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The Luanling gold deposit, a typical Te-Au deposit in the Xiong'er terrane, the

southern margin of the North China Craton, contains two types of ores, namely

altered rock-type and quartz vein-type ores. Gold is hosted by pyrite and

As-bearing pyrite in the altered rock-type ores, whereas tellurides are the main

gold carriers in the quartz vein-type ores. In order to investigate their origins, we

calculated the Gibbs free energies of formation and reaction of related sulfides,

tellurides and oxides from different ore types. The phase diagrams of these

minerals were constructed at 300 �C, a temperature at which gold was mainly

precipitated in the Luanling deposit. According to phase relations among sulfides,

logfS2(g) is constrained between −10.4 and −6.5. In addition, we propose that

[Au(HS)2]
− was the dominant carrier of gold in ore-forming fluid, and its decom-

position formed pyrite and arsenian pyrite, in which gold mainly exists as an

invisible phase. In the quartz vein-type ores, logfTe2(g) and logfO2(g) are con-

strained to range from −13.68 to −7.9 and −36.8 to −31.1, respectively, based

on the phase relations between tellurides, sulfides and oxides, and gold was

mainly transported as [Au(HTe)2]
− and its break down formed gold-bearing,

including sylvanite, petzite and Au-Ag-tellurides. Sylvanite and petzite, the two

stable Au-Ag tellurides, were probably precipitated primarily from hotter ore-

forming fluids. According to phase relations among tellurides, the two phases

were decomposed into native gold, hessite and more stable Au-Ag-tellurides with

the changes of physicochemical conditions in the later stages. In addition, we

proposed that the ore-forming fluids relevant to the altered rock- and the quartz

vein-type ores were from the same source and continuously evolved.
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1 | INTRODUCTION

Sulfides, especially pyrite, arsenian pyrite and arsenopyrite, are usually

major carriers of gold in gold deposits (Afifi, Kelly, & Essene, 1988a;

Simon, Huang, et al., 1999; Deditius et al., 2008; Xu et al., 2014;

Zhou et al., 2018; Liu et al., 2019). Compared with the above-men-

tioned sulfides, tellurides are commonly rare in gold deposits, but they

can also be important carriers of Au, Ag and platinum-group elements

(PGE) (Afifi et al., 1988a; Afifi, Kelly, & Essene, 1988b; Cabri, 1965;

Ciobanu et al., 2006 and references therein). Due to the similar
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geochemical behaviour between Te and S, Te could enter into the lat-

tice of sulfides via isomorphism substitution (Ciobanu et al., 2006),

and tellurides are commonly associated with sulfides, oxides and/or

native elements (Au, Ag etc.) in natural deposits (Afifi et al., 1988a,

1988b). Comprehensive experiments and calculations have been car-

ried out to investigate relative stabilities of tellurides, sulfides, oxides,

selenides and native elements and to build phase relations among

these minerals and/or elements (Afifi et al., 1988a, 1988b; Cabri,

1965; Holland, 1959, 1965; Liu et al., 2000; Simon & Essene, 1996;

Simon et al., 1997 and references therein), indicating that the stability

of these minerals are sensitive to a series of physicochemical parame-

ters, especially temperature and fugacities of tellurium, sulfur, oxygen

and selenium. Nevertheless, the majority of previous studies primarily

focused on the thermodynamic properties of tellurides, sulfides,

oxides and selenides, but rare studies applied phase relations among

these minerals to investigate ore-forming processes.

Large amounts of gold deposits, especially the altered-type

gold deposits, are developed in the Xiong'er terrane, the southern

margin of the North China Craton (Li & Santosh, 2014, 2017;

Yang & Santosh, 2020; Zhao et al., 2018 and references therein).

Telluride minerals have been reported in several deposits, such as

Shanggong, Qiyugou, Beiling, Luanling and Qianhe (Chao et al.,

2016; Chen et al., 1999; Tang et al., 2013). Among them, the

Luanling gold deposit is a typical Te-Au deposit with middle-scale

and contains two types of ores, the altered rock- and quartz vein-

type ores. In the altered rock-type ores, gold mainly occurs as

invisible phase in pyrite and arsenian pyrite, while in the quartz

vein-type ores, tellurides are the dominated gold-bearing phases.

Some studies have been conducted on the mineralization timing,

mineral assemblages and origin of the Luanling gold deposit (Chao

et al., 2016; Wang et al., 2011). However, the issue related to the

ore-forming processes remains poorly constrained. Therefore, in

order to better understand the ore-forming process for the two

different types of ores, we carried out detailed studies on the min-

eralogy and phase equilibria based on relative stabilities of sulfides,

tellurides and oxides. This study sheds new lights on the origin of

the diversity of gold mineralization in this deposit.

2 | GEOLOGIC BACKGROUND

2.1 | Geology of the Xiong'er terrane

The Xiong'er terrane is located in the southern margin of the

North China Craton (Li & Santosh, 2017; Gao et al., 2010; Zhao

et al., 2018; Figure 1b). It is geologically defined by the

Machaoying Fault to the south and the Luoning detachment Fault

to the north (Tang et al., 2013 and references therein; Figure 1c).

A number of secondary NNE-NE-trending faults are spaced with

near equal intervals, and the occurrence of ore deposits are con-

trolled by these faults in the Xiong'er terrane (Chen et al., 2006,

2008; Figure 1c). The Xiong'er terrane is lithologically composed of

the late Archean to early Paleoproterozoic Taihua Group

(2.5–2.3Ga; Xue et al., 1995; Xu et al., 2009) and the unconform-

ably overlying Paleoproterozoic Xiong'er Group (1.80–1.75Ga; Zhao

et al., 2004). The Taihua Group consists chiefly of sillimanite–

garnet gneiss, graphite gneiss, TTG gneiss, migmatite, amphibolite,

marble, and metamorphosed supracrustal rocks intercalated with

mafic to ultramafic rocks (Hu et al., 1988; Xu et al., 2009). The

Xiong'er Group mainly comprises basaltic andesite, andesite and

minor dacitic-rhyolitic rocks (Zhao et al., 2007). Mesoproterozoic to

Neoproterozoic sedimentary sequences, unconformably overlying

the Xiong'er Group (Chen et al., 2006; Figure 1c), are well devel-

oped in the south of the Machaoying Fault, including the

Guandaokou and Luanchuan groups. The Songxian-Jiuxian and

Yiyang-Luoning-Lushi rift basins, located to the east and west of

the Xiong'er terrane, develop Cretaceous-Quaternary sedimentary

rocks (Hu et al., 1988).

The late Mesozoic magmatic intrusions are widely distributed

in the Xiong'er terrane (Gao & Zhao, 2017), including the

Wuzhangshan pluton (156.8±1.2Ma, Mao et al., 2010), Huashan

pluton (128 to 132Ma, Mao et al., 2010; Xiao et al., 2012) and

Heyu plutons (148 to 127Ma, Guo et al., 2009; Gao et al., 2010;

Mao et al., 2010) (Figure 1c). The formation of the late Mesozoic

granitic intrusions were proposed to be related either with the

Mesozoic collisions leading to formation of the Qinling Orogeny

(Bao et al., 2016; Chen & Fu, 1992; Xiao et al., 2012), or the

destruction of the North China Craton (Gao et al., 2017;

Zhu et al., 2011; Zhao et al., 2018).

2.2 | Geology of the Luanling gold deposit

The late Mesozoic Mo-Au-Pb-Zn-Ag mineralization are pervasively

developed in the Xiong'er terrane (Zhao et al., 2018 and references

therein). The gold mineralization, in particular, is mainly altered

rock-type with minor quartz vein- and breccia-type gold deposits

(Li & Santosh, 2014; Zhao et al., 2018 and references therein). The

Luanling gold deposit is a typical Te-Au deposit in the Xiong'er ter-

rane (Chao et al., 2016). The deposit has a proven and probable

reserve of 5t Au, with an average grade of ~4.8g/t. In this deposit,

ore bodies are hosted by the iron-rich trachyandesite and andesite

of the Xiong'er Group. The NW-trending faults of F1 and F2 are

the main structures, and higher-order ore-controlled faults are

widely developed in the mining district, including F911, F912,

F971, F972 and F976 (260–1200m long and �0.2–2.2m wide)

(Figure 2a). Re-Os isochron age of molybdenite associated with

Au-bearing minerals indicates that the gold mineralization occurred

at 163±2Ma (Chao et al., 2016). The ores in the Luanling gold

deposit can be divided into two typical sub-types, the altered rock-

(Figure 3a) and quartz vein-type ores (Figure 3b). The altered rock-

type ores usually occurs along both sides of, and sometimes as

inclusions in the quartz vein-type ores (Figure 3b). These observa-

tions indicate that the quartz vein-type ores were slightly preceded

by the altered rock-type ores.

2 MENG ET AL.5832 MENG ET AL.



F IGURE 1 (a) Major Tectonic outlines of China and (b) tectonic setting of the southern margin of the North China Craton, modified after

Zhao et al. (2018); (c) geological and tectonic map of the Xiong'er terrane and the location of the Luanling gold deposit, modified after Lu et al.
(2004)

MENG ET AL. 3

(2004) [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 2 (a) Geological map of the Luanling gold deposit and (b) No. 58 prospecting profile, modified after Chao al. (2016)

4 MENG ET AL.

F IGURE 2 (a) Geological map of the Luanling gold deposit and (b) No. 58 prospecting profile, modified after Chao al. (2016) [Colour figure can
be viewed at wileyonlinelibrary.com]
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This deposit mainly comprises K-feldspar, quartz, sulfide, ser-

icite, carbonate and chlorite alteration (Chao et al., 2016; Wang

et al., 2011). Based on the detailed petrographic observations and

the crosscutting relationships, the mineralization of this deposit

involves three stages, including early stage (E), main mineralization

stage (M) and late stage (L) (Figure 4).

The E stage is dominated by quartz and K-feldspar, with minor

barite and ankerite (Chao et al., 2016). The M stage is the main

mineralization stage, which formed two sub-types of ores during

this stage, including altered rock- and quartz vein-type ores. In the

altered rock-type ores, the ore minerals are mainly pyrite and

arsenian pyrite (Figure 5), with minor galena, sphalerite, chalcopy-

rite and molybdenite (Wang et al., 2011). In addition, gold predomi-

nately occurs as invisible phase in arsenian pyrite and pyrite, which

were disseminated in the altered rock-type ores. (Figure 3a).

Gangue minerals are dominated by quartz and sericite with rare

monazite and barite.

The quartz vein-type ores is characterized by tellurides and

sulfides. Furthermore, tellurides are the major Au-bearing phases,

including calaverite, petzite, hessite and altaite (Table 2). Sulfides

are the subordinate Au-bearing minerals, including bornite, enargite,

tetrahedrite, Zn-bearing tetrahedrite, Zn-bearing tennantite and

pyrite (Table 2). Gold minerals generally occur as inclusions

or microfracture-infills in quartz, sphalerite and bornite (Figures 5h,

l and 6) (Chao et al., 2016). The L stage contains of quartz and

calcite with trace amounts sericite. Besides, the L stage

veinlets penetrate quartz-sericite-sulfides vein of the M stage

(Chao et al., 2016).

F IGURE 3 Photographs of (a) the
altered rock-type ores and (b) quartz
vein-type ores

MENG ET AL. 5

vein-type ores [Colour figure can be
viewed at wileyonlinelibrary.com]
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3 | ANALYTICAL METHODS

Petrological features and chemical compositions of sulfides, tellu-

rides and oxides were determined by scanning electron micro-

scopes (SEM, SUPRA 55 SAPPHIRE, ZEISS Company, Germany)

with energy spectrometer (EDS) and electron microprobe analysis

(EMPA, JXA-8230, JEOL Company, Japan), respectively. The

SEM and EMPA analyses were carried out at the Guangzhou

Institute of Geochemistry, Chinese Academy of Sciences and the

Department of Earth Sciences, University of Hong Kong, respec-

tively. X-ray lines, used for EMPA analyses, were listed as follow-

ing: Co (Kα), Hg (Lα), Sb (Lα), As (Lα), Fe (Kα), Au (Mα), Ni (Kα), Cu

(Kα), Zn (Kα), S (Kα), Pb (Mα), Bi (Mα), Ag (Lα), Te (Lα) and Se (Lα).

The analyses were performed under an acceleration voltage of

20kv and beam current of 20nA with wavelength dispersive X-ray

spectrometers (WDS). The electron beam is 1μm in diameter. In

order to improve the statistics of the count rates, peak counting

times were 20s for Fe, Te and S, 40s for As and Cu, 60s for Pb,

Zn, Ni, Co, Hg, Sb, Au, Bi, Ag and Se, Standard specimens used for

calibration were Co0 (for Co), FeS2 (for S), Sb0 (for Sb), FeAsS (for

As), FeS2 (Fe), Au0 (for Au), Ni0 (for Ni), CuFeS2 (for Cu), ZnS

(for Zn), FeS2 (for S), Pb0 (for Pb), Bi0 (for Bi), Ag0 (for Ag), Te0

(for Te) and Se0 (Se).

4 | MINERALOGY AND MINERAL
CHEMISTRY

4.1 | Pyrite and arsenian pyrite in altered rock-
type ores

EMP analyses of the sulfides in the altered rock-type ores show

that gold predominantly occurs as invisible Au in pyrite and

arsenian pyrite (Table 1). The arsenian pyrite contains 0.73 to 8.78

wt.% Au and 100 to 1200 ppm As, respectively, while Cu (0.01 ~

4.03 wt.%) and Se (below detection to 0.21 wt.%) contents in

arsenian pyrite are variable. Besides, tellurides are not detected in

this type of ore.

4.2 | Sulfides in quartz vein-type ores

Sulfides are abundant in quartz vein type ores, which mainly com-

prise sphalerite, galena and Cu-chalcogenides (Figures 5 and 6).

The Cu-chalcogenides are mainly composed of bornite and chalco-

pyrite and contain rare digenite, anilite, enargite, tetrahedrite and

intergrown with tellurides, especially hessite and altaite (Figure 5).

Some digenite generally occurs along the rim of bornite,

F IGURE 4 Paragenetic sequence of
minerals in the Luanling gold deposit

6 MENG ET AL.5836 MENG ET AL.



with irregular/corrosive contacts between the digenite and

bornite (Figure 5g, h, l), which indicates that the digenite may

result from dissociation and replacement of bornite. Observed

intergrowth pairs comprise: (a) chalcopyrite-bornite-sphalerite-

hessite (Figure 5e); (b) tetrahedrite-hessite (Figure 5g); (c) bornite-

galena (Figure 5h); (d) chalcopyrite-bornite-digenite-hessite

F IGURE 5 Backscattered electron images of sulfides in the altered rock- (a-c) and quartz vein-type ores (d-o). (a) Pyrite is surrounded by
arsenian pyrite. (b) Galena occurs as inclusions in the arsenian pyrite. (c) Pyrite is cemented by galena. (d-f) Intergrowths of pyrite, monazite,
barite, molybdenite and sphalerite; (g-h) Bornite and chalcopyrite are associated with sphalerite and replaced by digenite. (i) Hessite and barite
occur as inclusions in bornite. (j) Tetrahedrite coexisting with hessite. (k) Intergrowths of bornite, galena, barite and chalcopyrite. (l) Digenite
replacing chalcopyrite and bornite. (m-n) Intergrowths of galena, pyrite, chalcopyrite and tetrahedrite. (o) Exsolution of Zn-bearing tennantite in
tetrahedrite. Py: pyrite, As-Py: As-bearing pyrite, Gn: galena, Mnz: monazite, Brt: barite, Sph: sphalerite, Bn: bornite, Mot: molybdenite, Dg:
digenite, Ccp: chalcopyrite, Hes: hessite, Zn-Td: Zn-bearing tetrahedrite, Zn-Tn: Zn-bearing tennantite

MENG ET AL. 7

digenite, Ccp: chalcopyrite, Hes: hessite, Zn-Td: Zn-bearing tetrahedrite, Zn-Tn: Zn-bearing tennantite [Colour figure can be viewed at
wileyonlinelibrary.com]
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(Figure 5i); (e) bornite-galena-pyrite-chalcopyrite-tetrahedrite

(Figure 5k) etc.

4.3 | Native tellurium, gold and tellurides in quartz
vein-type ores

The tellurides are mainly composed of Ag-, Au–Ag- and Pb-

tellurides (Table 2, Figure 6). Previous studies also reported native

tellurium, gold and calaverite (Chao et al., 2016; Wang et al.,

2011). Intergrowths of gold, sylvanite, hessite, altaite and petzite

are present in bornite, sphalerite, pyrite and quartz. Hessite usually

occurs as tiny droplet inclusions in bornite and sphalerite

(Figures 5 and 6). Observed intergrowth pairs include: 1) petzite-

altaite-calaverite (Figure 6a); 2) petzite-pyrite-altaite (Figure 6b); 3)

petzite-altaite-chalcopyrite-bornite (Figure 6c); 4) petzite-hessite-

sphalerite (Figure 6e); 5) petzite-altaite-galena (Figure 6h); 6)

petzite-hessite (Figure 6k); 7) petzite-galena (Figure 6l) etc.

In fact, based on the EMPA result, the alleged ‘calaverite’ identi-

fied from microscopic observations is an Au-Ag telluride as shown in

Figure 6, which approximates to sylvanite (AuAgTe4) in chemical com-

positions. The general formula of ‘calaverite’ is Au1.27Ag0.69Te4 and

similar minerals have been reported from the Guilaizhuang gold

deposit (Xu et al., 2014). Besides, compared with petzite (AuAg3Te2),

the so-called ‘Ag-rich petzite’ in this paper, with the formula of

Au0.97Ag5.01Te2, contains relatively high contents of Ag (47.34–49.39

wt.%) as shown in Table 2, which may be produced by decomposition

of petzite.

5 | DISCUSSION

5.1 | Constraints on the fugacity of S2(g),
Te2(g) and O2(g)

Previous studies have shown that fugacity-fugacity diagrams are use-

ful tools to investigate phase relations among intergrowth pairs and to

F IGURE 6 Backscattered electron images of tellurides in the quartz vein-type ores. (a) Intergrowths of petzite, calaverite and altaite in quartz.
(b) Petzite coexisting with pyrite and altaite. (c-j) Intergrowths of petzite, calaverite, altaite and hessite, and occur as inclusions in bornite and
sphalerite. (k) Petzite is replaced by hessite. (l) Intergrowths of hessite, petzite, galena and sphalerite, and sphalerite is filled by galena; Ptz: petzite,
Cav: calaverite, Alt: altaite, Q: quartz, Hes: hessite

MENG ET AL. 11

Cav: calaverite, Alt: altaite, Q: quartz, Hes: hessite [Colour figure can be viewed at wileyonlinelibrary.com]
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predict equilibrium assemblages for a given condition, presenting

forms of elements and the ore-forming process (Afifi et al., 1988a,

1988b; Simon et al., 1997; Simon & Essene, 1996; Xu et al., 2014;

Zhou et al., 2018, 2016). Based on the Gibbs-Helmholtz equation, the

ΔrG
0
T value can be expressed as the formula of

ΔrG
0
T = T×

ΔfG
0
298:15K

298:15
+ΔfH

0
298:15K ×

298:15−T
298:15T

 !

where ΔrG
0
T is the reaction Gibbs free energy of a certain compound

in solid phase at a given temperature. ΔfG
0
298:15K and ΔfH

0
298:15K repre-

sent Gibbs free energy and the molar enthalpy of formation at room

temperature (298.15 K) for a solid phase, respectively. The detailed

calculation methods of fugacity of S2(g), Te2(g) and O2(g) have been

described and discussed in prior studies (Afifi et al., 1988a, 1988b;

Simon et al., 1997; Xu et al., 2014). In a univariate system, the fugacity

of certain gas phase in a given reaction can be calculated by the

formula of

lnK= ΔrG
0
T

−RT and logfF= lnK
−2:303 (Afifi et al., 1988a)

where K is the equilibrium constant, R refers to the gas constant,

0.008314kJ/mol � K, T is temperature in Kelvins. For a bivariate

system, the fugacity of gaseous species can be expressed as the

formula of logfA = alogfB+b (Afifi et al., 1988a), where A and B repre-

sent gaseous components; whereas a and b denote calculation coeffi-

cients. According to these equations, the Gibbs free energies of

sulfides, tellurides and oxides (listed in Appendix 1), the equilibrium

fugacities and constant of the related reactions of the univariate and

bivariate system (shown in Appendix 2 and Appendix 3, respectively)

are calculated.

According to the micro-thermometric data of the ore-stage fluid

inclusions, gold was inferred to mainly precipitate at a range between

~275 and ~ 320�C, with an average of ~300�C (unpublished data by

Weiwei Chao). It is also notable that enargite commonly occurs in this

deposit, and it is associated with chalcopyrite, bornite, tetrahedrite,

galena and pyrite. As reported by previous study, enargite is a

temperature-indicator and usually forms from above 280 to 300�C

(Takács et al., 2017 and references therein). Therefore, we use a tem-

perature of 300�C to calculate the fugacities of S2(g), Te2(g) and

O2(g) and build corresponding phase diagrams, all of which are useful

to study the mineralization process of the Luanling gold deposit.

5.1.1 | Fugacity of S2(g)

Sulfides in the altered rock-type ores mainly comprise pyrite,

arsenian pyrite and minor galena, sphalerite and chalcopyrite. Sul-

fides in quartz vein-type ores include pyrite, galena, sphalerite,

chalcopyrite, bornite, enargite, digenite and tetrahedrite. The above

sulfides are stable in nature and common in many hydrothermal

deposits (Afifi et al., 1988a; Archibald et al., 2002; Landtwing

et al., 2005; Richards, 2011; Xu et al., 2014; Young et al., 2003;

Zajacz et al., 2011 and references therein). Based on the EMPA

results and microscopic-observations, chalcopyrite, pyrite, As-pyrite,

galena and sphalerite are closely associated and stable in the

F IGURE 7 LogfTe2(g)-
logfS2(g) diagram showing the relative
stability of some tellurides and their
corresponding sulfides as a function of
their fugacities at 300�C
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Luanling gold deposit. In the phase diagram of logfS2(g)-

logfTe2(g) (Figure 7), chalcopyrite is only stable between the born-

ite + pyrrhotite-chalcopyrite and chalcopyrite-bornite + pyrite

buffer and the logfS2(g) varies from −15.7 to −6.5, which can be

used to limit the logfS2(g). We cannot find any pyrrhotite in

the Luanling gold deposit. Thus, the logfS2(g) should be above the

pyrrhotite-pyrite buffer and must be higher than −10.4. Therefore,

the logfS2(g) is constrained from −10.4 to −6.5 (Figure 7).

5.1.2 | Fugacity of Te2(g)

Tellurides are widely developed in the quartz vein-type ores, including

calaverite, hessite, Au-Ag-telluride and altaite (Figure 6). Besides,

native Te and Au have been reported by previous studies (Chao et al.,

2016; Wang et al., 2011). Thus, the upper limit of logfTe2(g) can be

defined by Au-AuTe2 equilibrium, at −7.9 (Afifi et al., 1988; Xu et al.,

2014). The presence of hessite and the absence of argentite indicate

that the logfTe2(g) should be above the hessite-argentite buffer.

According to the phases equilibrium of Po-Py, Ccp-Bn+Py and Ag2Te-

Ag2Te, we constrain the lower limit of logfTe2(g) to −13.68. There-

fore, the logfTe2(g) can be constrained between −13.68 and −7.9

(Figure 7). In this fugacity range, tellurides minerals, except for

calaverite that will be discussed later, can be closely associated with

each other.

5.1.3 | Fugacity of O2(g)

Most metal oxides are unstable with respect to tellurides and sulfides,

consistent with the absence of oxides except for cassiterite, magne-

tite, or hematite from hypogene telluride ores. The above-mentioned

three minerals can be used to construct the oxygen fugacity (Afifi

et al., 1988a). Barite is widely developed in quartz vein-type ores and

coexists with sulfides and tellurides in quartz vein-type ores, indicating

that the logfO2(g) should be above the barium sulfide-barite buffer

and higher than −36.8. Moreover, hematite is not present in the ores.

According to the magnetite-hematite buffer, the upper limit of

logfO2(g) is estimated to be −31.1. Therefore, the logfO2(g) range can

be defined as −36.8 to −31.1 (Figure 8), which locates between QFM-

1.7 and QFM+4.0 (without constraints pressure) at 300�C.

5.2 | Deposition mechanism of gold

5.2.1 | Migration and precipitation mechanism of
gold in altered rock-type ores

Available experimental studies and calculations have shown that gold

can exist as Au1+ and Au3+ in fluids. The former is the dominant oxida-

tion state of Au in a majority of hydrothermal fluids, whereas the

latter is stable only in oxidizing surface environments (Pokrovski,

Tagirov, Schott, Bazarkina, et al., 2009, Pokrovski, Tagirov, Schott,

F IGURE 8 LogfTe2(g)-
logfO2(g) diagram showing the
relative stability of some tellurides
and their corresponding oxides as a
function of their fugacities at 300�C
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Hazemann, & Proux, 2009 and references therein). According to pre-

vious studies, gold is mainly transported in geological hydrothermal

fluids as hydroxide, chloride and hydrogen sulfide complexes, includ-

ing AuOH0, AuCl−2 , AuHS0 and Au HSð Þ−2 (Seward, 1973, 1984;

Stefánsson & Seward, 2004; Pokrovski et al., 2002, Pokrovski,

Tagirov, Schott, Bazarkina, et al., 2009, Pokrovski, Tagirov, Schott,

Hazemann, & Proux, 2009, 2014; Williams-Jones et al., 2009 and ref-

erences therein). Under low to intermediate temperature, hydrogen

sulfide complexes are dominant gold species in the majority of ore-

forming fluids, with AuHS0 predominating at acidic to intermediate

pH solutions and Au HSð Þ−2 at higher pH conditions in sulfide solutions

(Pokrovski, Tagirov, Schott, Hazemann, & Proux, 2009; Seward, 1973;

Stefánsson & Seward, 2004). However, at above 400�C, AuCl−2 would

be dominant in acidic sulfide solutions and Au(OH)0 predominates in

neutral and alkaline sulfide solutions (Stefánsson & Seward, 2004;

Williams-Jones et al., 2009). At low temperatures (<300�C), AuCl−2 is

the major carrier of gold in acidic chloride solutions, which hydrolyses

to form Au(OH)0 and Au OHð Þ−2 in neutral and alkaline chloride solu-

tions (Stefánsson & Seward, 2003; Vlassopoulos & Wood, 1990 and

references therein). Whereas at high (>400�C) temperatures, AuCl−2 is

the dominated carrier of gold in acidic chloride solutions, whereas Au

(OH)0 and Au OHð Þ−2 predominate in neutral and alkaline chloride solu-

tions (Stefánsson & Seward, 2003, 2004; Williams-Jones et al., 2009

and references therein). Based on the mineralization assemblages in

the Luanling gold deposit, the ore-forming fluid relevant to altered

rock-type ores in this study should be a sulfide hydrothermal system

and logfS2(g) ranges from −10.4 to −6.5. Combining with estimated

temperature (~300�C) and sulfur fugacity, we proposed that Au HSð Þ−2
and AuHS0 are the major speciations of gold-bearing complexes in the

ore-forming fluid.

Sulfides, especially Au-bearing arsenian pyrite, are widely devel-

oped in the altered-type ores. In the logfS2(g)-logfTe2(g) phase dia-

gram (Figure 7), the range of S2(g) fugacity is relatively limited, which

indicates that sulfides were precipitated rapidly from ore fluids under

reducing conditions (Xu et al., 2014). Gold generally occurs as an

invisible phase in pyrite and arsenian pyrite and probably exists as

nano-particles in sulfides or ionic gold in their crystal lattice of the

Luanling deposit, which is consistent with the occurrence of gold in

the Carlin-type deposits (Deditius et al., 2014; Heitt et al., 2003;

Large et al., 2009; Simon, Huang, et al., 1999, Simon, Kesler, & Chry-

ssoulis, 1999 and reference therein). In addition, the iron of the Fe-

bearing sulfides, in Carlin-type gold deposits, is considered to derive

from the ferriferous carbonaceous surrounding rocks (Su et al., 2008

and reference therein). The Luanling gold deposit is hosted by the

iron-rich trachyandesite-andesite of the Paleoproterozoic

(1.80~1.75Ga) Xiong'er Group (Zhao et al., 2004). Previous studies

have shown that arsenic generally substitutes sulfur in arsenian

pyrite due to the similarity of their crystallochemical properties,

especially in reducing environments (Deditius et al., 2014; Pokrovski

et al., 2014 and reference therein). Therefore, the arsenian pyrite

should be the result of interaction between Au-bearing complexes

and the iron-rich wall rock and formed through the following

reaction:

2x
3

� �
H3As3S6 aqð Þ +Fe

2+
aqð Þ + 5x−1ð ÞH2

!Fe S1−X,Asxð Þ2 + 6x−2ð ÞH2S+2H
+

aqð Þ ð1Þ

In addition, the formation of galena, sphalerite and chalcopyrite

and tetrahedrite, which might postpone the pyrite precipitation

(Xu et al., 2014). Furthermore, EMPA, laser ablation-inductively

coupled plasma-mass spectrometry (LA-ICP-MS), X-ray absorption

near-edge structure (XANES) and transmitted electron microscopy

(TEM) measurements on oxidation status of gold in arsenian pyrite

indicate that gold predominantly occurs as Au+, with little Au-

bearing nanoparticles (our unpublished data). Thus, due to the

changes of physicochemical conditions for ore-forming fluids, gold

can be precipitated through the following chemical reactions in the

gold-sulfides stage:

I Reactions for precipitation of free gold (Pokrovski et al., 2014;

Simon, Huang, et al., 1999 and references therein)

AuðHSð Þ2
� �−

aqð Þ + 0:5H2 gð Þ!Auo Py=As−bearing Pyð Þ +H2S+HS− ð2Þ

AuðHSð Þ2
� �−

aqð Þ +0:5H2 gð Þ+H+ !Auo Py=As−bearing Pyð Þ +2H2S ð3Þ

Au HSð Þo aqð Þ +0:5H2 gð Þ!Auo Py=As−bearing Pyð Þ +H2S ð4Þ

2y
3

� �
H3As3S6 aqð Þ + 1−3yð Þ AuðHSð Þ2

� �−
aqð Þ +Fe

2+
aqð Þ +

7y−1
2

� �
H2 gð Þ

! 1−3yð ÞAu0 +Fe S1−y ,Asyð Þ2 + 1+3yð ÞH+
aqð Þ

ð5Þ

2y
3

� �
H2As3S6½ �− aqð Þ + 1−3yð Þ AuðHSð Þ2

� �−
aqð Þ +Fe

2+
aqð Þ +

7y−1
2

� �
H2 gð Þ

! 1−3yð ÞAu0 +Fe S1−y ,Asyð Þ2 +
3 +7y
3

� �
H+

aqð Þ

ð6Þ

II Reactions for precipitation of Au+ in a vacancy position on an

anion site in pyrite lattice (Pokrovski et al., 2014; Simon, Huang, et al.,

1999and references therein)

AuðHSð Þ2
� �−

aqð Þ !Au+
As−bearing Pyð Þ +2HS− ð7Þ

AuðHSð Þ2
� �−

aqð Þ +H
+

aqð Þ !Au+
As−bearing Pyð Þ +H2S +HS− ð8Þ

AuðHSð Þ2
� �−

aqð Þ +2H
+

aqð Þ !Au+
As−bearing Pyð Þ +2H2S ð9Þ

2y
3

� �
H3As3S6 aqð Þ + 1−3yð Þ AuðHSð Þ2

� �−
aqð Þ +Fe

2+
aqð Þ + 5y−1ð ÞH2 gð Þ

! 1−3yð ÞAu1+ + Fe S1−y ,Asyð Þ2 + 6yH+
aqð Þ

ð10Þ
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2y
3

� �
H2As3S6½ �− aqð Þ + 1−3yð Þ AuðHSð Þ2

� �−
aqð Þ +Fe

2+
aqð Þ + 5y−1ð ÞH2 gð Þ

! 1−3yð ÞAu1+ + Fe S1−y ,Asyð Þ2 +
16y
3

� �
H+

aqð Þ

ð11Þ

5.2.2 | Migration and precipitation mechanism of
gold in quartz vein-type ores

Based on the detailed thermodynamic calculations, Zhang and Spay

(1994) proposed that HTe−, HTeO−
3 and Te2−2 are the most important

aqueous Te species in geological fluids. HTe− occurs under reducing

conditions (lower than the Ni-NiO buffer), whereas HTeO−
3 becomes

a dominant speciation under oxidizing conditions (higher than the

hematite-magnetite buffer), and Te2−2 would be the major speciation

between the Ni-NiO and hematite-magnetite buffers (Zhang & Spay,

1994 and references therein). Due to the precipitation of amounts of

sulfides in the altered rock-type ores and input of the Te-rich hydro-

thermal fluid, the tellurium fugacity increased significantly with dra-

matic decreases of logfS2(g) and pH in the remained hydrothermal

fluids (Zhang & Spay, 1994; Xu et al., 2014). Besides, according to the

estimated oxygen fugacity condition (logfO2(g) = −36.8 ~ −31.1,

Figure 8) of this study, we propose that Te mainly exists as HTe− with

minor Te2−2 and gold is mainly transported as [Au(HTe)2]
−, [HAu

(HTe)2] or [Au(HS,HTe)2]
− in the hydrothermal fluid relevant to the

quartz vein-type ores.

Combing the logfTe2(g)-logfO2(g) phase diagram (Figure 8) with

the paragenetic associations (Figures 5 and 6), the oxygen fugacity is

relatively high, and most sulfides and tellurides coexist with barite

over a relatively large range of logfO2 and logfTe2 in the quartz vein-

type ores. Under such oxidizing conditions, the partial sulfides are no

longer stable and would be oxidized to SO2−
4 and Te would be

released from the Au-Te or Au-S-Te complex and form tellurides,

according to reactions as follows:

AuðHSx,HTe1−xð Þ2
� �−

aqð Þ + 4xO2 aqð Þ +2XBa
2+

aqð Þ + 4−4xð ÞAg+
aqð Þ

+0:5H2 gð Þ !Au0 + 2−2xð ÞAg2Te +2xBaSO4 +3H
+

aqð Þ
ð12Þ

AuðHSx,HTe1−xð Þ2
� �−

aqð Þ +4xO2 aqð Þ + 2XBa
2+

aqð Þ + 2−2xð ÞPb2+ aqð Þ

+0:5H2 gð Þ !Au0 + 2−2xð ÞPbTe+2xBaSO4 +3H
+

aqð Þ
ð13Þ

However, the sulfidation process in the altered-type ores and

quartz vein-type ores would largely decrease the sulfur fugacity in

ore-forming fluids. Therefore, the oxidization reaction shown above is

limited for gold precipitation in the quartz vein-type ores (Liu et al.,

2000; Xu et al., 2014).

Au-bearing telluride minerals occur in many gold deposits,

implying that tellurides are important carriers of Au, Ag and PGE

(Afifi et al., 1988a, 1988b; Ciobanu et al., 2006; Echmaeva &

Osadchii, 2009; Xu et al., 2014 and references therein). In fact,

tellurides are the most important gold-bearing minerals in the qua-

rtz vein-type ores, including calaverite, petzite and hessite

(Table 2). However, based on the EMPA results, the so-called

‘calaverite’ recognized from microscopic observations is indeed an

Au-Ag tellurides and close to sylvanite (Figure 9), which is consis-

tent with the phase relationships between tellurides and sulfides

(Figure 7). Therefore, native gold cannot be associated with

calaverite, because the Te fugacity is not enough to form calaverite

(Xu et al., 2014). Besides, available experimental and calculations

studies have shown that sylvanite (<354�C) and petzite (<304�C)

are also stable at higher temperatures (Afifi et al., 1988a, 1988b;

Cabri, 1965). Gold is likely complexed by Te in the form of [Au

(HTe)2]
− or [HAu(HTe)2] as discussed above. Based on observations

of the common intergrowths of petzite and/or hessite with

sylvanite and or altaite in ores from the Luanling gold deposit, we

proposed that most of the tellurides were contemporaneously pre-

cipitated from ore-forming fluids under relatively oxidized and

acidic condition though the following reactions:

Au HTeð Þ2
� �−

aqð Þ + Ag HTeð Þ2
� �−

aqð Þ +2O2 aqð Þ +3H
+ +HTe−

!AuAgTe4 + 0:5Te2 + 4H2O ð14Þ

Au HTeð Þ2
� �−

aqð Þ +3 Ag HTeð Þ2
� �−

aqð Þ +2Pb
2+

aqð Þ + 2O2 aqð Þ
!Ag3AuTe2 + 2PbTe+2Te2 + 4H2O ð15Þ

Au HTeð Þ2
� �−

aqð Þ +4HTe−
aqð Þ +5Ag

+
aqð Þ +1:5O2 aqð Þ

!Ag3AuTe2 +Ag2Te+ 1:5Te2 + 3H2O ð16Þ

2 Ag HTeð Þ2
� �−

aqð Þ +2H
+

aqð Þ +1:5O2 aqð Þ !Ag2Te+ 1:5Te2 + 3H2O

ð17Þ

In addition, sylvanite and petzite would be unstable with

decreasing temperature and decompose into hessite and calaverite

at temperature below ~120�C (Afifi et al., 1988a; Cabri, 1965). In

this study, gold precipitation is estimated at relative low tempera-

ture (~300�C). As petzite is closely associated with altaite, hessite

and sylvanite (Figure 6), we propose that hessite, nature gold and

Au-Ag tellurides with compositions on the tie lines among

krennerite, sylvanite, petzite and hessite (Figure 9), are the prod-

ucts of the decomposition of sylvanite and petzite to a certain

degree, with the following reactions (Xu et al., 2014):

AuAgTe4 !Au1−xAgTe4 + xAu
0 x= 0−1ð Þ

AuAg3Te2 !Au1−yAg3−zTe2−z + yAu
0 + zAg2Te x=0−1,z=0−1ð Þ

The above decomposition process should be buffered by other

stable tellurides such as PbTe, HgTe and NiTe2. Similar phenomena

have been reported by previous studies (Afifi et al., 1988a;

Xu et al., 2014).

Furthermore, in Au-Ag-Te system, χ and γ phases are stable at

high temperature and can decompose into the assemblages of hessite,
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petzite, krennerite, stützite and sylvanite at temperature below ~50�C

and ~ 120�C, respectively. (Afifi et al., 1988a; Cabri, 1965). Based on

the plotted dots on the lines among krennerite, sylvanite, petzite and

hessite in the Figure 9, we proposed that the solid solutions might

form through the decomposition of χ and γ phases (Cabri, 1965;

Xu et al., 2014 and references therein). However, we cannot provide

the decomposition reactions of the two phases for limited thermody-

namic parameters.

5.2.3 | Genetic relationships of the altered rock-
and quartz vein-type ores

As discussed above, Au HSð Þ−2 and AuHS0 were the major speciations

of gold-bearing complexes in ore-forming fluid relevant to the altered

rock-type ores, whereas gold was mainly transported as [Au(HTe)2]
−,

[HAu(HTe)2] or [Au(HS,HTe)2]
− in ore-forming fluid relevant to the

quartz vein-type ores. During the upward migration of hydrothermal

fluids, the logfS2(g) and pH would be significantly decreased in the

remaining ore-forming fluids due to the precipitation of amounts of

sulfides in the altered rock-type ores (Zhang & Spay, 1994; Xu et al.,

2014). With the addition of some new Te-rich magmatic hydrothermal

fluids, the Te fugacity would dramatically increase in the remaining

ore-forming fluids, with precipitation of tellurides as a consequence

(Chen et al., 1999). Moreover, the altered rock-type ores usually occur

along both sides of, and sometimes as inclusions in the quartz vein-

type ores (Figure 3b). These observations indicate that the quartz

vein-type ores were slightly preceded by the altered rock-type ores.

Besides, the Au-bearing arsenian pyrite in the altered rock-type ores

has not experienced significant tectonic modification and is not filled

or enclosed by tellurides (Figure 5). These observations indicate that

the ore-forming fluids relevant to the altered rock- and the quartz

vein-type ores were from the same source and continuously evolved.

6 | CONCLUSIONS

In order to better understand the ore-forming process for altered

rock- and quartz vein-type of ores in the Luanling gold deposit, we

constructed fugacity-fugacity diagrams of phase equilibria among sul-

fides, tellurides and oxides via systematic thermodynamic calculations.

Our study provides a simplified method to explain the ore-forming

process for the diversity of gold mineralization.

The fugacity of S2(g), O2(g) and Te2(g) played significant roles in

the different types of gold mineralization in the Luanling gold deposit.

The ore-forming fluid carried large amounts of S, As, Te and Au, and

gold was mainly complexed by S and Te in terms of [Au(HS)2]
−, [Au

(HTe)2]
−, and [Au(HS, HTe)2]

−. In the ore-forming fluid relevant to

altered rock-type ores, [Au(HS)2]
− is a dominant carrier of gold. Depo-

sition of gold resulted from sulfidation of the nearby Fe-rich

trachyandesite-andesite along the two sides of the main fault in the

deposit and then formed the altered-type ores. During the sulfidation

process, gold was liberated from the Au-S complexes during the reac-

tion between sulfur in the hydrothermal fluids and iron in the

trachyandesite-andesite. Gold occurs as ionic gold in the crystal lattice

of pyrite and arsenian pyrite, and nano-particles of gold in the sulfides.

Due to the obvious decrease of sulfur fugacity for the sulfidation

in the wall rock and addition of the Te-rich fluid, the Te fugacity

would evidently increase and [Au(HTe)2]
− and [Au(HS, HTe)2]

− are the

major carriers of gold in the ore-forming fluid relevant to quartz vein-

F IGURE 9 Ternary Au-Ag-Te showing the
phase relationships among the Au-Ag
tellurides at temperature between 120�C and
300�C diagram of system, modified from
Zhang & Spry (1994); Krt = krennerite, Syl =
sylvanite, Stut = stützite
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sylvanite, Stut = stützite [Colour figure can
be viewed at wileyonlinelibrary.com]
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type ores. Under this condition, the relatively high oxygen fugacity

can oxidize the partial residual sulfides into sulfate minerals such as

barite. In addition, gold was primarily precipitated from the ore-

forming fluids in the forms of main sylvanite, petzite, Au-Ag-tellurides,

and minor native gold. According to phase relations among tellurides,

sylvanite and petzite would decompose into native gold, hessite and

more stable Au-Ag-tellurides with decreasing of temperatures. Based

on comprehensive study, we proposed that the ore-forming fluids rel-

evant to the altered rock- and the quartz vein-type ores were from

the same source and continuously evolved.
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