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Abstract
Located in the northeastern Hunan Province of South China, the Taolin Pb-Zn deposit is one of many metallic deposits
structurally controlled by extensional faults in the central segment of the Jiangnan Orogen. The deposit occurs in a tectonic
breccia zone between the Mufushan pluton and the Neoproterozoic Lengjiaxi Group. Field and microscopic observations reveal
that the hydrothermal ore-forming processes at Taolin can be divided into five stages, from early to late: (1) coarse-grained quartz,
(2) quartz + fluorite + chlorite + claybank sphalerite (Sp1) + galena + chalcopyrite, (3) quartz + barite + pale-yellow sphalerite
(Sp2) + galena + chalcopyrite, (4) quartz ± chalcopyrite, and (5) fine-grained quartz, in which the stages 2 and 3 are regarded as
the main Pb-Zn-forming events. LA-ICP-MS analyses show that Sp1 has higher contents of Fe, Mn, Co, In, and Sn, but lower
contents of Ge and Sb, relative to the Sp2. Trace element concentrations of the sphalerite suggest a medium-low temperature
hydrothermal event dominated in the Taolin deposit and that the ore fluids gradually decreased in the estimated average
temperature and became relatively oxidized from stages 2 to 3. The δ18O values of ore fluids calculated from in situ analysis
on the stages 2 and 3 quartz suggest the ore fluids are from a mixture of magmatic and meteoric waters. The δ34S values of
sulfides/sulfates from stages 2 and 3 mineralization indicate a dominating magmatic affinity for sulfur. Further, lead isotope
compositions for the stages 2 and 3 sulfides are similar to those of the Mufushan pluton, indicating that the ore metals may have
been derived from the latter. We thus propose that the Taolin deposit precipitated from a medium-low temperature magmatic-
hydrothermal system most likely related to the Mufushan pluton.
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South China

Introduction

Vein-type Pb-Zn ± Ag deposits, as an important source of base
metals, commonly have close relationships with porphyry and/or
skarn systems, and have been recognized as the distal products of
magmatic-hydrothermal systems (Lawley et al. 2010; Sillitoe
2010; Bonsall et al. 2011; Box et al. 2012; Catchpole et al.
2015; Li et al. 2017; Zhai et al. 2018, 2019). However, there
are also some base metal veins that do not appear to be spatially
and genetically linked to porphyry or skarn systems, and their
genesis remains controversial (Li et al. 2013; Ma et al. 2019).
Such the vein-type deposits are distinctly hydrothermal in origin,
although the source of ore-forming fluids and metals may be
either magmatic or non-magmatic (Kissin and Mango 2014). In
most instances, both fluid and metal sources are still greatly
debated (Zhai et al. 2018, 2019).
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Situated between the Yangtze Block and Cathaysia Block
in South China, the Jiangnan Orogen is a significant
metallogenic belt hosting abundant Au-Sb-W and Cu (-
polymetallic) deposits (Xu et al. 2017). Several decades ago,
some Au, Cu, Pb-Zn, and Co deposits were also discovered in
northeastern Hunan Province, which geotectonically is tradi-
tionally regarded as the central segment of the Jiangnan
Orogen. Among these, the Taolin Pb-Zn deposit occupies a
reserve of 0.98 Mt Pb+Zn, with average grades of 1.22 wt%
for Pb and 1.13 wt% for Zn. Besides, the Pb-Zn orebodies are
strictly controlled by detachment fault zones (Fu et al. 1991).
Therefore, it is necessary to figure out the genesis of the Taolin
Pb-Zn deposit, which will be in favor of exploration for po-
tentially more Pb and Zn resources in the region.

Previous studies have mainly described the geological
characteristics, host rocks, and mineral paragenesis of the
Taolin deposit (Zhang and Fu 1987; Zhang 1989; Fu et al.
1991; Li and Yu 1991; Li 1992; Yu 1993; Yu et al. 1998; Yu
and Ye 1998; Kang et al. 2015). However, source(s) for the
ore-forming materials and fluids and the genetic affiliation of
the Taolin Pb-Zn deposit have been controversial. Anyway,
the Taolin deposit has been interpreted as one of the three
types of ore genesis: medium-low temperature hydrothermal
vein-type (Wang et al. 1981; Ding and Rees 1984; Wei and
Ding 1984; Ding et al. 1986; Zou 1993; Kang et al. 2015),
sedimentary-hydrothermally reworked type (Zhang and Fu
1987; Zhang 1989), or low-temperature epithermal type
(Roedder and Howard 1988). As for the ore-forming mate-
rials, several sources were suggested, such as from (1) lower
crust or Mesozoic granite (Wang et al. 1981; Ding and Rees
1984;Wei and Ding 1984; Ding et al. 1986; Kang et al. 2015),
(2) both Neoproterozoic Lengjiaxi Group and Mesozoic gran-
ite (Yu et al. 1998), and (3) Neoproterozoic Lengjiaxi Group
(Zhang and Fu 1987; Zhang 1989). Besides, two sources of
ore-forming fluids were interpreted as the results of (1) mix-
ture of magmatic water and meteoric water (Wei and Ding
1984; Ding et al. 1986; Yu et al. 1998; Kang et al. 2015),
and (2) meteoric water with minor metamorphic water
(Zhang and Fu 1987; Zhang 1989; Li and Yu 1991; Li
1992). However, most of those conclusions are from the evi-
dence of separating mineral analysis, which may cause preju-
dice to encode the ore genesis of the Taolin deposit. Therefore,
the sources of ore fluids and ore metals of the Taolin deposit
should be reconsidered based on the state-of-the-art analytical
methods, although this deposit has been mined for more than
60 years.

In this paper, the electron microprobe analysis (EMPA) and
laser ablation inductively coupled plasma mass spectrometry
(LA-ICP-MS) analyses were conducted on sphalerites from
Taolin Pb-Zn deposit for obtaining the major and trace ele-
ments. Correspondingly, the substitution mechanisms of trace
elements and the formation conditions of these sphalerites
were discussed. In addition, the in situ oxygen and sulfur

isotopes were analyzed on the quartz and sulfides/sulfate, re-
spectively, to encode the source(s) and evolution of the ore
fluids. Besides, the lead isotopic components of the sulfides
and associated granites are analyzed to deduce the origin of
the ore metals. Integrating the above data, we attempt to elu-
cidate the ore-forming process(es) and to identify the genetic
type of the Taolin Pb-Zn deposit.

Regional geology

South China Block (SCB) comprises the Yangtze Block to the
northwest and the Cathaysia Block to the southeast (Fig. 1a),
which were assembled to form the Jiangnan Orogenic Belt dur-
ing Neoproterozoic (e.g., Zhou et al. 2002; Zhao and Cawood
2012; Wang et al. 2014b; Yao et al. 2014; Zhao 2015). The
Jiangnan Orogenic Belt is a tectonic unit composed of low-
grade metamorphic Neoproterozoic sedimentary-volcanic rocks
and massive granite intrusions. It is curved across northern
Guangxi, eastern Guizhou, western and northern Hunan, north-
ern Jiangxi, southern Anhui, and northern Zhejiang (Wang et al.
2013b). In South China, four major episodes of magmatism have
been recognized, including the Neoproterozoic (Jinningnian), the
Early Paleozoic (Caledonian or Kwangsian), the EarlyMesozoic
(Indosinian), and the Late Mesozoic (Yanshanian) (Zhou et al.
2006; Zhao and Cawood 2012; Charvet 2013; Shu et al. 2015).
Among these, the Late Mesozoic (180–67 Ma) magmatism ini-
tiated by the Yanshanian Orogeny is the most intensive episode
(Deng et al. 2017). It has been generally accepted that the sub-
duction and subsequent rollback of the Paleo-Pacific plate result-
ed in the voluminous Late Mesozoic I-S-type granitoids as well
as the predominant NE-trending faults in South China (Li and Li
2007; Wang et al. 2007b; Jiang et al. 2009; Zhu et al. 2014).
Amounts of A-type granitoids with the age of ca. 160 Ma were
developed in the Nanling Range including part of the Jiangnan
Orogenic Belt, indicating that the SCB had been in an extension-
al tectonic setting since ca. 160 Ma (Li et al. 2007).

Northeastern Hunan Province is located in the central seg-
ment of the Jiangnan Orogenic Belt, South China (Fig. 1a, b).
The main rocks outcropped in northeastern Hunan are
metasediments of the Neoproterozoic successions and Meso-
Cenozoic red-bed sedimentary rocks (Fig. 1b). The
Neoproterozoic successions consist of the Early to Middle
Neoproterozoic (ca. 860–820 Ma; Wang et al. 2008, 2010,
2012a, 2012b, 2013b, 2014b; Zhou et al. 2009; Gao et al.
2011; Zhang et al. 2012; Zhang and Zheng 2013) Lengjiaxi
Group and the Middle Neoproterozoic (ca. 815–760 Ma;
Wang et al. 2007a, 2013a; Gao et al. 2011) Banxi Group, with
both of them separated by the angular unconformity (Wang
et al. 2007a).

The northeastern Hunan Province is characterized by the
Basin-and-Range-like tectonic framework, which consists of
three basins and two uplifts separated by a series of regional
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NE- to NNE-trending marginal faults (Fig. 1b). From NW to
SE, these basins and uplifts include the Miluo graben basin,
the Mufu-Wangxiang uplift, the Changsha-Pingjiang graben
basin, the Liuyang-Hendong uplift, and the Liling-Youxian
graben basin (Xu et al. 2009). The individual basins are large-
ly filled by the Cretaceous red-bed clastic rocks, whereas each
of the uplifts comprises Precambrian metamorphic
volcaniclastic sedimentary rocks and granitoids intruded by
the Late Silurian to Cretaceous granitoids. The NE- to NNE-
trending crustal-scale strike-slip shear faults that are situated at
the transitions between basins and uplifts are defined by a
series of deep faults such as Xinning-Huitang, Changsha-
Pingjiang, etc. (Fig. 1b; Fu 2009; Wen et al. 2016).
Moreover, the Basin-and-Range-like tectonic framework
was most likely caused by Late Mesozoic extension proposed
by Xu et al. (2017). Granitoid intrusions are well-developed in
the northeastern Hunan Province (Fig. 1b). The emplacement
age for those granitoids include the Early to Late
Neoproterozoic represented by the Getengling pluton of ca.
845 Ma ages (Deng et al. 2019), the Caledonian Banshanpu
and Hongxiaqiao plutons of ca. 434–420 Ma ages (Xu et al.
2006; Guan et al. 2014; Li et al. 2015), the Yanshanian
Mufushan, Wangxiang, Jinjing, and Lianyunshan plutons of

ca. 160–127 Ma ages (Jia et al. 2003; Shi et al. 2013; Wang
et al. 2014a; Deng et al. 2017; Ji et al. 2017).

A number of Au-, Cu-, Co-, and Pb-Zn deposits occur in
northeastern Hunan Province, and spatially have an intimate
relationship with the Late Mesozoic granitoids (Fig. 1b). The
representative ore deposits include the Dawan Au deposit, the
Taolin Pb-Zn deposit, and the Lishan Pb-Zn polymetallic de-
posit in the Mufu-Wangxiang uplift, and the Huangjindong
Au deposit, the Qibaoshan Cu-Pb-Zn deposit, and the
Jingchong and Hengdong Co-Cu polymetallic deposits in
the Liuyang-Hendong uplift (Fig. 1b). Herein, the Taolin Pb-
Zn deposit is the focus of the present study.

Deposit geology

The outcropped strata in the Taolin mining district are com-
posed of the Neoproterozoic Lengjiaxi Group, the Cretaceous
Fenshuiao Formation, the Tertiary Jianjiaxi Formation, and
the Quaternary cover. Both the Tertiary-Cretaceous terrige-
nous sediments and the Quaternary cover were deposited in
the Miluo graben basin to the west of the Taolin detachment
fault zone as shown in Fig. 2 a. There is an unconformity at the
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contact between the Tertiary-Cretaceous sediments and the
Neoproterozoic Lengjiaxi Group. The Lengjiaxi Group, a
suite of marine, siliciclastic sedimentary rocks with low-
grade metamorphism, comprises (carbonaceous) slate,
phyllite, schist, quartz sandstone, and quartz phyllite (Xu
et al. 2007). The Taolin mining district is characterized by
well-developed NE- and nearly E-trending faults that actually
define the district-scale Taolin fault zone (Fig. 2a). To the west
of the district is the Shitianfan-Qiupingao fault (F2) which is
19 km long, trends NE, and dips 30–49° to NW. To the south
of the district is the Baiyangtian fault (F1) dipping to SW at
angles of 24–64° and together with the F2 forming a protrud-
ing to west, arc-like structural style. This structure has been
considered to represent a detachment fault due to the emplace-
ment of the Late Mesozoic (Late Yanshanian) granitoids,
resulting in a metamorphic core complex that largely con-
trolled the Taolin Pb-Zn mineralization (Yu et al. 1998; Li
and Yu 1991). A voluminous Late Mesozoic granitoids are
exposed in the mining district and lithologically are mainly
composed of two-mica monzogranites and biotite
monzogranites. These granitoids intruded the Lengjiaxi
Group and the Cretaceous strata, with the contact surfaces
generally dipping to wall rocks at an angle of 30–85°.

The Taolin deposit is mainly hosted within the Shitianfan-
Qiupingao detachment fault zone (F2), and locally occurred in

the Late Mesozoic granitoids and Cretaceous red conglomer-
ates (Fig. 2). This detachment fault zone, with a strike length
of about 13 km, mainly consists of orbicular granitic
mylonites and tectonic schists with silicification,
sericitization, chloritization, and fluoritization. The ore-
hosting fault zone consists of seven ore sections from south-
west to northeast, namely Shitianfan, Duanshan, Guanshan,
Shangtangchong, Yinkongshan, Dujiachong, and Qiupingao.
These ore sections seem to have a law of approximately equi-
distant distribution in space, and along both the strike and
inclination the orebodies present expansion, contraction, and
pinch-out. Generally, the ore bodies have a strike length up to
2 km and an extension up to 1.2 km along inclination, with the
thicknesses varying between 1 and 35 m. The ore occurrence
is stable, generally with dipping to NWat an angle of 30–45°
(Fig. 2b). The Taolin deposit contains a total metal tonnage of
> 0.98 Mt at grades up to 2.35 wt% for Pb+Zn. Among them,
the Shangtangchong, Yinkongshan, Guanshan, and Duanshan
ore sections are of relatively large sizes and account for 96%
reserves of the Taolin mining district.

In general, primary ores are massive, brecciated, and
veined (Fig. 3), and are commonly characterized by replace-
ment, crystallization, dissemination, and crosscutting textures
(Fig. 4). Sulfide minerals mainly include sphalerite, galena,
chalcopyrite, and pyrite (Fig. 4). The gangue minerals are
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mainly composed of quartz, fluorite, and barite, with minor
chlorite and sericite.

Based on field and microscopic observations and cross-
cutting relationships, five hydrothermal mineralization
stages, from early to late, were identified (Fig. 5). The first
stage is characterized by coarse-grained quartz (Q1)
coexisted with minor or no sulfide minerals (Figs. 3a and
4a). The second stage is defined by mineral assemblage of
quartz (Q2) + fluorite + sphalerite (Sp1) + galena + chal-
copyrite ± pyrite, and defined by Q2 cutting cross Q1 and
the Sp1 with claybank color and typically intergrown with
galena and fluorite as well as with minor chalcopyrite and
pyrite (Figs. 3b–d and 4b–e). In addition, chlorite formed at
this stage is closely associated with sulfides (Fig. 4f). The
third stage is featured by the mineral assemblage of quartz
(Q3) + fluorite + barite + sphalerite (Sp2) + galena +
chalcopyrite ± pyrite, with Sp2 present as pale-yellow color
and often intergrown with Q3, galena, barite, and fluorite
as well as minor pyrite (Figs. 3e–h and 4g–i). Quartz (Q4)
formed in the fourth stage of mineralization generally pre-
sents as veins crosscutting the earlier minerals and includes
two subtypes, i.e., Q4-1 and Q4-2, and coexists with minor

or no sulfide minerals (Figs. 3g–i and 4j). The Q4 mainly
occurred in the form of comb texture, with Q4-1 present as
light pink color and Q4-2 often formed ringing the Q4-1.
With the occurrence of minor sulfides such as chalcopyrite
and galena, the fifth stage of mineralization is defined by
fine-grained quartz (Q5) which is generally present as vein-
lets crosscutting the earlier minerals (Figs. 3d, i and 4k, l).

Hydrothermal alteration primarily include silicification,
fluoritization, chlorization, brecciation, and a small amount
of sericitization and carbonization (Figs. 3 and 4), of which
the silicification, brecciation, chlorization, and fluoritization
are intimately related to the Pb-Zn mineralization.
Nevertheless, brecciation, as highlighted by abundant breccia
which comprises granites, slates, and phyllites, is the main
prospecting indicator in the mining district.

Sampling and analytical methods

Ninety-five ore samples were collected from the Taolin
deposit in the underground mining pit at the levels ranging
from − 120 to − 180 m. Ten representative samples first
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were chosen from stages 2 and 3 mineralization for EMPA.
The analysis was carried out on sphalerite (Sp1 and Sp2)
grains from thin sections. Then the LA-ICP-MS analysis was
conducted on the same samples as used for EMPA. Seven sam-
ples and five samples from the stages 2 and 3 mineralization
were selected respectively for in situ oxygen isotope analysis of
quartz by secondary ion mass spectrometry (SIMS) and for in
situ sulfur isotope analysis of sulfides and sulfate by laser abla-
tion multi-collector inductively coupled plasmamass spectrom-
etry (LA-MC-ICP-MS). In addition, 7 sulfide separates from
the stages 2 and 3 mineralization, and 12 granitoid samples
from the Late Mesozoic Mufushan pluton, were analyzed for
lead isotope compositions by multi-collector inductively
coupled plasma mass spectrometry (MC-ICP-MS).

Electron microprobe analyses

Electron microprobe analyses (EMPA) were performed by
JEOL JXA-8230 electron microprobe at the Key Laboratory
of Mineralogy and Metallogeny, Guangzhou Institute of
Geochemistry, Chinese Academy of Sciences. Polished thin
sections of the selected samples were carbon-coated.
Operating conditions for spot analyses include an accelerating
voltage of 15 kV, an electron beam current of 20 nA, and a
beam diameter of 1–2 μm. The following elements were ana-
lyzed: Cu, As, Zn, Fe, Ag, Co, Mn, Sn, S, Pb, Cd, Ni. The
standard sample, ZnS, was used for S and Zn analysis.
Detection limits for analyzed elements are typically less than
300 ppm.
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LA-ICP-MS analyses on sphalerite

In situ trace element analyses of the sphalerite (i.e., Sp1, Sp2)
were conducted by LA-ICP-MS at Nanjing FocuMS
Technology Co. Ltd. The 193-nm ArF excimer laser, homoge-
nized by a set of beam delivery systems, was focused on sulfide
surface with a fluence of 3.5 J/cm2. Ablation protocol employed
a spot diameter of 40μm at a 6-Hz repetition rate for 40 s (equat-
ing to 240 pulses). Helium was applied as a carrier gas to effi-
ciently transport aerosol to ICP-MS. The following elements
were monitored: 49Ti, 51V, 53Cr, 55Mn, 57Fe, 59Co, 60Ni, 65Cu,
66Zn, 69Ga, 72Ge, 75As, 77Se, 93Nb, 95Mo, 107Ag, 111Cd, 115In,
118Sn, 121Sb, 125Te, 182W, 185Re, 197Au, 205Tl, 208Pb 209Bi, and
238U. USGS polymetallic sulfide pressed pellet MASS-1 and
synthetic basaltic glasses GSE-1Gwere combined for calibration
(Gao et al. 2015).

Cathodoluminescence

Cathodoluminescence (CL) imaging of the quartz samples
from the stages 2 and 3 mineralization was carried out using
a TESCAN MIRA3 field emission scanning electron micro-
probe (FE-SEM) at the Testing Center, Tuoyan Analytical
Technology Co. Ltd. (Guangzhou, China). Working condi-
tions of the CL imaging include 10 kV accelerating voltage
and 15 nA beam current.

O-S-Pb isotope geochemistry

The target minerals on thin sections of the stages 2 and 3 ores
were cut off, then embedded into epoxy resin, polished, and
coated with gold to ensure the sample to be smooth and con-
ductive. Oxygen isotope was analyzed with Cameca

stage 1 stage 2 stage 3 stage 4 stage 5 
Supergene
oxidation

Quartz

Barite

Fluorite

Pyrite

Chalcopyrite

Minerals
Hydrothermal processes

Covellite

Limonite

Malachite

Sphalerite

Galena

Q1 Q2 Q3 Q4-1 Q4-2 Q5

Abundant MinorCommon

Chlorite

Fig. 5 Mineral paragenesis of the
Taolin Pb-Zn deposit

Fig. 6 Representative time-resolved depth profiles for selected elements in sphalerite analyzed in this study. a LA-IC-MS spectra for the Sp1. b LA-IC-
MS spectra for the Sp2
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IMS1280-HR at the State Key Laboratory of Isotope
Geochemistry, Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences. Standard NBS28 was used
for calibrating the δ18O values of quartz. Detailed procedures
are referred to Yang et al. (2018) for oxygen isotope.

In situ sulfur isotopic analyses of the sulfides and sulfate
were carried out using a Nu plasma 1700 multi-collector in-
ductively coupled plasma mass spectrometer (MC-ICP-MS)
equipped with a Resolution M-50 193-nm ArF Excimer laser
ablation system at the State Key Laboratory of Continental
Dynamics, Northwest University. The laser energy density
(fluence) used to analyze the S isotope is 3.6 J/cm2, the fre-
quency is 3 Hz, the spot size is 30 μm, the ablation method is
single-point ablation, and the carrier gas is high-purity. The
δ34S can be tested to very high precision (less than 0.1‰). The
sulfur isotope ratios of galena, sphalerite, chalcopyrite, and
barite were adjusted using the CBI-3 (δ34SV-CDT = 28.5 ±
0.4‰), NBS123 (δ34SV-CDT = 17.8 ± 0.2‰), CPY-1 (δ34SV-
CDT = 4.2 ± 0.3‰), and NBS127 (δ34SV-CDT = 20.3 ± 0.2‰),
respectively. For further detailed analytical methods, see Bao
et al. (2017), Chen et al. (2017), and Yuan et al. (2018b).

The lead isotopic analyses of seven sulfide separates were
performed using a GV Isoprobe-T thermal ionization mass
spectrometer monitored by standard NBS 981 at the
Analytical Laboratory of the Beijing Research Institute of
Uranium Geology, China. Analytical results for the standard
NBS981 are 20 6Pb / 2 0 4Pb = 16 .937 ± 0 .002 (2σ ) ,
207Pb/204Pb = 15.457 ± 0.002 (2σ), and 208Pb/204Pb = 36.611
± 0.004 (2σ). However, whole-rock lead isotopic analyses of
12 granitoid samples were measured by a VG-354 mass spec-
trometer at the State Key Laboratory of Isotope Geochemistry,
Guangzhou Institute of Geochemistry, Chinese Academy of
Sciences. About 100 mg powder was weighed into a Teflon
beaker, spiked, and dissolved in concentrated HF at 180 °C for
7 h. The lead was separated and purified by a conventional
cation-exchange technique (AG1-X8, 20–400 resin) with di-
luted HBr as an eluant. Repeated analyses of NBS 981 yielded
average values of 206Pb/204Pb = 16.933 ± 0.001 (2σ),
207Pb/204Pb = 15.486 ± 0.001 (2σ), and 208Pb/204Pb = 36.683
± 0.002 (2σ).

Principal component analysis

Principal component analysis (PCA) is a commonly used data
analysis method (Belissont et al. 2014; Frenzel et al. 2016;
Bauer et al. 2019). PCA transforms the original data into a
set of linearly independent representations of each dimension
through linear transformation, which can be used to extract the
main feature components of the data and for dimensionality
reduction of high-dimensional data on the basis of reflecting
as much original information as possible (Belissont et al.
2014; Frenzel et al. 2016; Bauer et al. 2019). In addition, since
principal component analysis adopts the method of linear

dimensionality reduction, the correlation coefficient between
each variable and the principal component can be accurately
calculated to determine the control variables of the principal
component. Therefore, the first two principal components
with the highest explained variance (namely, the value of ab-
scissa and ordinate showed in a two-dimensional plane) cor-
responding to the most significant relationships between the
variables. The principal components can also be called contri-
bution rate. Their mathematical meaning is the variance of a
principal component as a percentage of the total variance. The
higher the contribution rate, the more information that the
principal component represents the original variables.

PCA is widely used in the field of geochemical exploration
on large-scale datasets to interpret trace element data and to
understand their relationship (Winderbaum et al. 2012;
Belissont et al. 2014; Frenzel et al. 2016; Wei et al. 2018a;
Yuan et al. 2018a; Bauer et al. 2019). PCA has also been
found application in isotope geochemistry (Cadoux et al.
2007; Iwamori et al. 2010) and sulfide geochemistry
(Winderbaum et al. 2012). Consequently, PCA is applied to
the LA-ICP-MS datasets to uncover the pertinence of ele-
ments in sphalerite in this study. The database in this study
was filtered by the criteria suggested by Yuan et al. (2018a).
The important minor and trace elements, such as Fe, Mn, Co,
Cu, Ga, Ge, Ag, Cd, In, Sn, and Sb, were selected in this
manner. First of all, the values below the detection limit were
omitted before processing the dataset. Then, the concentra-
tions of these elements for individual deposit types in a large
dataset were log-transformed. Finally, the R software environ-
ment was used for data analysis.

Results

EMPA data of sphalerite

EMPA analyses for some trace elements of the stages 2 and 3
sphalerites are listed in ESM 1 Table 1. ESM 1 Table 1 shows
that the Sp1 has average values of 62.88 wt% for Zn and
32.55 wt% for S, whereas that the Sp2 has average values of
65.12 wt% for Zn and 32.49 wt% for S. The contents of Fe
(averaging 2.12 wt%), Co (averaging 0.04 wt%), and Mn
(averaging 0.013 wt%) in Sp1 are higher than those in Sp2
(average values of 0.64 wt% for Fe, 0.01 wt% for Co, and
0.005 wt% for Mn, respectively; ESM 1 Table 1). Cadmium
concentrations are approximately equal in both types of sphal-
erite (0.12 wt% and 0.13 wt% for Cd in Sp1 and Sp2,
respectively).

LA-ICP-MS data of sphalerite

The complete LA-ICP-MS dataset composed of 64 spot anal-
yses (ESM2 Table 2) presents the concentrations of individual
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trace elements in sphalerite from the Taolin deposit. The ab-
solute concentration ranges of the selected elements are shown
as box-and-whisker plots (Fig. 7) with median and possible
outliers of the data. For comparison, the previously published
data of sphalerites from Cook et al. (2009), Ye et al. (2011),
Wei et al. (2018a, b), and Yuan et al. (2018a) are also present-
ed in Fig. 7.

The elements Mn, Fe, and Co are significantly enriched in
Sp1 (63.84–549.9 ppm for Mn, 9809–41373 ppm for Fe, and
162.3–830.1 ppm for Co) relative to those of the Sp2 (12.91–
84.09 ppm for Mn, 1190–7626 ppm for Fe, and 39.50–
187.6 ppm for Co; ESM 2 Table 2 and Fig. 7a–c), which is
consistent with the EMPA results. The Cu, Ga, Cd, and Pb
concentrations in both types of sphalerite (Sp1 and Sp2) are
similar within the uncertainties (1.937–534.5 ppm Cu, 0.105–
628.7 ppm Ga, 425.2–1699 ppm Cd, and 0.070–4.755 ppm
Pb for Sp1, and 2.356–677 ppm Cu, 0.436–750.7 ppm Ga,
472.8–1400 ppm Cd, and 0.050–18.30 ppm Pb for Sp2; ESM
2 Table 2 and Fig. 7e–o). The concentrations of In and Sn tend
to be slightly higher in Sp1 (0.012–28.35 ppm for In and
0.262–3.549 ppm for Sn) than those in Sp2 (0.029–
65.41 ppm for In and 0.270–6.487 ppm for Sn; ESM 2
Table 2 and Fig. 7k, l). In contrast, Sp2 exhibits slightly higher
Sb (0.094–33.19 ppm) than Sp1 (0.068–7.606 ppm Sb). The
concentrations of Ge, Se, and Ag generally range from 1 to
10 ppm in both types of sphalerite. In addition, concentrations
of Ni and Bi in both types of sphalerite are generally less than
1 ppm (ESM 2 Table 2 and Fig. 7d, p). The Ga/In ratios in
both the types of sphalerite are much greater than 1 (2.175–
3755 for Sp1 and 0.963–7647 for Sp2). Sp1 also displays
lower Zn/Fe (16.32–76.83 for Sp1 and 98.64–609.7 for Sp2)
and Cd/Fe (0.026–0.118 for Sp1 and 0.067–0.556 for Sp2;
ESM 2 Table 2) ratios, when compared with Sp2.

The difference between the concentrations of related trace
elements in sphalerite from the Taolin deposit and that from
other types is considerable. In contrast to other type deposits
(e.g., Skarn, SEDEX, VMS, MVT, and the Jinding type), the
Taolin deposit has the highest Co and Ga and the lowest Ag
and Cd concentrations (Fig. 7c–j). The elements Mn and Fe
are remarkably enriched in Skarn-, SEDEX-, and VMS-type
deposits relative to those of the Taolin deposit, but the con-
centrations of these two elements (Fe and Mn) in the Taolin
deposit are slightly higher than those in MVT- and the
Jinding-type deposits (Fig. 7a, b). Nevertheless, Cu concen-
trations in sphalerite from all type deposits are at a high level
(generally > 10 ppm). In addition, the sphalerites from MVT-
and Jinding-type deposits have conspicuously high concentra-
tions of Ge, Sb, and Pb compared with that of all other types
including the Taolin deposit, but the Taolin deposit possesses
roughly similar concentrations of Ge, Sb, and Pb to Skarn-,
SEDEX-, and VMS-type deposits (Fig. 7g–o). Moreover, the
In concentration in the sphalerite from Taolin deposit tend to
be slightly higher than those in MVT- and the Jinding-type

deposits, but lower than those in SEDEX- and VMS-type
deposits. Tin (Sn) concentrations in SEDEX- and VMS-type
deposits are generally higher than those in all other type de-
posits including the Taolin deposit, whereas Se concentrations
with a large variation in Skarn-type deposits are higher than
those in all other type deposits (Fig. 7h, l).

Quartz textures

CL imaging was used in the Taolin deposit to reveal the hy-
drothermal quartz textures of the stages 2 and 3 mineraliza-
tion. Quartz grains from the stage 2 (Q2) mineralization com-
monly possess relatively homogeneous dark luminescence
without obvious bands or zonation (Fig. 8a). However, quartz
grains from the stage 3 (Q3) generally show obvious euhedral-
subhedral core-rim texture, characterized by light to dark color
zones from core to rim (Fig. 8b). Contact among these two
zones lacks any replacement texture, suggesting that they are
growth zones. The light core is relatively wide and lacks clear
oscillatory zoning, whereas the dark rim is narrow and has
slight oscillatory zoning.

O-S-Pb isotopic components

The in situ oxygen isotopes of quartz from the Taolin deposit
are plotted in Fig. 12 and listed in ESM 3 Table 3. The δ18O
values of the stage 2 quartz (Q2) are relatively high but nar-
rowly span from 14.3 to 17.9‰ (Fig. 12 and ESM 3 Table 3),
whereas that of the stage 3 quartz (Q3) range from 9.7 to
14.4‰ (Fig. 12 and ESM 3 Table 3).

Thirty-nine in situ analyses on sulfur isotopes of sphalerite,
galena, chalcopyrite, and barite from the Taolin deposit are listed
in ESM 4 Table 4 and presented in Fig. 13. The δ34SVCDT values
of sulfides from the stage 2 ores range from − 8.8 to − 1.9‰,
with the δ34SVCDT values of sphalerite from − 2.6 to − 1.9‰,
chalcopyrite from − 4.7 to − 3.8‰, and galena from − 8.8 to −
5.1‰. The δ34SVCDT values of sulfides and sulfate from the stage
3 ores range from 12.6 to 17.7‰ for barite, from − 4.2 to − 3.4‰
for sphalerite, and from − 8.2 to − 6.7‰ for galena.

The analytical results on lead isotopes of three sphalerite
and four galena separates from the Taolin deposit are
displayed in Fig. 14 and ESM 5 Table 5. As a whole, the
isotopic ratios of sulfides from Taolin fall in a small range,
with 206Pb/204Pb ranging from 18.130 to 18.226 (average
18.174), 207Pb/204Pb from 15.629 to 15.752 (average
15.684), and 208Pb/204Pb from 38.619 to 39.000 (average
38.791). The whole-rock lead isotopic compositions for the
12 Mufushan granitoid samples are also listed in ESM 5
Table 5. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios
for whole-rock lead isotopic compositions of the granitoids
vary from 18.039 to 18.323 (average 18.190), from 15.650
to 15.674 (average 15.661), and from 38.362 to 38.755 (aver-
age 38.550), respectively. All these lead isotope data plot
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above the Orogen line on the 207Pb/204Pb vs. 206Pb/204Pb di-
agram (Fig. 14) and show a relatively clear liner array approx-
imately parallel to the orogen, mantle, and upper crust curves
on the 208Pb/204Pb vs. 206Pb/204Pb diagram (Fig. 14).

Principal component analysis of minor and trace
elements

The results of the PCA are shown in Fig. 10. The first two
principal components (PC1 and PC2) account for 60.6% of the
total variance. Element distributions (Fig. 10b) highlight three
groups. The first group consists of Cu, Ga, Ge, Sn, In, and Ag
(loading PC1), while the second group is composed of Mn, Fe,
Co, and Cd (loading PC2). The third group is composed of Sb
(loading PC3). All of them have positive signs and are positively
correlated (Fig. 10b). Thereinto, PC1 can be divided into PC1-1
(Cu, Ga, Ge, Ag) and PC1-2 (Sn, In) two subgroups; PC2 also
can be divided into two subgroups: PC2-1 (Mn, Fe, Co) and
PC2-2 (Cd). Elements showing similar behavior are highlighted
in three clusters in the PC1 vs. PC2 plane (Fig. 10b). PC2-1
(loaded by Mn, Fe, Co) is correlated with the spots in claybank
Sp1. Spots analyses in the pale-yellow Sp2 exhibit a relatively
well-marked anti-correlation with PC2-1.

Discussion

Substitution ofminor and trace elements in sphalerite

Time-resolved depth profiles usually exhibit ragged or spiky
patterns when microscopic inclusions are hosted in sphalerite
(Cook et al. 2009; Ye et al. 2011). On the contrary, these
profiles are generally flat when elements are present as solid
solution. According to Fig. 6 a, b, it is suggested that Fe, Cd,
Co, and Mn occur as solid solution, whereas Ag, Cu, Pb, Ni,
Ga, Ge, Se, Bi, Sb, In, and Sn occur as mineral inclusions or
solid solution.

Many workers have undertaken laboratory experiments on
the substitution mechanisms in sphalerite (e.g., Cook et al.
2009; Belissont et al. 2014; Frenzel et al. 2016; George et al.

2016; Yuan et al. 2018a; Bauer et al. 2019; Zhuang et al.
2019). For example, Zn2+ being replaced by Fe2+, Cd2+,
Mn2+, Co2+, Ni2+, Hg2+, and Sn2+, such these simple substi-
tutions have been discovered by Seifert and Sandmann (2006)
and Murakami and Ishihara (2013). Besides, there are more
complicated substitution mechanisms also occur in sphalerite
(Belissont et al. 2014; Frenzel et al. 2016; George et al. 2016;
Yuan et al. 2018a). A binary diagram of trace element contents in
sphalerite could reveal distinct positive or negative correlations
between certain elements, which can provide some information
and discriminate the different substitution mechanisms.

In this study, the concentrations of Fe, Mn, and Co in Sp1
or Sp2 display a distinct positive correlation (Fig. 9f, h).
Besides, the Fe and Cd are positively correlated although the
correlation is not conspicuous (Fig. 9g). Thus, the direct sub-
stitutions (Zn2+ ↔ Fe2+, Zn2+ ↔ Mn2+, Zn2+ ↔ Co2+, Zn2+

↔ Cd2+) mentioned above were verified (Seifert and
Sandmann 2006; Murakami and Ishihara 2013).

Germanium usually occurs as Ge4+ in sphalerite, although
its divalent cation Ge2+ appears occasionally (Ye et al. 2011).
Some correlations between Ge and other monovalent cations
(i.e., Cu+ and Ag+) were found in sphalerite from the Taolin
deposit. Trace element contents of Cu and Ge exhibit a posi-
tive correlation that is parallel to the line of (Cu/Ge) mol = 2
(Fig. 9a). Therefore, the possible substitution mechanism is
3Zn2+ ↔ 2Cu+ + Ge4+. In addition, another positive correla-
tion between Ag and Ge, with a trend that is subparallel to the
line of (Ag/Ge) mol = 2 (Fig. 9b), raises the potential substitu-
tion of 3Zn2+ ↔ 2Ag+ + Ge4+.

A general substitutionmechanismwould lead to the enrich-
ment of mono-, tri-, and tetravalent cations (i.e., Ag+, Cu+,
Sb3+, Ga3+, In3+, Ge4+, and Sn4+) (Cook et al. 2009). As
shown in Fig. 10 b, these elements show a strong correlation
highlighted by PCA. Figure 9c further confirms the strong
linear correlation among these elements. When it comes to
concentration, Cu is the predominant monovalent cation and
Cu (andAg to a lesser extent) concentration is close to the sum
of tri- and tetravalent cations (Fig. 9c). Consequently, Cu
could be responsible for the incorporation of these trivalent/
tetravalent cations.

Fig. 8 CL images of quartz from
the Taolin deposit. a
Homogeneous CL of Q2, without
growth bands or zoning. b Core-
rim texture of Q3. Abbreviations
as in Fig. 4
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Although the concentrations of Sb and Pb are at a low level,
the positive correlation that is parallel to the line of (Sb/Pb)

mol = 2 (Fig. 9d) between them suggests a reasonable coupled
substitution 4Zn2+ ↔ 2Sb3+ + Pb2+ + □ (vacancy).

Tin generally exhibits Sn2+, Sn3+, and Sn4+ oxidation states;
however, its mechanism of incorporation remains controversial.
The weak positive trend between In and Sn, with a slope of 1
(Fig. 9e), thus indicates that the existence of the three possible
substitutions (3Zn2+↔ In3+ + Sn3+ + □, 3Zn2+↔ In3+ + Sn2+ +
(Cu, Ag)+, and 4Zn2+ ↔ In3+ + Sn4+ + (Cu, Ag)+ + □).

The contents of Cu and Sb display a positive correlation that is
parallel to the line of (Cu/Sb) mol = 1 (Fig. 9i), suggesting a pos-
sible substitution mechanism of 2Zn2+ ↔ Cu+ + Sb3+.

Physicochemical conditions of mineralization

The concentrations of some elements in sphalerite are largely
influenced by ore-forming temperature (Gao et al. 2016).
Previous studies (Liu et al. 1984; Cook et al. 2009; Ye et al.

2011, 2012; Zou et al. 2012) have shown that the sphalerite
formed under high temperature is dark in color and enriched in
Fe, Mn, In, and Se, along with the Ga/In ratio usually less than
0.1. In contrast, the sphalerite formed under moderate temper-
ature condition is enriched in Cd and In, with the Ga/In ratio
generally between 0.1 and 5.0 (Liu et al. 1984; Gao et al.
2016). Besides, under low temperature, the sphalerite has a
relatively high concentration of Ga, Ge, and Ag, with light
color and Ga/In ratio > 1 (Liu et al. 1984; Gao et al. 2016).
The concentrations of Fe andMn in sphalerite from the Taolin
deposit are consistent with that in MVT Pb-Zn deposit; how-
ever, In and Se concentrations are higher in comparison to
those from MVT Pb-Zn deposit as mentioned above.
Furthermore, the sphalerite from Taolin deposit is rich in Ga,
with Ga/In ratios ranging from 0.96 to 7647 (generally > 10;
see ESM 2 Table 2), indicating that the Taolin sphalerite might
be formed under medium-low temperature conditions.
Besides, the Fe content in sphalerite often has a positive cor-
relation with mineralization temperature (Liu et al. 2010), with
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mole ratios implying the potential substitution mechanisms of trace
elements trapped in sphalerite crystal
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Zn/Fe ratios usually < 10, 10–100, and > 100 for sphalerite
formed at medium-high (250–300 °C), medium (150–
250 °C), and low (< 150 °C) temperatures, respectively (Yu
et al. 1987). The Zn/Fe ratios of the Taolin sphalerite range
from 16.32 to 76.83 (av. 50.15) for Sp1 and from 98.64 to
609.7 (av. 191.6) for Sp2, indicating a medium temperature
for Sp1 formation and lower temperature for Sp2 generation.
The sphalerite geothermometer (GGIMFis) proposed by
Frenzel et al. (2016) was used to calculate ore-forming tem-
peratures and calculated temperatures are 206 ± 43 °C for Sp1
and 169 ± 37 °C for Sp2, similar to that on the basis of Zn/Fe
ratio (ESM 2 Table 2). These estimated temperatures are con-
sistent with the corresponding fluid inclusion data, which
yield homogenization temperatures of 120–200 °C (Roedder
and Howard 1988). Consequently, the Taolin Pb-Zn deposit
most likely formed under medium-low temperature
conditions.

The concentration of Fe in sphalerite is largely affected by
temperature and sulfur fugacity (Scott and Barnes 1971;
Hutchison and Scott 1983; Kelly et al. 2004; Keith et al.

2014). The lower values (av. 1.14%) of FeS mol% for the
Sp2 than that (av. 3.73%) for the Sp1 (ESM 1 Table 1) suggest
that from the stage 2 to stage 3 of mineralization at Taolin, the
sulfur fugacity increased, whereas that the ore-forming tem-
peratures decreased as suggested above.

Because Mn enters the crystal lattice of sphalerite in the
form of MnS (Bernardini et al. 2004; Kelly et al. 2004), the
concentrations of Mn in sphalerite are strongly influenced by
redox conditions. The Mn concentration in sphalerite gener-
ally has a positive correlation with reduction degree (Kelly
et al. 2004). Therefore, at Taolin, a higher Mn content for
Sp1 than that for Sp2 indicates a relatively more reduced en-
vironment for the early stage (i.e., the stage 2) of
mineralization.

Sources of ore-forming fluids

Oxygen isotope is a common and effective way to trace the
possible origin of ore-forming fluids (Jiao et al. 2017). The
δ18O value of the hydrothermal fluid can be calculated via the

Fig. 10 PCA of the log-transformed LA-ICP-MS dataset of trace element
compositions in sphalerite from Taolin deposit. a Score plot of all data
points, and corresponding histograms of PC1 and PC2 for the trace ele-
ment composition of the two stages of sphalerite. b Loading plot of the

PCA showing the elements (i.e., variables) and framed groups of ele-
ments with similar behavior. c Scree plot of the eigenvalues of the corre-
lation matrix, explaining the variance. d Loadings of the principal
components
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equation: 1000 × lnαquartz-H2O = 4.28 × 106 × T−2 − 3.5 ×
103 × T (Sharp et al. 2016). The oxygen isotopic features of
the ore-forming fluids for the stages 2 and 3 of mineralization,
recalculated using the temperatures constrained by sphalerite
geothermometer of Frenzel et al. (2016) (GGIMFis), are pre-
sented in Fig. 12. The samples from the stage 2 show relative-
ly high δ18Ofluid (− 0.2 to 8.9‰) values (Fig. 12 and ESM 3

Table 3), which cover most values of magmatic water (5.5–
10‰; Taylor 1974). Besides, the Cd/Fe ratio of sphalerite can
provide important information about whether or not
magmatism was involved in the ore-forming process(es), be-
cause the Cd/Fe ratio of sphalerite associated with magmatism
is usually < 0.1 (Zhao et al. 2007; Cao et al. 2014). In this
study, the average Cd/Fe ratio of 0.1 for the Sp1 from the

Fig. 11 PCA of Taolin deposit and Cook et al. (2009), Ye et al. (2011),
Wei et al. (2018a, 2018b), and Yuan et al. (2018a) LA-ICP-MS dataset of
sphalerite of different ore deposits from various types worldwide.
Eigenvalues and loadings of the PCA are indicated. a Plot of the elements
(variables). b The scatter plot of the log-transformed spot analysis
datasets (individuals) of the above publications including the Taolin

dataset, plotted in the PC1 vs. PC2 plane. c Interpretative scheme in terms
of element enrichment for spot analysis (individuals). d Scree plot of the
eigenvalues of the correlation matrix, explaining the variance and scores
legend (i.e., ore deposit types). e Loadings (i.e., extracted eigenvectors) of
the principal components
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Taolin deposit (ESM 2 Table 2) reveal that the early mineral-
ization most likely had a genetic link to magma-related
hydrothermalism. The δ18Ofluid (− 7.7 to 3.1‰) values of the
stage 3 fluids are relatively depleted, and strongly indicate the
involvement of an isotopically lighter component, such as
meteoric water. Therefore, the ore-forming fluids in the
Taolin deposit are dominant of magmatic water origin at the
stage 2 of mineralization due to the emplacement of the Late
Mesozoic Mufushan granitic pluton, and then most likely
were mixed with meteoric water at the stage 3 of
mineralization.

Constraints on the ore-forming materials

In general, the sulfur isotopic composition of sulfides could
not represent the sulfur content (δ34SΣS) of the ore fluids,
which is influenced by oxygen fugacity (ƒO2), temperature,
pH, and ionic strength (Ohmoto 1972). Hence, the S sources
in the Taolin deposit must be determined based on the total S
isotopic signature of the hydrothermal fluids when the sulfides
were deposited. However, when the hydrothermal fluids are
dominated by H2S with low oxygen fugacity and low pH
values, the relationship δ34SΣ ≈ δ34SH2S ≈ δ34Spyrite holds in
the equilibrium state (Wu et al. 2014). The sulfides from the
stage 2 of the Taolin Pb-Zn mineralization are dominated by
sphalerite, galena, and chalcopyrite, where no sulfate minerals
have been detected. Therefore, H2S is predominant in the
hydrothermal system at stage 2, and sphalerite, galena, and
chalcopyrite formed in the environment with low ƒO2 and
low pH values. According to ESM 4 Table 4, the basic se-
quence (δ34SSp > δ34SCcp > δ34SGn) of sulfides from the Taolin
deposit is consistent with the δ34S enrichment condition of

δ34SSp > δ34SCcp > δ34SGn at isotopic equilibrium, indicating
that the S isotopes of sphalerite, galena, and chalcopyrite
had reached equilibrium (Ohmoto 1986). Consequently,
δ34SH2S values of sphalerite, galena, and chalcopyrite can rep-
resent the total S isotopic compositions of the hydrothermal
system (Xu et al. 1993). The δ34SH2S values were calculated
with the equation δ34SH2S = δ34Si − Ai (10

6 × T−2), where i
stands for different sulfides; Ai value is 0.1 for sphalerite,
0.05 for chalcopyrite, and − 0.64 for galena, respectively; T
is the temperature in Kelvin (Li and Liu 2006); and the aver-
age of sphalerite geothermometry from Frenzel et al. (2016)
was used to calculate the δ34SH2S value. The δ

34SH2S values of
the stage 2 sulfides vary from − 3.1 to − 2.3‰ for sphalerite,
− 4.9 to − 4.0‰ for chalcopyrite, and − 6.0 to − 2.4‰ for
galena (Fig. 13a and ESM 4 Table 4). These δ34S values are
consistent with that of most igneous rocks within a range of 0
± 5‰ (Ohmoto and Rye 1979), indicating that the sulfur for
the stage 2 mineralization was mainly derived from amagmat-
ic source.

In addition to sulfides, barite was also discovered in the
stage 3 of mineralization (Fig. 4h, i). Sphalerite and galena
from this stage display distinctly lower δ34S values than that
of barite (ESM 4 Table 4). Because sulfur isotopes can be re-
distributed between oxidized and reduced species during pre-
cipitation (Gomide et al. 2013), the actual δ34S (δ34SΣS) of the
hydrothermal liquids cannot be represented by the mean δ34S
values of either sulfides or sulfates in this case. The δ34SΣS of
the hydrothermal liquids has been calculated using sphalerite,
galena, and co-genetic barite as mineral pairs and using the
δ-δ diagram (Fifarek and Rye 2005) (Fig. 13b). As estimated
from the intersection of a straight line fit to the data with the
line of unit slope which shows no sulfide-sulfate fractionation

Fig. 12 δ18Oquartz and δ18Ofluid

values for Taolin deposit. δ18O of
magmatic-derived fluid is higher
than δ18Ofluid of Taolin quartz
samples, which indicates the
magmatic fluid is balanced by
meteoric water during ore forma-
tion; the area of magmatic water is
from Taylor (1974)
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(Δ = 0‰), the δ34SΣS value of the precipitating liquids is es-
timated to be around − 2.3‰ for galena-barite mineral pair
and − 0.3‰ for sphalerite-barite mineral pair, suggesting
a predominant magmatic sulfur origin. The upward trend of
δ34SΣS of the ore fluids from the stages 2 to 3 of mineraliza-
tion at Taolin most likely was caused by the precipitation of
sulfides with negative δ34S values at stage 2, as suggested by
Ding and Rees (1984). Based on the corrected sulfur isotopes,
the ore-forming fluid for the stage 3 mineralization most likely
originated from the same source(s) as that for the stage 2, i.e.,
both from magmatic water.

For comparison, lead isotopic data of the ten galena
and two plagioclase separates from Ding et al. (1986) is
also presented in Fig. 14 and ESM 5 Table 5. In Fig. 14 a,

most of the analyzed samples are plotted near to or above
the upper crust curve, with the remainders in the fields
between the upper crust and the mantle curves.
Furthermore, all the Taolin ores, Mufushan granitoids,
and Lengjiaxi Group rocks have more radiogenic Pb than
that of the mantle and the lower crust (Fig. 14a), revealing
the possible source(s) of lead from the upper crust for the
Taolin Pb and Zn mineralization. The diagram of
208Pb/204Pb vs. 206Pb/204Pb (Fig. 14b) further reflects that
the analyzed samples have a clear liner array approxi-
mately parallel to the orogen, mantle, and upper crust
curves. The Pb isotopic components of sulfides in the ores
from the Taolin deposit are similar to those of the
Mufushan pluton mainly composed of two-mica

Fig. 13 a Histogram of δ34S
values of fluids of stage 2. b Plots
of δ34Sgalena, δ

34Ssphalerite vs.
δ34Sbarite values for sulfide and
sulfate mineral assemblages from
stage 3, the straight line of
negative slope represents a co-
variation in δ34Ssulfide and
δ34Ssulfate values generated
through SO4

2--H2S isotope ex-
change over a wide range of tem-
peratures (Fifarek and Rye 2005),
the absolute value (0.33, 0.27) of
the slope of the straight line is
equivalent to the molar ratio of
SO4/H2S in the liquids, the
δ34SΣS value of the hydrothermal
liquids range between − 2.3 and−
0.3‰, estimated from the inter-
section of the straight line with the
line of unit slope which is char-
acterized by non sulfide-sulfate
fractionation (Δ = 0‰).
Abbreviations as in Fig. 4
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monzogranite and biotite monzogranite, but are signifi-
cantly different from those of the Lengjiaxi Group rocks
(Fig. 14 and ESM 5 Table 5). This suggests that the ore
metals (Pb and Zn) may have been derived from the
Mufushan pluton rather than the Lengjiaxi Group rocks.

Type and implications for Pb-Zn mineralization

Previous studies have shown that the concentrations of trace
elements in sphalerite from different types of Pb-Zn deposits
are variable (Cook et al. 2009; Ye et al. 2011; Belissont et al.
2014; Frenzel et al. 2016; Yuan et al. 2018a). Considering
these different geochemical signatures in certain elements,
the possible genesis can be obtained according to Fig. 9 as
mentioned above. For example, sphalerite from magmatism-
related deposits (i.e., SEDEX and VMS deposits) shows en-
richment in In, Sn, Fe, and Mn. Those from magmatism-
related deposits (i.e., skarn deposits) are enriched in Fe, Mn,
and Co. In contrast, sphalerites from deposits unrelated to a
magmatic source (i.e., MVT deposits and Jinding deposit) are
characterized by high Ge, Ag, Sb, Cd, and Pb contents. The
Taolin deposit shows high concentrations of Co in sphalerite,

which is consistent with the sphalerite from magmatism-
related deposits (i.e., skarn deposits).

According to the Fig. 11, the results of PCA show that the first
factor PC1 is mainly loaded with Ag, Cu, Sn, In, and Co, the
second-order PC2 is primarily loaded with Ge, Sb, Mn, and Fe,
and that the third factor PC3 is loadedwith Cd and Ga (Fig. 11a).
Thereinto, the first two factors account for 65.3% of element
content variability. Three element clusters, i.e., (Ge, Sb), (Ag,
Cu, Sn, Cd, Ga), and (Mn, Fe, In), are shown in Fig. 11 a; Co
is anti-correlated with (Ag, Cu, Sn, Cd, Ga). On the one hand,
high Co, Mn, Fe, and In contents in sphalerite may typify
magma-driven hydrothermal systems (i.e., skarn, SEDEX, and
VMS deposits, Fig. 11b, c). They are chiefly found in the bottom
section of the graph. On the other hand, Ge and Sb tend to be
enriched in low-temperature deposits unrelated to a magmatic
source (i.e., the Jinding deposit and MVT deposits, Fig. 11b,
c). These are located in the top-left section of the plot. Namely,
this framework illustrates a positive temperature gradient and
differences in metal sources from the top-left to the bottom.
The Taolin deposit occupies the middle-bottom-left of the plot,
consistent with amedium-low temperature deposition and amain
magmatic origin of the ore-forming fluids.
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Combined with the results from the trace element compo-
sitions of sphalerite and the oxygen-sulfur-lead isotopic com-
ponents of sulfides, hence, it is reasonable to decipher the
Taolin deposit as a medium-low temperature hydrothermal
deposit which has genetic relationship with magmatism.

The spatial association of the Taolin deposit with the
Mufushan granitoids and the integrated O-S-Pb isotopic com-
ponents documented by the present study suggest that the Pb-
Zn polymetallic mineralization is genetically related to the
Mufushan pluton. This is highlighted by that the ore-
forming fluids were mainly magmatic water with certain in-
volvement of meteoric water, and that the ore metals were
most likely derived from the Mufushan intrusion. In addition,
abundant NE- to ENE-trending faults, extensional detach-
ments, emplacement of granitoid plutons, and basin-and-
range-like tectonic provinces were well developed in north-
eastern Hunan Province during Late Jurassic to Cretaceous
(Wang et al. 2017; Zou et al. 2018). Accompanying these
extension-related structures and voluminous magmatism,
large-scale thermal energy probably was generated to facilitate
the transportation of fluid flow along the NE–ENE-trending
faults (i.e., the Shitianfan-Qiupingao fault) in the northeastern
Hunan Province (Fig. 15). Eventually, the gradually decreas-
ing temperature may have been a major cause for ore precip-
itation and enrichment of the metals in these extensional
structures.

Conclusions

(1) The hydrothermal mineralization of the Taolin Pb-Zn
deposit can be divided into five stages from early to late,
i.e., coarse-grained quartz (stage 1), quartz + fluorite +
chlorite + claybank sphalerite (Sp1) + galena +
chalcopyrite (stage 2), quartz + barite + fluorite + pale-
yellow sphalerite (Sp2) + galena + chalcopyrite (stage 3),
quartz with minor chalcopyrite (stage 4), and quartz
veinlets (stage 5).

(2) Comparedwith Sp2, the Sp1 contains higher Fe,Mn, Co,
In, and Sn, but lower Ge and Sb. Laser ablation profiles
indicate that Fe, Cd, Co, and Mn are mainly present as
the solid solution but that Ag, Cu, Pb, Ni, Ga, Ge, Se, Bi,
Sb, In, and Sn occur in solid solution or microscopic
inclusions. Several substitutions are also discovered:
2Zn2+ ↔ 2(Cu+, Ag+) + Ge4+, 4Zn2+ ↔ 2Sb3+ + Pb2+

+ □ (vacancy), 3Zn2+ ↔ In3+ + Sn3+ + □ (vacancy), and
2Zn2+ ↔ (Cu+, Ag+) + Sb3+.

(3) The mineralization temperatures calculated from the
sphalerite geothermometer (121 to 292 °C) as well as
the ratios of Ga/In (0.96 to 7647) and Zn/Fe (16.32 to
609.7) indicate a medium-low temperature hydrothermal
environment for the formation of the Taolin deposit.
Besides, with the decreasing Fe and Mn contents of
sphalerite from stage 2 (Sp1) to stage 3 (Sp2) of miner-
alization, the sulfur fugacity increase.

(4) The integrated O-S-Pb isotopic compositions suggest
that ore-forming fluids were most likely derived from
magmatic water with a minor contribution frommeteoric
water, and that the ore metals (Pb and Zn) probably de-
rived from the Mufushan intrusion.

(5) Geological features, minor and trace element contents in
sphalerite, O-S-Pb isotopic compositions, and PCA re-
sults commonly indicate that the Taolin Pb-Zn deposit is
a medium-low temperature hydrothermal deposit associ-
ated with the magmatism.
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