Significant interspecies differences are found in both Zn 
and δ66Zn values, which range from 0.20 to 9.39 μg/g and from −0.20% to 0.13%, respectively.

4. Discussion
4.1. Temperature

Correlations between the δ66Zn time series of 10AR2 coral and Sr/Ca, δ18O, and SST are poor (Figure 4), 
which suggests that temperature cannot be a predominant factor in controlling the variations in skeletal 
δ66Zn. The correlation between δ66Zn values and SST records were found to be statistically significant (r = 
−0.38, n = 49, p < 0.01, Figure 4d), showing that SST may possibly affect changes in skeletal δ66Zn. Howev-
er, the linear regression of SST and δ66Zn produced a small slope (−0.028%/°C, Figure 4d), indicating that 
δ66Zn sensitivity to SST is not strong. Satellite records show that the overall seasonal variation amplitude of 
SST is ∼ 6°C for the studied period, which can result in an isotope variation of roughly 0.17%. The predicted 
amplitude is much smaller than the observed range of 0.62% in the skeleton of coral 10AR2. This means that 
even temperature plays a role, monthly SST changes can explain only 14% of Zn isotope variation observed 
in the skeleton while fractionation may be predominantly caused by other factors. Previous studies have 
demonstrated that the incorporation of some trace metals (e.g., Mg and Sr) into coral skeleton aragonite is 
temperature-dependent (Armid et al., 2011; Cohen & Gaetani, 2010; Kinsman & Holland, 1969). However, 
the effect of temperature on the distribution coefficient (Kd) of Zn between seawater and coral aragonite is 
not significant (Jiang et al., 2020). Thus, the weak correlation between SST and δ66Zn may also result from 
the weak temperature dependence of the Kd of Zn between seawater and coral aragonite.

4.2. Changes in Seawater δ66Zn

The skeleton of the coral forms by precipitation from the calcifying fluid in its semiclosed calcification space 
(Tambutté et al., 2011), and seawater can enter the calcification space to form the most basic calcifying 
fluid compositions (Gaetani & Cohen, 2006; Gagnon et al., 2007, 2012; Tambutté et al., 2011). Therefore, 
the composition of calcifying fluid may inherit some of the characteristics of seawater and the Zn isotopic 
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Sample name δ13C (%) δ18O (%) Sr/Ca (mmol/mol) Δδ18O (%) Zn content (μg/g) δ66Zn (%) 2SD N

10AR2-1 −3.44 −4.79 8.998 −0.52 0.75 0.28 0.05 3

10AR2-2 −3.30 −5.02 8.964 −0.61 0.53 0.31 0.04 2

10AR2-3 −3.03 −5.23 8.871 −0.46 0.44 0.24 0.14 2

10AR2-4 −2.89 −5.34 8.865 −0.55 0.38 0.27 0.04 2

10AR2-5 −3.08 −4.93 8.896 −0.26 0.51 0.19 0.17 2

10AR2-6 −3.38 −4.67 9.035 −0.55 0.56 0.45 0.06 2

10AR2-7 −3.59 −4.36 9.061 −0.34 0.63 0.47 0.09 2

10AR2-8 −3.74 −4.43 9.011 −0.21 0.64 0.30 0.11 2

10AR2-9 −3.61 −4.23 9.090 −0.32 0.65 0.49 0.07 2

10AR2-10 −3.50 −4.60 9.042 −0.51 0.57 0.30 0.03 2

10AR2-11 −3.20 −4.89 8.965 −0.50 0.54 0.23 0.14 2

10AR2-12 −3.21 −5.17 8.904 −0.53 0.52 0.32 0.05 2

10AR2-13 −3.01 −5.04 8.911 −0.43 0.51 0.47 0.09 2

10AR2-14 −2.74 −4.95 8.905 −0.31 0.56 0.36 0.01 2

10AR2-15 −2.58 −4.77 8.924 −0.21 0.72 0.21 0.07 2

10AR2-16 −2.65 −4.61 8.962 −0.20 0.69 0.32 0.01 2

10AR2-17 −2.85 −4.55 8.998 −0.29 0.74 0.41 0.00 3

10AR2-18 −3.06 −4.24 9.065 −0.24 0.78 0.37 0.06 2

10AR2-19 −3.37 −4.31 9.063 −0.30 0.97 0.43 0.01 2

10AR2-20 −3.69 −4.38 9.102 −0.53 0.96 0.36 0.01 3

10AR2-21 −3.69 −4.43 8.981 −0.10 0.74 0.52 0.01 2

10AR2-22 −3.51 −4.69 8.949 −0.22 0.71 0.44 0.11 2

10AR2-23 −3.38 −4.74 8.893 −0.06 0.99 0.21 0.05 2

10AR2-24 −3.49 −4.93 8.813 0.07 0.62 0.09 0.03 2

10AR2-25 −3.55 −4.86 8.864 −0.06 0.74 0.38 0.03 2

10AR2-26 −3.44 −4.89 8.922 −0.32 0.61 0.46 0.02 2

10AR2-27 −3.34 −4.82 8.932 −0.29 0.70 0.51 0.06 2

10AR2-28 −3.53 −4.65 9.018 −0.46 0.75 0.58 0.00 2

10AR2-29 −3.24 −4.61 9.004 −0.37 0.79 0.26 0.02 2

10AR2-30 −3.19 −4.54 8.978 −0.19 0.92 0.35 0.01 2

10AR2-31 −3.32 −4.42 9.087 −0.51 0.86 0.52 0.02 2

10AR2-32 −3.44 −4.36 9.113 −0.55 0.99 0.55 0.06 3

10AR2-33 −3.68 −4.25 9.123 −0.48 0.91 0.45 0.01 2

10AR2-34 −3.79 −4.60 9.135 −0.88 0.80 0.51 0.03 3

10AR2-35 −3.95 −4.74 9.135 −1.01 0.88 0.57 0.02 2

10AR2-36 −3.82 −4.96 9.004 −0.71 0.83 0.57 0.03 2

10AR2-37 −3.53 −5.12 8.978 −0.77 0.83 0.54 0.07 2

10AR2-38 −3.52 −5.26 8.939 −0.76 0.80 0.56 0.05 2

10AR2-39 −3.32 −5.18 8.948 −0.71 0.68 0.47 0.06 2

10AR2-40 −3.06 −5.01 8.845 −0.14 0.67 0.51 0.04 2

10AR2-41 −2.94 −5.03 8.856 −0.20 0.76 0.47 0.05 2

10AR2-42 −2.96 −4.85 8.841 0.04 0.68 0.39 0.03 2

10AR2-43 −3.01 −4.76 8.981 −0.42 0.82 0.29 0.01 2

Table 1 
Geochemical Results for 10AR2 Coral Core
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composition of seawater is likely to affect the δ66Zn values of coral skeletons. It has been found that seasonal 
variations in δ66Zn occur in the upper water column (0–150 m), with heavier δ66Zn values in the late autumn 
than in the summer (Samanta et al., 2017). Therefore, effects of river input and biological uptake were 
studied to determine whether the monthly variations of skeletal δ66Zn are derived from those in seawater 
δ66Zn, as they may play a role in the monthly variations of coral skeletal δ66Zn by affecting the chemical 
composition of seawater.

4.2.1. River Input

The Arlington Reef lies ∼44 km offshore from the Barron River, which is the largest river on the northeast 
coast of Australia. Thus, river input from the Barron River may modify the chemical compositions of reef 
water. Considering that no δ66Zn data are available for Barron River water and the total amount of Zn and 
the δ66Zn in seawater would be altered by seasonal changes in river runoff, the correlation between coral 
δ66Zn and river runoff was analyzed. However, there is no significant relationship between the two parame-
ters (Figure 4e), indicating that the impact of freshwater input may not be the main reason for the seasonal 
change in skeletal δ66Zn. Even so, it should be noted that Zn content and δ66Zn in river water may change 
depending on climatic conditions and weathering mechanisms (e.g., Little et al., 2019), so the explanation 
on the correlation between coral δ66Zn and river runoff should be cautious.

Residual δ18O (Δδ18O), a proxy for river runoff (McCulloch et al., 1994), was also used to assess the effect of 
runoff on coral skeletal δ66Zn (Table 1). The Δδ18O was calculated by subtracting the effect of temperature 
from coral δ18O using the equation     

 
18 18

18 Sr /Caδ O
δ O dδ O / dT T T  (Gagan et al., 1998). In the equa-

tion, dδ18O/dT is the slope (0.23%/°C) reported by Gagan et al. (2012), and 18δ O
T  and TSr/Ca are the apparent 

temperatures from the δ18O values and Sr/Ca ratios, respectively. The Sr/Ca-SST relationship was employed 
from Deng et al. (2014). The weak correlation between interpolated Δδ18O and interpolated δ66Zn of 10AR2 
(r = −0.31, n = 49, p < 0.05) also shows that the role of changes in seawater δ66Zn by river runoff in coral 
skeletal δ66Zn is likely limited.

4.2.2. Biological Uptake

Zn is the second most prevalent micronutrient in phytoplankton biomass, playing a fundamental role in 
DNA replication and transcription and serving as a cofactor in carbonic anhydrase and alkaline phos-
phatase enzymes (Weber et al., 2018). It has been reported that phytoplankton in the upper seawater col-
umn generally absorb lighter 64Zn at a faster rate relative to its heavier counterparts (Gelabert et al., 2006; 
John & Conway, 2014; John et al., 2007; Samanta et al., 2018), leaving the heavier δ66Zn composition in 
surface seawater (Bermin et al., 2006; John & Conway, 2014; Zhao et al., 2014). As bioabsorption increases, 
more 64Zn is absorbed, and the δ66Zn in seawater becomes heavier. Therefore, the δ66Zn value of seawater 
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Table 1 
Continued

Sample name δ13C (%) δ18O (%) Sr/Ca (mmol/mol) Δδ18O (%) Zn content (μg/g) δ66Zn (%) 2SD N

10AR2-44 −2.97 −4.64 9.006 −0.40 0.82 0.42 0.00 2

10AR2-45 −3.10 −4.53 9.002 −0.28 0.85 0.51 0.02 2

10AR2-46 −3.07 −4.56 9.121 −0.78 0.73 0.48 0.02 2

10AR2-47 −3.28 −4.63 9.130 −0.89 0.88 0.61 0.05 2

10AR2-48 −3.47 −4.69 9.035 −0.57 0.89 0.56 0.01 2

10AR2-49 −3.43 −4.80 8.956 −0.36 0.85 0.30 0.05 2

10AR2-50 −3.31 −5.02 8.998 −0.75 2.54 −0.01 0.06 3

10AR2-51 −3.18 −5.08 8.926 −0.52 1.05 0.48 0.02 3

10AR2-52 −3.04 −5.24 8.897 −0.57 0.84 0.23 0.02 3

Note. N is replicated times of the same solution.
Abbreviation: Zn, zinc.
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should show similar seasonal changes with the seasonal variation of surface marine productivity (Samanta 
et al., 2017), which may affect the δ66Zn composition of coral skeletons.

The concentration of Chl a in water is generally considered to represent the biomass of phytoplankton with 
higher Chl a concentrations denoting the presence of more phytoplankton, and higher concentrations of 
Chl a are often observed during warm seasons (Ye et al., 2017). Here, we compared the relationship between 
coral δ66Zn and Chl a concentrations (Figures 3d and 3g) and found the correlation to be very weak (r = 
0.18, n = 39, p > 0.05, Figure 4f). Moreover, as biomass increases during the warm season, the δ66Zn of 
seawater should theoretically become higher. If changes in seawater δ66Zn are responsible for controlling 
the monthly variations in δ66Zn in coral skeletons, then skeletal δ66Zn should be positively correlated with 
SST, which runs contrary to the weak negative correlation between coral δ66Zn and SST (Figure 4d). Thus, 
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Figure 2. Test results for various geochemical parameters of the 10AR2 coral skeletal samples and coral ages as the 
sample number increases. (a) Zn content, (b) δ66Zn values, (c) Sr/Ca ratios, (d) δ18O values, (e) δ13C values. The error 
bars for Zn content are too short to be visible. Zn, zinc.
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in combining these two points, we can infer that the change in seawater δ66Zn caused by external biological 
uptake is not the main reason for the monthly variations in skeletal δ66Zn.

4.3. Internal Biological Processes

For zooxanthellate corals, calcification depends on a mutualistic partnership between coral and endosym-
biotic zooxanthellae (Cohen & McConnaughey, 2003; McCulloch et al., 2017), and so variations of geo-
chemical proxies in coral skeletons are inevitably affected by biological effects (i.e., vital effect) of coral and 
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Figure 4. Relationship between interpolated δ66Zn data of 10AR2 and other climate proxies and instrumental 
environmental variables: (a) Sr/Ca values, (b) δ18O values, (c) δ13C values, (d) SST data, (e) Barron River runoff data, (f) 
chlorophyll a concentration data. SST, surface seawater temperature; Zn, zinc.
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Figure 3. Interpolated geochemical time series of 10AR2 coral skeletal samples and corresponding instrumental 
records for the period 2006–2010. (a) Sr/Ca ratios, (b) δ18O values, (c) δ13C values, (d) δ66Zn values, (e) satellite SST 
(plotted on an inverted scale on the y axis), (f) Barron River runoff, (g) chlorophyll a concentration. SST, surface 
seawater temperature; Zn, zinc.
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zooxanthellae. It has been demonstrated that Zn is involved in multiple 
biological processes in corals and notably acts as a cofactor in enzymatic 
photosynthetic reactions (Houlbreque et al., 2012). Therefore, the frac-
tionation of Zn isotopes in coral skeletons may be related to the role of 
Zn in internal biological activities, and fractionation may occur during 
its participation in various metabolic activities. Skeletal δ13C is generally 
considered to be mainly affected by vital effects (X. F. Chen et al., 2016; 
McConnaughey et al., 1997; Swart et al., 1996). Thus, we compared the 
skeletal δ13C with the skeletal δ66Zn of coral 10AR2 and found a weak but 
significant correlation between them (r = −0.30, n = 49, p < 0.05, Figure 
4c), which means that variations in skeletal δ66Zn may possibly be reg-
ulated by internal biological processes occurring in the coral organism. 
On the other hand, δ66Zn compositions and Zn content in the skeletons 
of different coral species in the LHT reef have significant interspecies 
differences (Figure 5, Table 2). Since these corals grew under identical 
natural environments, the interspecific differences in Zn content and iso-

tope composition should not be attributable to environmental variables and may be triggered by the internal 
metabolic and biological regulation of the corals themselves.

A recent study found a significant increase in the δ66Zn signature of symbionts and host tissues (polyps) at 
high temperatures (Ferrier-Pagès et al., 2018), and it is believed that such isotopic variations can be related 
to an increase in reactive oxygen species (ROS) by thermal stress in coral tissue (Cunning & Baker, 2013; 
Ferrier-Pagès et al., 2018). ROS is a by-product of normal cell metabolism in plants and animals (Karup-
panapandian et al., 2011; Thannickal & Fanburg, 2000; Turrens, 2003), but it is a core biological constituent 
and regulates the metabolic changes of zooxanthellae and coral hosts (Suggett & Smith, 2019). Meanwhile, 
metabolic changes caused by external environmental factors in turn cause fluctuations in the “ROS res-
ervoir” of the coral holobiont, which affects the absorption of nutrients and the physiological functions 
of certain substances in the coral holobiont (e.g., protein, lipids, and DNA; Suggett & Smith, 2019). For 
example, under high temperature stress, the balance between the production and elimination of ROS will 
be disturbed (Ferrier-Pagès et al., 2018; Karuppanapandian et al., 2011). When cells produce more ROS than 
their antioxidant capacity allows, the excess ROS will damage macromolecules such as lipids, proteins, and 
DNA (Thannickal & Fanburg, 2000). In the process of destruction, as light isotopes create weaker links with 
molecules than heavy isotopes (Schauble, 2004), bonds with light isotopes are more easily disrupted by ROS 
and are preferentially released from polyps and zooxanthellae, resulting in heavier δ66Zn in coral tissue and 

symbionts (Ferrier-Pagès et al., 2018). The released light isotopes of Zn 
may then be actively transported along with Ca2+ from the coelenteron 
to calcifying fluid for calcification via the Ca-ATPase pump (Nakamura 
et al., 2013), leading to lighter δ66Zn in coral skeletons.

Although the negative correlation between SST and δ66Zn is weak, the 
discovery that δ66Zn in coral skeletons decreases with increasing tem-
perature is in agreement with Ferrier-Pagès et al. (2018)'s finding that 
elevated δ66Zn in coral tissues and zooxanthellae during heat stress 
events. These phenomena reflect the biogeochemical cycling of Zn 
within corals and the coordinated integration of tissues, zooxanthellae, 
and skeletons. Thus, we suggest that when temperatures increase the 
light Zn isotopes released from coral tissue and zooxanthellae are im-
ported and preserved in the coral skeleton, leading to depleted skeletal 
δ66Zn results and vice versa (Figure 6). It is possible that the 10AR2 coral 
did not undergo severe thermal stress during the study period, so the 
correlation between SST and δ66Zn is weak. Even though their correla-
tion is not strong, the minima of δ66Zn almost always occurred during 
warm summers (Figures 3d and 3e). Therefore, the monthly variation 
in skeletal δ66Zn would likely result from the changes in the metabol-
ic intensity of polyps and zooxanthellae, and the correlation between 

XIAO ET AL. 11 of 14

10.1029/2020GC009430

Figure 5. The δ66Zn values and Zn content of different coral species from 
the Luhuitou reef. Zn, zinc.
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Sample name Species Zn content (μg/g) δ66Zn (%) 2SD N

LHT001 Porites 0.20 −0.20 0.05 2

LHT002 Fungia 1.16 −0.14 0.06 3

LHT003 Hydnophora 1.27 −0.10 0.03 3

LHT004 Montipora 9.39 0.02 0.06 3

LHT005 Acropora 1.75 0.13 0.01 3

LHT006 Pocillopora 2.24 0.01 0.03 3

Note. N is replicated times of the same solution.
Abbreviations: LHT, Luhuitou; Zn, zinc.

Table 2 
The Elemental Content and Isotopic Compositions of Zn in Six Different 
Species of Corals in LHT Corals
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skeletal δ66Zn and SST originates from the fact that SST mediates the 
metabolic processes of polyps and zooxanthellae.

5. Conclusions
Our findings indicate that the internal biological activities of zooxan-
thellae and polyps may cause Zn isotopic fractionation recorded in shal-
low-water coral skeletons and are most likely responsible for monthly 
variations in skeletal δ66Zn rather than changes in the environmental 
conditions of surrounding seawater. We suggest that the amount of ROS 
produced by internal biological processes may induce Zn isotopic frac-
tionation in coral skeletons while environmental factors (e.g., SST) only 
partially affect changes in skeletal δ66Zn by mediating biological pro-
cesses. While the role of coral skeletal δ66Zn is limited as a proxy for pal-
eoenvironmental and paleoclimatic reconstruction, it may provide valu-
able insight into the responses of biological activities to environmental 
change. Given that a change in skeletal δ66Zn may be directly related 
to ROS and as we still know little about whether it can contribute to 
trace ROS changes, future culture experiments are needed to determine 
the intrinsic relationship between the δ66Zn variations of coral organism 
(tissue and zooxanthellae) and coral skeletons and the role of ROS.

Data Availability Statement
The data for this study are available in Mendeley: Xiao et al. (2020), 
Data for: A pilot study on zinc isotopic compositions in shallow-wa-
ter coral skeletons. Mendeley Data, v6 (http://dx.doi.org/10.17632/
ypyj4d5b5g.6).
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Figure 6. Conceptual illustration of Zn incorporated into coral skeletons. 
Free Zn2+ ions in the seawater enter the coral body (here using the 
endodermal layer containing symbiotic zooxanthellae as an example); some 
are absorbed and used by cells of polyps (yellow ovals) and zooxanthellae 
(green ovals) and some directly enter the calcifying fluid and coprecipitate 
with carbonate ions and are preserved in the coral skeletons. External 
environmental factors drive the metabolism of the coral holobiont, creating 
fluctuations in the intracellular reactive oxygen species (ROS; orange 
dots within the cells). Gray pentagons and ovals represent all substances 
containing Zn in the cell and isotopes (64Zn and 66Zn), respectively, and 
polygonal lines connecting pentagons with ovals represent chemical 
bonds with 64Zn and 66Zn. Relative to the bonds with 66Zn, excess ROS will 
preferentially destroy those with 64Zn. The 64Zn of broken bonds is released 
from the cells and then transported into the calcifying fluid for precipitation 
and preservation. The δ66Zn range (−1.10% ∼ 0.90%) of the surface seawater 
(<100 m depth) is from Conway and John (2014). Zn, zinc.
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