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ARTICLE INFO ABSTRACT

The Longhua Ni-Co deposit, hosted in Cambrian carbonaceous sandstone and siltstone in South China, consists
of disseminated niccolite mineralization and high-grade Ni-Co arsenides—quartz—carbonate vein mineralization.
The disseminated mineralization is characterized by niccolite hosted in the center of quartz fragments and in
argillaceous concretions in Cambrian banded pisolitic carbonaceous silty mudstone, and by parallel niccolite
grains in Cambrian pisolitic pelite. These characteristics indicate that the disseminated niccolite originated
through redeposition.

The Ni-Co vein mineralization forms high-grade ores and is composed mainly of Ni—-Co-arsenides. The
homogenization temperatures of fluid inclusions in the mineralized vein quartz range from 118 to 219 °C, with
corresponding salinities of 1.2 to 8.8 wt% NaCl equiv. The ore-forming fluids yield 8Dy.smow (%0) and 8'%01120
(%o) values of —54 to —66 and —3.0 to — 7.7, respectively, indicating that the source was circulating meteoric
water. The Longhua Ni-Co vein mineralization gives a niccolite Re-Os isochron age of 462.6 + 8.5 Ma
(MSWD = 1.03).

The geological and geochemical characteristics of the Longhua Ni—-Co deposit indicate that it formed as
follows. (1) Precambrian quartz-niccolite mineralization was eroded and transported to the Longhua sediment
trap, forming low-grade disseminated niccolite mineralization or Ni—Co rich source beds during the Cambrian.
(2) High-grade Ni-Co arsenide vein mineralization was formed by further enrichment of Ni-Co from the Ni-rich
source beds by circulated meteoric water during the Ordovician (Caledonian orogeny).

The formation of the Longhua low-temperature high-grade Ni-Co vein ore indicates that Ni can be trans-
ported in low-temperature fluids that are rich in arsenic and HCO;~ or CO52~. The Longhua Ni-Co deposit
might represent a new type of sedimentary hosted low-temperature hydrothermal Ni deposit.
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1. Introduction

Global Ni production is sourced mainly from two deposit types: (1)
magmatic Ni deposits, genetically associated with mafic or ultramafic
rocks in which the Ni was concentrated by sulfide-rich melts (Arndt
et al., 2005; Barnes and Lightfoot, 2005); and (2) lateritic Ni deposits,
formed by the weathering of Ni-rich magmatic silicates (e.g. Elias,
2002). Hydrothermal Ni deposits are rarer than magmatic and lateritic
Ni deposits, the majority being spatially associated with magmatic Ni
deposits or altered ultramafic-mafic rocks (e.g., Gonzalez-Alvarez et al.,
2013; Table 1). However, some hydrothermal Ni-Mo deposits have no
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genetic link with ultramafic-mafic rocks, such as the hydrothermal
stratiform black-shale-hosted Ni deposits in Southwest China, which are
hosted in a thin stratigraphic horizon of black shale and also contain
high concentrations of platinum-group-elements (PGE), Mo, Au, and Zn
(Coveney and Nansheng, 1991; Jiang et al., 2006; Lehmann et al., 2007;
Mao et al., 2002; Xu et al., 2013) (Fig. 1).

The Longhua Ni-Co deposit in Guangxi Province, Southwest China,
is small in scale and comprises quartz-niccolite veins in Cambrian
sandstones and siltstones with high concentrations of Ni (> 17%) and
Co (1.55%). It has a unique mineral assemblage, where Ni—Co arsenides
are the major ore minerals, which differ from that of stratiform black-
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Fig. 1. Simplified geological map of the South China Block and the locations of polymetallic Ni-Mo—-PGE-Au deposits hosted in black shale (modified after Mao et al.,

2002; Wang et al., 2013).

shale-hosted Ni deposits in Southwest China that consist mainly of
[Mo,Fe,Ni][S,As],C,, vaesite, bravoite, and jordisite (Jiang et al.,
2006). In this study, we describe the geological features of the Longhua
Ni-Co deposit, and we present Re-Os isochron age data for the niccolite
together with temperature and H-O isotopic composition data for the
ore-forming fluids. The aim of this work is to establish the nature of the
genetic processes involved in the formation of the Longhua Ni-Co de-
posit and discuss whether it is a new type of low-temperature hydro-
thermal Ni deposit. Our study provides an example of a low tempera-
ture (< 200 °C) hydrothermal Ni-Co deposit that formed over several
mineralizing events, and shows how this differs from hydrothermal Ni
deposits that form at temperatures of 250-600 °C. Our work also em-
phasizes the effects of As™ and CO,/HCO3;~ on Ni mobility and solu-
bility in low temperature environments.

2. Geological background

The South China Block (SCB) consists of the Yangtze Block in the
northwest and the Cathaysia Block in the southeast, separated by the
NE-striking Jiangshan-Shaoxing Fault (Fig. 1; Charvet et al., 1994;
Huang et al., 1980; Wang et al., 2010), formed during the Jinningian
subduction—collision event at 1000-860 Ma (Charvet et al., 1996; Li
and McCulloch, 1996). The relationship between the Yangtze and
Cathaysia blocks following the Jinningian subduction—collision event is
less clear. Some researchers suggest that the SCB remained intact (Li
et al., 2010a; Wang et al., 2006; Xu et al., 2000), whereas others have
argued that the SCB rifted apart along the line of Hunan-Jiangxi—
western Guangdong—eastern Guangxi provinces during the breakup of
Rodinia (after ~800 Ma), forming the early Paleozoic Huanan Ocean

(Hsii et al., 1990; Wang and Li, 2003) or an intercontinental basin
(Wang et al., 2006), and reassembled during the middle Paleozoic (Hsii
et al., 1990; Liu and Xu, 1994). The SCB has experienced at least four
major tectonic events since ~1000 Ma; i.e., the Jinningian (~970 Ma;
Charvet et al., 1996), Ordovician-Devonian Caledonian, late Per-
mian-Triassic Indosinian (Wang et al., 2006), and Jurassic-Cretaceous
Yanshanian tectonic events (eg. Li and Li, 2007). The Jinningian tec-
tonic event resulted in Proterozoic subduction—collision between the
Yangtze and Cathaysian blocks, resulting in the formation of the
Jiangshan-Shaoxing Fault (Fig. 1; Charvet et al., 1996). The Caledonian
tectonic event involved intracontinental collision that induced Ordo-
vician-Devonian magmatism, crustal thickening, and ductile deforma-
tion (Charvet et al., 2010; Chen et al., 2018; Li et al., 2010a). The In-
dosinian tectonic event probably resulted from intracontinental
orogenesis triggered by far-field stress resulting from collisions between
the Indochina and South China blocks, and between the North China
and South China blocks (Chen, 1999; Gao et al., 2017), which led to
crustal thickening and Triassic magmatism (Huang et al., 2017; Wang
et al.,, 2013; Wu et al., 2012). The Yanshanian event was initially
triggered by subduction of the Paleo-Pacific plate, followed by breakup
and rollback of the subducted Pacific plate (198-90 Ma), which induced
widespread magmatism and NNE-trending faults in the Cathaysia Block
(Huang et al., 2018; Li, 2000; Li and Li 2007; Li et al., 2018; Mao et al.,
2013).

The crystalline basement rocks of the Yangtze block yield zircon
U-PDb ages of 3.2-1.8 Ga (Gao et al., 1999; Qiu et al., 2000; Zheng et al.,
2006). The Cathaysian basement is largely Paleoproterozoic in age
(2.0-1.8 Ga) and is composed of greenschist- to lower amphibolite-fa-
cies gneisses, migmatites, and plagioclase amphibolites. In the SCB,
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Fig. 2. Schematic regional geology map of the Longhua Ni-Co deposit.

Neoproterozoic—Ordovician sediments unconformably or pseudo-con-
formably overlie basement rocks and are themselves unconformably
overlain by Middle-Upper Devonian strata (Xu et al., 2013). The early
Cambrian black shale (Niutitang Formation and stratigraphic equiva-
lents; Zhu et al., 2003) that unconformably overlies the Neoproterozoic
Dengying and stratigraphically equivalent formations are found in a
belt extending across Yunnan, Guizhou, Guangxi, Hunan, Jiangxi,
Anhui, and Zhejiang provinces (Fig. 1; Chen et al., 1982; Mao et al.,
2002; Zhu et al., 2003). The black shale sequences are rich in organic
matter (C, S and P), which possibly formed in anoxic, sediment-starved
euxinic basins along the passive margin of the Yangtze Block
(McKerrow et al., 1992; Steiner et al., 2001). A series of polymetallic
Ni-Mo-PGE-Au sulfide ores or ore occurrences (Re-Os ages of
560-532 Ma) are hosted in the lower Cambrian black shale along a
1,600 km-long, NE-SW trending belt in the eastern Yangtze Block
(Fig. 1; Xu et al., 2013). The ore minerals consist mainly of MoSC phase
([Mo,Fe,Nil[S,As].C;), vaesite, bravoite, and jordisite, with minor sul-
fides (Jiang et al., 2006). Previous studies indicated that the ore-
forming fluids were derived from submarine hydrothermal fluids
(Steiner et al., 2001; Jiang et al., 2006) or seawater (Mao et al., 2002;
Lehmann et al., 2007).

Numerous Pb-Zn deposits are hosted in Neoproterozoic to lower
Cambrian strata in Sichuan, Yunnan, Guizhou, Hunan, and Hubei pro-
vinces. These deposits were formed during the Caledonian (Fig. 1), and
yield Rb-Sr isochron ages ranging from ca. 410 Ma to 490 Ma (Duan
et al., 2014; Cao et al., 2015; 2018; Yang et al., 2015; Yu et al., 2017;
Du et al., 2018; Tan et al., 2018; Wang et al., 2018; Xiong et al., 2018).
The mineralization was considered by Xiong et al. (2018) to be Mis-
sissippi Valley type (MVT), and related to the collision between the
North China and South China blocks.

The Longhua Ni-Co deposit is located in the interior of the
Cathaysia Block, ~300 km northeast of the well-known stratiform
black-shale-hosted Ni-Mo-PGE-Au ore deposits of the SCB (Fig. 1;
Coveney and Nansheng, 1991; Jiang et al., 2006; Lehmann et al., 2007;
Mao et al., 2002) and the Caledonian MVT Pb-Zn deposits (Fig. 1).

3. Regional geological context

The exposed strata in the Longhua deposit and adjacent area consist
mainly of middle-late Proterozoic greenschist-facies metamorphic
rocks, Cambrian low-grade metamorphic rocks, and Devonian sand-
stone and siltstone (Fig. 2). The upper units of the middle-late

Proterozoic occur in the northwestern part of the region, > 100 km
away from the Longhua deposit (Fig. 2). The units consist of black
shale, siliceous rocks, and siliceous shale interlayered with dolomite.
These rocks contain locally lenticular phosphate ore and coal, and are
enriched in Ni, Mo, and V (GXBGMR, 1985). The Cambrian rocks are
composed of coarse sandstone, fine sandstone interlayered with silt-
stone, pisolitic pelite, and banded pisolitic carbonaceous pelite, all of
which have undergone low-grade metamorphism (GXBGMR, 1985).
Three layers of carbonaceous pelite occur in the middle Cambrian
basement, and Jurassic—Cretaceous siltstones and sandy conglomerates
occur sporadically in the north and south of the ore field (Fig. 2).

There is no evidence of active magmatism, and no ultramafic or
mafic rocks are found in the region (Figs. 2 and 3A). Most of the felsic
intrusions are Yanshanian in age (GXBGMR, 1985) and are exposed
within 100 km northeast and southeast of the Ni deposit, with the
Dishui granite being the only felsic igneous intrusion within the ore
field (Figs. 2 and 3A). Major faults in the region are NE-SW-trending,
with minor N-S- and E-W-trending faults (Fig. 2).

The Longhua Ni-Co deposit was discovered in 2010 (Li et al.,
2010b). Eight veins comprise the ore field, one of which has a proven
reserve of 3226 t of Ni at an average grade of 17.55% and 285 t of Co at
an average grade of 1.55% (December 2016 data, unmined resource).
The known mineralization depth of the ore vein is above 80 m depth in
one of the veins, and the mineralization in the remaining seven veins is
under-explored. Anomalous enrichment of nickel occur over a strike
length of > 1.8 km long (Fig. 3A), so the potential for additional dis-
coveries of mineralization at Longhua remains incompletely under-
stood.

The Longhua Ni-Co deposit contains disseminated Ni mineraliza-
tion (Fig. 3B, Fig. 4) and Ni-Co vein mineralization (Fig. 3B, Figs. 5 and
6).

The main ore mineral of the disseminated Ni mineralization is nic-
colite. This mineralization occurs predominantly in the Cambrian
banded pisolitic carbonaceous silty mudstone and the banded pisolitic
carbonaceous pelite. In the former, niccolite grains occur mainly in
argillaceous concretions (Fig. 4A) or are hosted by quartz fragments
(Fig. 4B). In the pisolitic pelite, the niccolite are occurred as isolated
grains, which are aligned with each other (Fig. 4C). The scale of the
disseminated mineralization is largely unknown, as disseminated nic-
colite is only observed in a small exploration tunnel.

The Ni-Co vein mineralization occurs predominantly as Ni-Co ar-
senides—quartz—calcite veins (Figs. 5 and 6) that dip to the NNE in the
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Fig. 3. (A) Simplified geological map of the Longhua Ni—Co deposit in Jinxiu County, Guangxi, China. A-A’ indicates the location of the cross-section shown in

Fig. 3B. (B) Schematic cross-section of the line A-A’.

Cambrian sandstones and siltstones (Fig. 3B). Eight ore veins have been
found in the Longhua ore field (Fig. 3A). The largest vein dips at 70°, is
~128 m long, and 1 m thick. The predominant ore mineral is niccolite
(NiAs), with minor amounts of gersdorffite [(Ni, Co)AsS], maucherite
(Ni;;Asg), cobaltite [(Co, Ni)AsS)], pentlandite [(Ni, Fe)S], skutterudite
[(Co, Ni)As,], chloanthite [(Ni, Co)As,], parkerite (NizBi,S,) (these
minerals are identified by electron probe analysis), chalcopyrite, pyrite,
and arsenopyrite (Fig. 6). The gangue minerals are quartz, chalcedony,
calcite, and sericite. Silica, carbonate, and sericite alteration is asso-
ciated with the Ni-Co mineralization.

The Longhua vein mineralization can be further subdivided into two
periods based on evidence that later vein mineralization cross-cuts early
vein mineralization (Fig. 6E, F). The later mineralization is character-
ized by small veins or veinlets and is only found locally in the ore veins,
suggesting that the Longhua Ni-Co vein ore is composed primarily of
early period mineralization, which yields a mineral assemblage of
niccolite with minor gersdorffite, maucherite, pentlandite, chalco-
pyrite, and pyrite (Fig. 6C, D). The late period mineralization contains
more gersdorffite, cobaltite, skutterudite, and parkerite (Fig. 6E, F),
suggesting that the Co content increases over time.
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Fig. 4. Representative photomicrographs showing disseminated Ni-mineralization in the Longhua Ni-Co deposit: (A) niccolite hosted in quartz fragments and in
argillaceous concretions in silty mudstone; (B) high-magnification view of a niccolite-bearing quartz fragment; and (C) aligned niccolite grains in pisolitic pelite.
Abbreviations: Nc = niccolite; Q = quartz.

Cambrian
siltstone

Ni-Co arsenide ore vein

Fig. 5. Representative photographs showing Ni-Co vein mineralization: (A) Ni—-Co arsenide-quartz—calcite vein cross-cutting Cambrian siltstone; (B) surface of Ni
arsenide altered to annabergite; (C) high-magnification view of annabergite; (D) Ni-arsenide (annabergite) and minor Co-arsenide ore associated with quartz—calcite
gangue; and (E) representative hand specimen of high-grade Ni-Co ore from drillcore. Abbreviations: Abg = annabergite; Nc = niccolite.
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4. Sampling and analytical methods

4.1. Sampling

To constrain the features of the ore-forming fluids and timing of
mineralization, we collected 32 samples from the largest Ni-Co ar-
senide-quartz-calcite vein in the Luonghua ore field (Fig. 3) and 39
samples from ore-hosting rocks in a small exploration tunnel and from
drill cores. Twelve quartz samples from the vein were selected for fluid
inclusion analysis, and six quartz samples were chosen for H-O isotope
analysis. Six niccolite separates from the vein were used for Re-Os
dating.

4.2. Fluid inclusions

Fluid inclusion microthermometry was carried out at the
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou, China, using a Linkam MDSG600 heating—freezing stage
with Zeiss microscope optics. Measurements were taken at heating and
cooling rates of < 10 °C/min and < 1 °C/min, respectively. The esti-
mated accuracy of the microthermometry measurements is + 2 °C for
homogenization temperatures (Th) and = 0.1 °C for last ice melting
temperatures. The salinity of fluid inclusions was calculated based on
the final ice melting temperatures according to the equation for the
NaCl-H,0 binary system provided by Bodnar (1993).

—
15.0kV COMPO  NOR
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Fig. 6. Representative photomicrographs of samples
from the study area: (A) reflected-light photo-
micrograph of a niccolite—calcite veinlet; (B) asso-
ciation of niccolite and chalcedony, suggesting low-
temperature mineralization; (C) early stage Ni-vein
mineralization of niccolite and minor maucherite; (D)
early stage Ni-vein mineralization of niccolite with
minor chalcopyrite and pyrite; (E) Co-bearing gers-
dorffite—quartz vein cutting niccolite; and (F) late-
stage Ni-Co vein mineralization comprising gers-
dorffite, chloanthite, niccolite, and skutterudite.

Abbreviations: Cal = calcite; Cl = -chloanthite;
Cp = chalcopyrite; Gd =  gersdorffite;
Mc = maucherite; Nc = niccolite; Py = pyrite;

Q = quartz; St = skutterudite.

100pm JEOL 12/29/2014
WD 11.1lmm 20:57:32

4.3. H-O isotopes

Samples picked from mineralized veins were first crushed to 40-60
mesh. Quartz was separated by heavy liquid separation and then hand-
picked under a binocular microscope until purity exceeded 99%. For O
isotope analyses, the purified quartz samples were powdered to ~200 mesh.
Samples of 5-10 g of powdered quartz were analyzed. Oxygen was ex-
tracted using BrFs based on the method described by Clayton and Mayeda
(1963). The extracted O, was reacted with graphite to produce CO,. For H
isotope analyses, 3-6 g quartz was placed in an induction furnace to de-
crepitate the fluid inclusions, and the H,O was reduced with Zn metal in a
sealed tube at 400 °C (Coleman et al., 1982). The H and O isotopic com-
positions were measured at the Analytical Laboratory, Beijing Research
Institute of Uranium Geology, Beijing, China, using a MAT-253EM stable
isotope mass spectrometer. Analytical precisions of H and O isotopic mea-
surements are 1 per mil and 0.2 per mil, respectively. The §'®0 and 8D
values are given relative to V-SMOW (Baertschi, 1976).

4.4. Niccolite Re-Os isotopic composition

The niccolite was handpicked under a binocular microscope to
purity of > 99%. Re-Os isotope analyses were carried out in the State
Key Lab of Ore Deposit Geochemistry, Institute of Geochemistry,
Chinese Academy of Sciences, Guiyang, China, following the procedure
of Qi et al. (2010). Re-Os isotopes of niccolite were measured using the
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Fig. 7. Histograms of (A) homogenization temperatures and (B) salinities of
fluid inclusions from the Longhua vein mineralization.

Table 2

H-O Isotopic Compositions of Fluids in Longhua Ni Deposit.
Sample No. Mineral  8'®0y.smow T(C)  8'®0p20(%0)  8Dy.smow

(%o0) (%o0)

LH14-13-3 quartz  13.9 160 —3.0 —-61
LH14-14 quartz  12.7 156  —4.5 —54
LH11-1 quartz 12.5 160 —-4.4 —54
16JX-05-2 quartz 13.6 131 —6.2 —61
16JX-05-1 quartz  13.1 131 -67 —65
16JX-03 quartz 12.4 128 -7.7 —66
16JXzk7201-01  quartz 11.7 143 —6.8 —62

ID-TIMS method following the procedures of Selby and Creaser (2001).
The full procedural blanks for Re and Os were 2 pg and 0.5 pg, re-
spectively, and all Re and Os data were blank corrected. Rhenium
(*®’Re) and '%70s abundances were determined to calculate Re-Os
model ages using a '®’Re decay constant of 1.666 x 10~ ' a~!
(Smoliar et al., 1996). The Re-Os isochron ages were calculated using
the program ISOPLOT (Ludwig, 2003).

5. Results
5.1. Fluid inclusions

Quartz from the Ni-Co veins contains primary and secondary fluid
inclusions. Primary fluid inclusions are aligned along growth zones
within individual quartz crystals, or occur as scattered and isolated
inclusions in the quartz. The secondary fluid inclusions occur in trails
that cut mineral grain boundaries and have features similar to those
described by Roedder (1984).
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Fig. 8. H-O isotopes of fluid inclusions in quartz from the Longhua Ni-Co vein
mineralization.

Primary fluid inclusions are ellipsoids or negative crystals with
diameters of 5 to 15 um. They are mainly two-phase inclusions, with
vapor/liquid ratios of < 10% at room temperature. Measured homo-
genization temperatures of 172 primary fluid inclusions vary from 118
to 219 °C, with a peak at 150-182 °C (n = 105, Fig. 7A). The final ice
melting temperatures range from —0.7 to —5.7 °C, with corresponding
salinities of 1.2-8.8 wt% NaCl equiv. (Fig. 7B).

5.2. H-O isotopes

Hydrogen and O isotopic compositions of seven quartz samples from
Ni-Co arsenides—quartz—calcite veins were analyzed and are listed in
Table 2. The quartz samples have 8Dy .smow and 880y .smow values of
—54%0 to —66%0 and 11.7%o to 13.9%o, respectively, with calculated
88000 values of —3.0%o to —7.7%o. In the 8Dy.spow (%0) vs. 88000
(%o) diagram, the samples plot near the meteoric water line (Fig. 8).

5.3. Niccolite Re-Os isotopic composition

Niccolite Re-Os isotopic compositions of the Longhua Ni-Co veins
are listed in Table 3. Seven niccolite samples have Re and common Os
concentrations of 4.34-52.92 ppb and 4.1-8.7 ppt, respectively. The
niccolite samples have relatively high '¥Re/*®%0s (4926-33,713) and
1870s/'880s (38.9-253.1) values, with '870s accounting for 84%-97%
of the total Os. As discussed by Stein et al. (2000), the best way to
represent results from highly radiogenic samples is to plot radiogenic
1870s vs. 87Re. Seven niccolite samples define a Re-Os isochron age of
462.6 = 8.5 Ma (MSWD = 1.03; Fig. 9). The initial ¥’0s content of
0.00025 = 0.00066 is indistinguishable from zero, indicating that the
plotted '70s concentrations are derived solely from '®’Re decay since
niccolite formation. The isochron age and model ages (482-458 Ma;
average 466 Ma) agree within error.

6. Discussion
6.1. Genesis of disseminated mineralization

In the disseminated mineralization of the Longhua Ni-Co deposit,
niccolite occurs mainly in the following three forms: (1) niccolite
hosted in quartz fragments; (2) parallel niccolite grains in the Cambrian
banded pisolitic carbonaceous pelite; and (3) niccolite associated with
argillaceous concretions in the Cambrian banded pisolitic carbonaceous
silty mudstone without observed alteration.
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Table
3 Re-Os Data for Niccolite from Longhua Ni-Co Deposit.
Sample No. Weight(g) Re (ppb) =+ 1o Common Os(ppt) =10 '®Re 1o '80Os(ppt) = 1o '®Re/'%80s +10 '¥70s/'%0s =+ 10 %'¥Osr t(Ma) = lo
P23-1 1.0562 11.68 0.23 5.74 017 7.31 015 57.17 0.61 9589 338 74.9 1.8 91% 469 5
P23-3 1.1023 10.33 017  6.34 0.39 6.46 011 51.93 0.38 7668 488  61.8 35  89% 482 4
P23-4 1.0841 35.27 0.49 5.32 0.27 22.08 0.31 168.86 2.27 31,200 1615 230.7 114  97% 459 6
P23-2 1.1106 52.92 0.57 7.39 0.29 33.13 0.35 252.96 3.04 33,713 1373 253.1 8.7 97% 458 5
14-22-1 1.0235 17.66  0.28  8.03 0.28 11.05 0.17 84.95 1.43 10,354 401 79.9 23 91% 461 8
14-22-2 1.0645 31.07 0.38 8.66 0.30 19.45 0.24 151.62 0.96 16,882 623 130.6 3.8 95% 468 3
14-22-5 1.2142 4.34 0.04 4.14 0.14 272 0.02 21.17 0.14 4926 171 38.9 1.4 84% 468 3
s the Longhua Ni-Co hydrothermal deposit was related to low-tempera-
0.3l ’ ture, low-salinity, circulating meteoric water.
Rd
,O/ 6.3. Formation of high-grade Ni—Co ore veins
e ) ) .
0.2l a 6.3.1. Age of high-grade Ni—Co ore veins
) ya The niccolite from the Ni-Co arsenides—quartz—calcite veins yields a
8 ‘p' Re-Os isochron age of 462.6 + 8.5 Ma (MSWD = 1.03; Fig. 9), sug-
S R gesting the Ni—Co vein mineralization formed during the Ordovician,
- 7 after the disseminated Ni mineralization, which formed during the
0.1t 7 Cambrian. The Longhua Ni-Co deposit can therefore be divided into
4 Age=462.618.5Ma ly stage disseminated mineralization and late-stage vein miner-
-7 Initial’®0s=0.00025+0.00066 Alization. The N i o ide i
/ . Y. alization. The Ni sources of hydrothermal Ni deposits worldwide is
e MSWD=1.03 mainly mafic igneous rocks or Ni-sulfide deposits (Table 1). However,
0.0k . . . . no mafic rocks are associated with the Longhua Ni-Co deposit or pre-
0 10 20 30 40 sent in the surrounding areas. We propose that the re-deposition of
137Re niccolite disseminated in the Cambrian strata could have provided a

Fig. 9. Re-Os isochron age of niccolite from the Longhua Ni-Co deposit.

The niccolite grains in the quartz fragments might have crystallized
from ore-forming fluids that entered the quartz fragments during vein
mineralization. However, this would require channels for the ore
forming fluids to enter the center of the quartz fragments, and given
that there were no connecting channels in the quartz fragments, and no
niccolite mineralization was found surrounding the quartz fragments,
we can reject this process as a means for niccolite formation in the
Longhua Ni-Co deposit. Alternatively, niccolite-bearing quartz frag-
ments may have been derived from pre-existing quartz-niccolite ore
veins that were eroded and transported from elsewhere, and co-de-
posited with the Cambrian sediments, forming disseminated niccolite in
the Cambrian banded pisolitic carbonaceous silty mudstone and pelite.
This redeposition process is supported by the presence of disseminated
niccolite grains that are aligned parallel to each other, and niccolite
associated with argillaceous concretions in the Cambrian pelite and
silty mudstone (Fig. 4). Overall, the distribution of the disseminated
niccolite suggests that the disseminated niccolite mineralization was
reworked and re-deposited during the Cambrian.

6.2. Characteristics and sources of the ore-forming fluids

The fluid inclusions in quartz from the Ni-Co arsenides—quartz—calcite
veins yield homogenization temperatures of 118-198 °C, with a peak at
150-182 °C. Their salinities range from 1.2 to 8.8 wt% NaCl equiv. These
results suggest that the Ni vein mineralization in the Longhua deposit pre-
cipitated from low-temperature, low-salinity fluids. The low-temperature
mineralization is consistent with the mineral assemblage of nicco-
lite + chalcedony + calcite (Fig. 7B).

The H and O isotopic compositions of the ore forming fluids in the
Ni—Co vein mineralization plot adjacent to the line of meteoric water in
the 8Dy.smow(%0) vs. 8'8020(%0) diagram, suggesting that the ore-
forming fluids were sourced mainly from circulating meteoric water
that had interacted with the source rocks. Therefore, the formation of

favorable Ni (—Co) source for the high-grade Ni—-Co vein ore.

Heat is also a fundamental requirement for a hydrothermal system.
Ore forming fluids of the Longhua Ni-Co deposits were derived from
circulating meteoric water and therefore should have had no genetic
link to metamorphism. The Dishui granite (age 441.0 * 3.6 Ma; un-
published data) near the Longhua ore field is younger than the Ni-Co
arsenide—quartz—calcite veins, suggesting that the granite did not
supply the heat for the circulating meteoric waters during the formation
of the Ni-Co veins. The heat source was possibly the numerous
Ordovician granites in the region (with age of 410-467 Ma, Wang et al.,
2013 and reference therein).

The Re-Os isotope age of the Longhua high-grade Ni-Co vein ore is
similar to those of MVT Pb-Zn deposits in the South China Block (Fig. 1;
Cao et al., 2015; 2018; Du et al., 2018; Duan et al., 2014; Tan et al.,
2018; Wang et al., 2018; Xiong et al., 2018; Yang et al., 2015; Yu et al.,
2017), suggesting tha collision between the North China and South
China blocks triggered the formation of the Caledonian MVT Pb-Zn
deposits (Xiong et al., 2018) and the Longhua low temperature hy-
drothermal Ni-Co vein deposit.

6.3.2. Implications for Ni solubility and mobility in low-temperature
hydrothermal fluids

Ni is usually considered as the least soluble first-row transition
metal in most common geological fluids (Liu et al., 2012) and that it is
not easily remobilized by hydrothermal fluids (Le Vaillant et al., 2016).
With a growing number of Ni deposits being identified as having a
hydrothermal origin, it is increasingly accepted that Ni can be mobi-
lized during hydrothermal alteration (Gonzalez-Alvarez et al., 2013;
Keays and Jowitt, 2013; Kamenetsky et al., 2016). For example, ex-
perimental works on the brines of Mississippi Valley ore deposits has
revealed that Ni can dissolve as chloride complexes in brines at 350 °C
and 500 bars (Bischoff et al., 1981). Organic ligands have also been
suggested to enhance Ni mobility in low-temperature and low-pressure
systems (Tepper et al., 2001; Gonzalez-Alvarez et al., 2010). In addi-
tion, reduced fluids rich in CO,, CH,4 and S are ideal for Ni transpor-
tation (e.g., Borovikov et al., 2008; Ahmed et al., 2009). Bicarbonate
and CO, in fluids can enhance heavy metal leaching, which otherwise
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Fig. 10. Schematic showing the forming processes of the Longhua hydrothermal Ni-Co deposit.

would require higher temperatures (> 400 °C) for Ni extraction (e.g.,
Ellis, 1986; Reed, 1997; Pirajno, 2009). The hydrothermal Ni deposits
considered in previous studies were generally formed at temperatures
of 250-600 °C (Gonzalez-Alvarez et al., 2010). However, the solubility
and mobility of Ni in fluids with temperatures of < 250 °C are poorly
understood (Gonzalez-Alvarez et al., 2013). Nickel solubility in
groundwater can yield concentrations of 195 ppm, predominantly in
the form of free Ni%* (52%-63%) and NiHCOs;* (23%-32%) (Larsen
and Postma, 1997), suggesting Ni can be transported in low tempera-
ture fluids (< 200 °C) under certain condition. Our study indicates that
the Longhua Ni-Co vein ore bodies have high Ni concentrations and
formed in a low-temperature (< 200 °C) and low-salinity (< 8.8 wt%
NaCl equiv.) environment. This suggests that Ni can be dissolved and
mobilized effectively in hydrothermal fluids with temperature lower
than 200 °C. Since the fluids have low-salinity (< 8.8 wt% NaCl equiv.),
chloride can be precluded as an important ligand in the solubility and
mobility of Ni in the Longhua hydrothermal ore veins. Sulfides are rare
in the Longhua Ni-Co deposit, similar to the Wittichen Ag—Bi-Co-Ni-U
deposit (Staude et al., 2012), suggesting that S did not play an im-
portant role in the Longhua hydrothermal ore-forming fluids. Although
organic matter can appropriate ligands to promote Ni mobility in low-
temperature fluids (Greenwood et al., 2013), no organic matter has
been found in the Longhua ore-forming fluids or associated with the ore
veins, and therefore organic ligands should not be an important Ni-
mobilizing agent in the Longhua Ni—Co deposit.

10

The Longhua Ni-Co arsenides—quartz—calcite veins are rich in ar-
senides and carbonate, suggesting that the ore-forming fluids were rich
in As~ and HCO3;~ or CO52~. Similarly, arsenides and carbonate mi-
nerals are common in Ni vein mineralization in many hydrothermal Ni
deposit; e.g., the Miitel komatiite-hosted Ni-sulfide deposit, Yilgarn
Craton, Western Australia (Le Vaillant et al., 2015), five-element de-
posits (Kissin, 1992), and the Bou Azzer ore (EnNaciri et al., 1997). The
wide occurrence of this mineral assemblage, in combination with brine
sediments in Mississippi containing 90 ppm Ni and 160 ppm As
(Saunders and Rowan, 1990), indicates that Ni could be transported in
low-temperature As-rich fluids.

We propose that Ni can be transported mainly as free Ni®* and
NiHCO;™ in low-temperature (< 200 °C) arsenide and HCO;~ or
CO3%™ rich reduced fluids.

6.3.3. Ore—forming processes

Bischoff et al. (1981) reported that the interaction between low-
temperature fluids and carbonate-bearing rocks can produce CO, or
HCO3™ rich fluids. Carbonaceous pelites are interbedded with the
middle Cambrian Shuikoushan Group, which hosts the Longhua Ni-Co
ores. Combining the geological and ore-forming fluid features, we
suggest that the Longhua Ni-Co vein mineralization occurred as fol-
lows. (1) Precambrian quartz—niccolite mineralization (Fig. 10A) was
dissolved and transported to the Longhua mineralization site (Fig. 10B),
which formed disseminated niccolite mineralization in the Cambrian
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source rocks (Fig. 10C). (2) Ordovician granitic magmatism in the re-
gion led to the meteoric fluids interacting with the carbonaceous pe-
lites, which formed reduced, HCO;~ or CO52~ rich fluids. The fluids
dissolved the disseminated niccolite (Fig. 10D), and extracted As and
Ni. (3) Niccolite and other Ni- and Co-bearing minerals were rapidly
precipitated from the ore-forming fluids, in response to an abrupt
change in the geochemical environment (e.g. oxygen fugacity), forming
the high-grade Ni-Co vein mineralization (Fig. 10D). However, the
main factors that resulted in the rapid precipitation of the Ni-Co ar-
senides are yet to be identified.

6.4. A new type of sedimentary hosted low temperature Ni deposit?

Since the discovery of the Avebury deposit in Tasmania, Australia,
hydrothermal Ni deposits have attracted increasing attention
(Gonzalez-Alvarez et al., 2013; Lisitsin et al., 2013). Most hydrothermal
Ni deposits have genetic links to magmatic Ni-sulfide or ultra-
mafic-mafic rocks (e.g., Gonzalez-Alvarez et al., 2013; Hofmann et al.,
2014; Kamenetsky et al., 2016; Keays and Jowitt, 2013; Table 1). These
Ni deposits are often spatially associated with magmatic Ni deposits or
altered ultramafic-mafic rocks, and mostly contain Ni-sulfides as the
main ore minerals (Table 1). Significantly, the Longhua Ni-Co deposit
differs from these types of Ni deposit.

Another important type of hydrothermal Ni deposit is those hosted in
sedimentary rocks that have no spatial relationship with magmatic Ni de-
posits or ultramafic-mafic rocks. These include: (1) black-shale-hosted de-
posits (Coveney and Nansheng, 1991; Lehmann et al., 2007; Mao et al.,
2002; Xu et al., 2013; Orberger et al., 2003); (2) unconformity U-related
deposits (Capistrant et al., 2015; Jefferson et al., 2007); and (3) five-element
(Ag-U-Co-Ni-Bi) deposits (Kissin, 1992; Staude et al., 2012).

Black-shale-hosted deposits include those in South China (Jiang
et al., 2006) and in Yukon, Canada (Orberger et al., 2003). These Ni
deposits are hosted in organic-rich black shales (Horan et al., 1994;
Coveney and Nansheng, 1991; Lehmann et al., 2007; Mao et al., 2002;
Xu et al., 2013; Orberger et al., 2003). The deposits in South China
are > 400 km from the Longhua deposit (Fig. 1) and are hosted in thin
discontinuous phosphate-rich stratigraphic horizons (< 10 cm) of black
shale that extends intermittent for > 1600 km along strike (Jiang et al.,
2006). The ore bodies contain not only high Ni concentrations, but also
high concentrations of PGE, Mo, Au, and Zn. The main Ni minerals are
sulfides, including vaesite and bravoite, with minor millerite, poly-
dymite, gersdorffite, pentlandite, and violarite (Jiang et al., 2006). The
metal sources of these deposits are suggested to have been derived from
the scavenging of seawater by organic material (Lehmann et al., 2007;
Mao et al., 2002; Xu et al., 2013), or from submarine hydrothermal
fluids (Coveney and Nansheng, 1991; Jiang et al., 2006; 2007; Jowitt
and Keays, 2011; Pi et al., 2013). Nickel deposits in the Yukon are si-
milar to the black-shale-hosted Ni deposits in South China, except that
they are hosted in Upper Devonian black shales and are poor in Au and
Mo (Orberger et al., 2003). In addition, some Co-Ni-Ba-As-Ag veins
cut the Kupferschiefer black shale (Vaughan et al., 1989), which hosts
Cu-Pb-Zn deposits in Germany and Poland. Nickel in these deposits
occurs in arsenides, including rammelsbergite, bravoite, pentlandite,
and millerite (Capistrant et al., 2015; Puttmann et al., 1988; Vaughan
et al., 1989; Table 1). The Longhua Ni-Co deposit differs from these
deposits in both ore mineral composition and element association.

A large amount of Ni mineralization is associated with unconformity
U deposits such as those in the Athabasca Basin of Canada (Dahlkamp,
1978; Jefferson et al., 2007; Chi et al., 2019; Table 1). Nickel in these
deposits resides manly in arsenides, such as gersdorffite, millerite,
niccolite, and rammelsbergite, with some bravoite (Dahlkamp, 1978)
and Ni-Bi minerals. These deposits were formed by paleo-weathering
(Dahlkamp, 1978) or hydrothermal fluids rather than by magmatic
fluids (Capistrant et al., 2015), and are similar to the Longhua deposit
in their mineral assemblage; however, they have different element as-
sociations and geological settings.
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Five-element (Ag-U-Co-Ni-Bi) deposits are characterized by veins
hosted in igneous or sedimentary terranes with little or no volcanism
(Kissin, 1992; Staude et al., 2012; Markl et al., 2016). The Ni miner-
alization is usually of extraordinary enrichment, and typically contains
native Ag and Bi. The gangue minerals are usually dolomite and calcite
(Kissin, 1992). Nickel and Co minerals are predominantly arsenides,
including rammelsbergite, safflorite, niccolite, cloanthite, and mau-
cherite (Kissin, 1992). Five-element deposits are similar to the Longhua
Ni—Co deposit in their high Ni concentration and mineral assemblage;
however, they usually contain native Ag and Bi, and their ore-forming
fluids are of high saline (around 25 wt% NaCl + CaCl,) (Staude et al.,
2012; Markl et al., 2016), which differs from the Longhua Ni—-Co de-
posit.

In addition to the hydrothermal Ni deposits discussed above, Ni
potential in the central African sediment-hosted Cu—Co belt is attracting
increasing attention (Steven and Armstrong, 2003). Nickel deposits in
the ore belt occur mainly as stratiform Co-Ni—Cu mineralization (e.g.,
the Kalumbila prospect on the southeastern side of the Kabompo Dome,
Zambia; Steven and Armstrong, 2003), U-Ni ore hosted within highly
brecciated carbonate and siliciclastic sediments (e.g., the Shinkolobwe
and Swambo deposits in the southern Democratic Republic of Congo;
Capistrant et al., 2015), and Ni ores hosted within a sequence of
quartz-, carbonate-, and carbon-rich metasedimentary rocks (e.g., the
Enterprise deposit in Zambia; Capistrant et al., 2015). Nickel in these
deposits resides primary in sulfides (e.g., pentlandite, violarite, sie-
genite, and millerite). The Ni source of these deposits is unclear, al-
though rift-related hydrothermal or metamorphic fluids have been
suggested (Steven and Armstrong, 2003).

In summary, The Longhua Ni-Co deposit differs greatly from the
above hydrothermal Ni deposits in terms of (1) the paragenetic se-
quence of mineralization, that the Cambrain co-sedimentary dis-
seminated low grade niccolite ore re-dissolved by post-sedimentary
fluids forming the Ordovician high grade vein-type niccolite ore; (2)
element assemblage and ore mineral composition, that mainly of Ni-Co
arsenides; and (3) ore-forming fluids, which were As~ and HCO5;*/
CO32™ rich with temperature < 200 °C and salinity < 10 wt% (Table.
4). Although the key factors resulting in the precipitation of the high-
concentration Ni ore are poorly known, the Longhua Ni—Co deposit
appears to represent a new type of hydrothermal Ni ore hosted in se-
dimentary rocks, which is consistent with the prediction that there re-
mains potential for new classes of hydrothermal Ni deposits to be dis-
covered (Gonzalez-Alvarez et al., 2013).

7. Conclusions

Based on the above results and discussion, we present the following
conclusions.

(1) The Longhua Ni-Co deposit was formed by early stage re-deposition
of metals in sediments during the Cambrian that formed low-grade
ore or source beds, and second-stage vein mineralization that
formed high-grade Ni-Co ore bodies during the Ordovician
(462.6 = 8.5 Ma).

(2) The second-stage vein mineralization was formed from low-tem-
perature (150-180 °C) low-salinity (1.2-8.8 wt% NaCl equiv.) fluids
derived from circulating meteoric water.

(3) Arsenic- and HCO3 ™ -rich low-salinity fluids, which formed from
interactions among meteoric water, carbonaceous pelite, and
Cambrian low-grade ore, promoted the solubility and mobility of Ni
in a low-temperature environment.

(4) The Longhua Ni-Co vein mineralization differs greatly from other
hydrothermal Ni mineralization in terms of mineralogy, ore mineral
composition, element association, and ore-forming process, and
may represent a new type of hydrothermal Ni—Co deposit hosted in
sedimentary rocks.
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