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Arc magmas are generated by complex geological processes in subduction settings. Due to the complexity of
source materials and geological processes, the genesis of arc magmatic rocks can be difficult to disentangle.
Here, we report on diorites from the Kenama area of the middle-eastern part of the Bangong–Nujiang suture
zone in central Tibet. New SIMS and LA–ICP–MS zircon U\\Pb dating for three diorite samples indicates that
they crystallized during the early Late Jurassic (ca. 161 Ma). The diorites can be divided into two groups based
on whole-rock major element compositions and mineralogical characteristics: Group I diorites with relatively
low SiO2 (47.6–53.4 wt%), and high MgO (4.97–9.10 wt%) and amphibole contents (50–54 vol%); and Group II
diorites with slightly higher SiO2 (56.9–59.5 wt%), and low MgO (2.9–3.8 wt%) and amphibole contents
(25–30 vol%). The Group I diorites exhibit relative enrichment in light rare earth element (LREE) ((La/Yb)N =
5.7–10.5) with slightly negative Eu anomalies, and are characterized by enrichment of large ion lithophile ele-
ments (LILEs; K, Rb, Ba, Th, and U), the depletion of high field strength elements (HFSEs; Nb, Ta, Zr, Hf, and Ti).
The Group I diorites have relatively high initial 87Sr/86Sr ratios (0.7073–0.7094), variably negative εNd(t) values
(−10.3 to −5.9), negative zircon εHf(t) values (−14.8 to–4.4), and slightly elevated δ18O values (6.5‰–7.3‰).
The Group II diorites show similar trace element characteristics to Group I. They also have high initial 87Sr/86Sr
ratios (0.7083–0.7087), uniformly negative εNd(t) values (−9.5 to −9.0), negative zircon εHf(t) values (−10.3
to −4.2), and elevated δ18O values (6.6‰–7.5‰). Amphiboles from Group I and Group II diorites have low
Al2O3 contents (3.6–9.9 wt% and 5.6–8.5 wt%, respectively), and formed at similar P–T conditions (751–871 °C
and 69–226 MPa and 745–832 °C and 77–162 MPa, respectively). On primitive mantle-normalized spider dia-
grams, these low-Al amphibole grains have slightly convex upward REE patterns with distinctly negative anom-
alies in Pb, Sr, Eu, Zr, Hf, and Ti, suggesting that amphiboles from both groups crystallized from the similar arc
magmas after plagioclase andmagnetite crystallization. Thesemineralogical, geochemical and isotopic character-
istics suggest that both groups of Kenama diorites probably originated from an enriched lithospheric mantle
metasomatized by subducted oceanic sediment-derived melts. Their parental magmas may have similar geo-
chemical characteristics and underwent varying degrees of accumulation and fractional crystallization. The
Group I diorites were likely generated by accumulation of amphibole and fractional crystallization of olivine,
clinopyroxene, and plagioclase frommaficmagmas, and the Group II diorites were formed by the fractional crys-
tallization of clinopyroxene and plagioclase from mafic magmas that were geochemically similar to the Group I
diorites. In combination with regional geology, in particular adjacent ophiolites, high-magnesian andesitic
rocks and Cretaceous sedimentary rocks, we conclude that all of the Kenama diorites were probably generated
in an early Late Jurassic arc setting related to the subduction of the Bangong–Nujiang Tethys oceanic lithosphere.

© 2020 Elsevier B.V. All rights reserved.
tope Geochemistry (SKLaBIG),
Academy of Sciences (CAS),
1. Introduction

Arc magmas in subduction settings encompass components derived
from various reservoirs (e.g., Kelemen et al., 2014), including the slab
and sub-arc mantle, continental materials from subduction erosion,
and the overlying crust (e.g., Jones et al., 2015; Schmidt and Poli,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.lithos.2020.105644&domain=pdf
https://doi.org/10.1016/j.lithos.2020.105644
mailto:wqiang@gig.ac.cn
https://doi.org/10.1016/j.lithos.2020.105644
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/lithos


2 W.-L. Hu et al. / Lithos 370–371 (2020) 105644
2014). Hence, arc magmas are the outcome of various factors and pro-
cesses (Davidson et al., 2005), including the degree and regime of
source melting (equilibrium/disequilibrium), fractional crystallization
(possibly accompanied by assimilation), and hybridization between dif-
ferent magmas, ranging from magmas from the deep crust to those at
the depth of emplacement (Brown, 2013; Shellnutt and Zellmer,
2010). Due to the complexity of source materials and geological pro-
cesses, the genesis of arc magmatic rocks can be difficult to disentangle
(Rocchi et al., 2015).

The Tibetan Plateau, from north to south, consists of four main con-
tinental terranes: the Songpan–Ganze, Qiangtang, Lhasa, and Himalaya,
which are separated by the Jinsha suture zone (JSSZ), Bangong–Nujiang
suture zone (BNSZ), and Indus–Yarlung Zangbo suture zone (IYZSZ), re-
spectively (Fig. 1a; Pan et al., 2012; Yin and Harrison, 2000). In central
Tibet, the BNSZ was formed by the collision of the Qiangtang and
Lhasa terranes (Fig. 1b). Magmatic rocks are well distributed along the
BNSZ, which is characterized by two Jurassic–Cretaceous magmatic
arcs, one in the southern Qiangtang subterrane to the north and the
other in the northern Lhasa subterrane to the south (e.g., Liu et al.,
2017; Zhu et al., 2016 and references therein). Magmatic arc activity
Fig. 1. (a) Sketch geological map of Tibet. JSSZ = Jinsha suture zone; NQ = Northern Qiang
subterrane; BNSZ = Bangong–Nujiang suture zone; NL = Northern Lhasa subterrane; SNM
Luobadui–Milashan Fault; SL = Southern Lhasa subterrane; IYZSZ = Indus–Yarlung Zangbo s
et al., 2016). (c) Geological map of the Kenama area.
along the northern Lhasa subterranes was probably related to subduc-
tion of the Bangong–Nujiang Tethys Oceanic lithosphere (Fig. 1b)
(e.g., Sui et al., 2013; Zeng et al., 2016; Zhu et al., 2013, 2016). This mag-
matic belt records important information on the Late Mesozoic crustal
architecture and tectonomagmatic evolution of the northern Lhasa
subterrane. The rocks of this magmatic belt are best exposed in the
northern Lhasa subterrane, which includes the Along Tso Batholith
and Yanhu volcanic rocks in the west, and the Nyima volcanic rocks,
and Baingoin Batholith, and Daru Tso volcanic rocks in the east
(Fig. 1b). Most of these arc magmatic rocks mainly formed during the
Jurassic–Cretaceous and consist of intermediate–felsic rocks. The
Jurassic–Cretaceous magmatic rocks provide a window for examining
the evolution of the Bangong–Nujiang Tethys Ocean (BNTO).

In this study, we report new zircon U\\Pb ages and Hf\\O isotopes,
amphibole compositions, whole-rock geochemistry, and Sr\\Nd isoto-
pic compositions for diorites from the Kenama area in the BNSZ. Based
on field observations and petrography, coupled with our new data, we
constrain its petrogenesis and source characteristics, and shed new
light on the formation processes of arc magmas and evolution of the
BNTO.
tang subterrane; LSSZ = Longmu Co–Shuanghu suture zone; SQ = Southern Qiangtang
Z = Shiquan River–Nam Tso Mélange zone; CL = Central Lhasa subterrane; LMF =

uture zone. (b) Geological map of the Bangong–Nujiang suture zone (modified after Zhu
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2. Geological setting and petrography

The BNSZ in central Tibet extends east–west for more than 2000 km
through the Bangong Co, Gerze, Dongqiao, Dengqen, and Jiayuqiao re-
gions, and into Burma, Thailand, and Malaysia. It marks the boundary
between the Qiangtang terrane to the north and the Lhasa terrane to
the south (Fig. 1a; Yin and Harrison, 2000; Zhu et al., 2016). The suture
zone consists of scattered ophiolitic fragments, radiolarian cherts, oce-
anic island (or seamount), arc volcanic-magmatic rocks, flysch-like de-
posits, and accretionary complexes (Fig. 1b; e.g., Fan et al., 2015b; Li
et al., 2018, 2019; Liu et al., 2016; Ma et al., 2017; Wang et al., 2016;
Zhu et al., 2016), and provides an important record of continental
breakup and drift, and accretion-related tectonism, magmatism, sedi-
mentation, and metamorphism (e.g., Liu et al., 2016; Wang et al.,
2016; Zhang et al., 2014; Zhu et al., 2016 and references therein).
Jurassic–Cretaceous ophiolitic mélanges are distributed irregularly
along the BNSZ (Wang et al., 2016). The ages of Amdo gneiss and
high-pressure granulite-facies metamorphism indicate metamorphism
within the BNSZ occurred in the Early–Middle Jurassic (Zhang et al.,
2014; Zhu et al., 2016). The Amdo terrane is an isolated microcontinent
within the BNSZ and has ancient crystalline basement (Guynn et al.,
2006, 2012; Zhu et al., 2011), whereas the northern Lhasa subterrane
mainly consists of juvenile crust (Zhu et al., 2011). The Jurassic to
Lower Cretaceous sedimentation units are widely distributed along/
across the BNSZ and unconformably overlain by the Upper Cretaceous
terrestrial molasse of the Jingzhushan and Abushan Formations, respec-
tively (Fig. 1b; Wang et al., 2013; Zhu et al., 2016 and references
therein). Magmatic rocks are also widespread along the BNSZ
(Fig. 1b), including two Jurassic–Cretaceous magmatic arcs: the
Caima–Duobuza–Rongma–Kangqiong–North Amdo magmatic belt and
the Along Tso–Yanhu–Daguo–Baingoin–Daru Tso magmatic belt (Zhu
et al., 2016 and references therein).

Despite decades of studies, the subduction process and the closure
time of the BNTO remains unresolved. The subduction of the
Bangong–Nujiang oceanic lithosphere was possibly initiated no later
than the early Late Jurassic based on the presence of the ~164 Ma
high-magnesium andesitic rocks identified from the Daru Tso and
Jiaqiong areas (Tang et al., 2019; Zeng et al., 2016). However, Ma et al.
(2017) proposed that the Lhasa–Qiangtang collision took place in late
Middle Jurassic time (ca. 166 Ma), based on the field observation of an
angular unconformity that truncated the Jurassic succession and the
recognition of siliciclastic provenance changed from arc magmatic
sources to uplifted orogenic sources in the vicinity of the Jiaqiong area
(Biluoco–Qixiangco area). Through comparison of numerous studies
on rocks (ophiolites, sedimentary rocks, boninitic dikes, Jurassic-
Cretaceousmagmatic rocks, and ocean island basalts (OIBs)) and paleo-
magnetic data, we find that the subduction termination and the oceanic
basin closure time ranged from mid-Jurassic (~166 Ma) to late Early
Cretaceous (~108 Ma) (e.g., Cao et al., 2019, 2020; Fan et al., 2015a,
2015b, 2017; Hao et al., 2016, 2019; Lai et al., 2019; Li et al., 2014; Ma
et al., 2017; Wang et al., 2016; Xu et al., 2015; Zhong et al., 2017; Zhu
et al., 2016; Zhu et al., 2018; Zhu et al., 2019b). Hence, the closure
time of the BNTO remains highly debate.

The Kenama diorites are stocks that have intruded into the upper
Triassic Quehala Group and have an outcrop area of ~9.0 km2 (Fig. 1c).
These diorites are distributed in the southern margin of the suture
zone and belong to the Along Tso–Yanhu–Daguo–Baingoin–Daru Tso
magmatic belt (Fig. 1b). The upper Triassic Quehala Group consists
mainly of conglomerate and sandstone. Diorite samples investigated
in this study were collected ~45 km northeast of the Baingoin county
within the middle-eastern segment of the BNSZ, at 90°25′16.7″E,
31°36′58.1″N (Fig. 1c). Based on mineralogical characteristics (Fig. 2),
the diorites can be divided into two groups: the Group I diorites
(Fig. 2c) contain much more amphibole than those in Group II
(Fig. 2d). Group I diorites are dark green, medium- to coarse-grained
(Fig. 2a), and contain plagioclase (40–45 vol%), amphibole
(50–54 vol%), and minor quartz (0–1 vol%). Chlorite, epidote, and
sericite are secondary minerals. Fe\\Ti oxides, zircon, and titanite are
common accessory minerals. Plagioclase occurs as discrete euhedral
phenocrysts that are locally altered to be sericite and kaolinite. Some
plagioclase phenocrysts have been altered to zoisite, epidote and albite.
Amphiboles grains are subhedral, vary in color from dark puce and dark
blue to opaque, and contain abundant inclusions of plagioclase, apatite,
epidote, and Fe\\Ti oxides (Fig. 2c, e). Group II diorites are medium-
grained, grayish white to grayish in color (Fig. 2b), and contain plagio-
clase (60–65 vol%), amphibole (25–30 vol%), and minor quartz
(3–5 vol%). Epidote and chlorite are secondary minerals and accessory
minerals include zircon, apatite, titanite, and Fe\\Ti oxides. Plagioclase
is variably affected by sericitization and epidotization. Amphiboles are
present as subhedral–euhedral crystals that are commonly twinned
and partly altered to chlorite. They are poikilitic, with inclusions of pla-
gioclase, apatite, and Fe\\Ti oxides (Fig. 2d, f).

3. Analytical methods

3.1. Zircon U\\Pb dating and Hf\\O isotopic analyses

Zirconswere separated by using conventional heavy liquid andmag-
netic separation techniques. Representative zircon grains were
handpicked and mounted in an epoxy resin disc, and then polished to
expose the grain centers. Cathodoluminescence (CL) images were ob-
tained for zircons prior to analysis, using a JEOL JXA-8100 Superprobe
at the State Key Laboratory of Isotope Geochemistry, Guangzhou Insti-
tute of Geochemistry, Chinese Academy of Sciences (SKLaBIG GIG
CAS), in order to characterize internal structures and choose potential
target sites for U\\Pb dating and Hf\\O isotopic analyses.

Laser ablation (LA)–ICP–MS zircon U\\Pb analyses were performed
at the Institute of Geology andGeophysics, Chinese Academyof Sciences
(IGG CAS) in Beijing. Laser ablation was accomplished using a Geolas-
193 laser-ablation system equipped with a 193 nm ArFexcimer laser
and connected to an ELAN6100 DRC ICP–MS. The analyses were con-
ducted with a spot diameter of 35 μmwith a typical ablation time of ap-
proximately 30 s for 200 cycles of eachmeasurement, an 8Hz repetition
rate, and a laser power of 100 mJ/pulse. A more detailed description of
the analytical technique is provided by Xie et al. (2008). The isotopic ra-
tios and element concentrations of zircon were calculated with GLTTER
4.4. LA–ICP–MS zircon U\\Pb isotopic data are presented in Table S1.

Secondary ion mass spectrometry (SIMS) zircon U\\Pb analyses
were conducted using a CAMECA IMS-1280-HR system at the SKLaBIG
GIG CAS. Analytical procedures are similar to that described by Li et al.
(2009). The analytical ellipsoidal spot is about 20 μm × 30 μm in size.
The standard zircon Plešovice (Sláma et al., 2008) were used to correct
U–Th–Pb ratios and their absolute abundances. Measured compositions
were corrected for common Pb using non-radiogenic 204Pb. The second-
ary standard zircon Qinghu were analyzed as unknown samples to
monitor the reliability of the whole procedure. During the course of
this study, five Qinghu zircon spots were analyzed and yielded a mean
age of 158.8 ± 0.3 Ma, which is within error of the recommended
value of 159.5 ± 0.2 Ma (Li et al., 2013). Concordia plots and weighted
mean U\\Pb ages with 1σ were processed using the Isoplot/Ex v.3.0
program (Ludwig, 2003). SIMS zircon U\\Pb isotopic data are presented
in Table S2.

Subsequently, zircon oxygen isotopes were also measured using
the SIMS at the SKLaBIG GIG CAS. The detailed analytical procedures
were similar to those described by Li et al. (2010a). The size of ana-
lytical spots is about 20 μm in diameter. The measured oxygen isoto-
pic data were corrected for instrumental mass fractionation (IMF)
using the Penglai zircon standard (δ18OVSMOW = 5.3‰, Li et al.,
2010b). The internal precision of a single analysis generally was bet-
ter than 0.12‰ (SE) for the 18O/16O ratio. The external precision,
measured by the reproducibility of repeated analyses of Penglai
standard, is 0.16‰ (SD, n = 18). Nine measurements of the Qinghu



Fig. 2. Representative field photographs, photomicrographs (plane-polarized light) and backscattered electron (BSE) images illustrating the petrographic characteristics of the Kenama
Group I (a, c, and e) and the Group II diorites (b, d, and f). Mineral abbreviations: Amp: amphibole; Pl: plagioclase; Qtz: quartz; Kf: K–feldspar; Ap: apatite.
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zircon standard during the course of this study yielded a weighted
mean of δ18O = 5.49 ± 0.11‰ (SD), which is consistent within er-
rors with the reported value of 5.4± 0.2‰ (Li et al., 2013). Zircon ox-
ygen isotopic data are listed in Table S7.

In situ zircon Lu\\Hf isotopic analyses were carried out on a Nep-
tune Plus multi-collector ICP-MS equipped with a RESOlution M-
50193 nm laser-ablation system at the SKLaBIG GIG CAS. Lu\\Hf iso-
topic analyses were conducted on the same zircon grains that were
previously analyzed for U\\Pb and/or O isotopes, with ablation pits
of 45 μm in diameter, ablation time of 30s, repetition rate of 6 Hz,
and laser beam energy density of 4 J/cm2. The detailed analytical
procedures are similar to those described by Zhang et al. (2015).
Measured 176Hf/177Hf ratios were normalized to 179Hf/177Hf =
0.7325. Thirteen measurements of the Penglai zircon standard
during the course of this study yielded a weighted mean of
176Hf/177Hf = 0.282906± 0.000021 (SD), which is consistent within
errors with the reported value in Li et al. (2010b). Zircon Hf isotopic
data are listed in Table S7.
3.2. Mineral chemistry analyses

All silicate mineral analyses and back–scattered–electron (BSE) im-
aging were carried out at the SKLaBIG GIG CAS using a JXA–8100 elec-
tron microprobe. An accelerating voltage of 15 kV, a specimen current
of 20 nA, and a beam size of 1–2 μm were employed. The analytical er-
rors are generally less than 2%. The analytical procedures were de-
scribed in detail in Huang et al. (2007). The results are presented in
Table S3.

In situ trace element compositions of minerals were measured with
an ELEMENT XR (Thermo Fisher Scientific) ICP–MS coupled with a 193-
nm (ArF) Resonetics RESOlution M-50 laser ablation system at the
SKLaBIGGIG CAS. Laser spots on samplematerial were ~ 33 μm in diam-
eter. The calibration line for each elementwas constructed by analyzing
three USGS reference glasses (BCR–2G, BHVO–2G and GSD–1G) with Si
as an internal standard element. The secondary reference glasses TB–1G
were analyzed as unknown samples to monitor the reliability of the
whole procedure. 25 analyses of TB–1G indicate most elements are
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within 8% of the reference values and the analytical precision (2RSD)
was better than 10% for most elements (Table S8). Detailed experiment
procedures and data reduction strategy were described in Zhang et al.
(2019). The results are presented in Table S4.

3.3. Whole-rock element and Sr\\Nd isotopic analyses

Rock samples were examined by optical microscopy and unaltered
or least-altered samples were selected for geochemical analyses. The
rocks were sawed into small chips, ultrasonically cleaned in distilled
water with <3% HNO3 and then in deionized water alone, and subse-
quently dried and handpicked to remove visible contamination. The
rocks were crushed by a jaw crusher and then powdered to ~200
mesh in an agate mill, and the powder was used for analyses of major
and trace elements, and Sr\\Nd isotopes, at the SKLaBIG GIG CAS.

Major element oxides were analyzed on fused glass beads using a
Rigaku RIX 2000 X-ray fluorescence spectrometer. The analytical proce-
dures were the same as those described by Li et al. (2000). Glass discs
were made by melting dehydrated sample powders. Calibration lines
used in quantification were produced by bivariate regression of data
from 36 referencematerials encompassing a wide range of silicate com-
positions (Li et al., 2005), and analytical uncertainties are between 1%
and 5%. Trace elements were analyzed by inductively coupled plasma
Fig. 3. (a) Representative CL images and (b–d) U\\Pb concordia diagrams for zircons from the
analyzed for U\\Pb dating, respectively; yellow circles with a red outline denote the spots anal
mass spectrometry (ICP–MS), using a Perkin-Elmer Sciex ELAN 6000 in-
strument. Analytical procedures are the same as those described by Li
et al. (2002). An internal standard solution containing the single ele-
ment Rh was used to monitor signal drift during counting. A set of
USGS and Chinese national rock standards, including BHVO–2, AGV–2,
W–2a, GSR–1, and GSR–2 were chosen for calibration. Repeated runs
give <3% RSD (relative standard deviation) for most elements of refer-
ence materials for ICP-MS analysis. Geochemical results are listed in
Table S5.

The Sr\\Nd isotopic compositions of selected samples were deter-
mined using a Neptune multicollector–ICP–MS (MC–ICP–MS). Analyti-
cal procedures are similar to those described in Li et al. (2004). Sr and
REEwere separated using cation columns, andNd fractionswere further
separated by HDEHP-coated Kef columns. The 87Sr/86Sr ratio of the
NBS987 standard and 143Nd/144Nd ratio of the Shin Etsu JNdi–1 stan-
dard were 0.710257 ± 0.000018 (n = 15, 2SD) and 0.512100 ±
0.000010 (n = 15, 2SD), respectively. All measured 143Nd/144Nd and
86Sr/88Sr ratios were normalized to 146Nd/144Nd = 0.7219 and
86Sr/88Sr = 0.1194, respectively. The Sr\\Nd isotope results are listed
in Table S6. The Sr\\Nd isotopes of USGS reference material BHVO–2
of this study gave 87Sr/86Sr = 0.703480 ± 0.000007 (SE),
143Nd/144Nd= 0.512983 ± 0.000007 (SE), respectively, within the an-
alytical error of the recommended values.
Kenama diorites. Blue solid circles and ellipses show the LA–MC–ICP–MS and SIMS spots
yzed for O isotopes; green dashed circles mark the spots analyzed for Hf isotopes.
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4. Results

4.1. Zircon U\\Pb ages

Group I diorite samples (16BG10–2 and 16BG12–6) were selected
for zircon dating. Zircons in these samples have crystal lengths of
~100–200 μm and length-to-width ratios from 1:1 to 2:1. The crystals
commonly show banded structures under cathodoluminescence (CL)
(Fig. 3a), indicating crystallization from a mafic magma (Hoskin and
Schaltegger, 2003). The analyzed zircon grains in samples 16BG10–2
and 16BG12–6 show variable contents of U (246–955 and
141–1492 ppm, respectively) and Th (358–2166 and 145–2942 ppm,
respectively) and high Th/U ratios (1.22 to 2.27 and 0.74 to 3.70, respec-
tively). Eleven spot analyses of zircons from sample 16BG10–2 yield
concordant 206Pb/238U ages ranging from 155.0 to 163.6 Ma (LA–ICP–
MS),withaweighted-mean 206Pb/238Uageof 159.2±1.8Ma(MSWD=
0.8; Fig. 3b). Eighteen zircon grains from sample 16BG12–6 show a uni-
formly distributed concordant 206Pb/238U age of 156.0 to 165.8 Ma
(SIMS), with a weighted-mean 206Pb/238U age of 161.9 ± 1.5 Ma
(MSWD= 1.4; Fig. 3c).

ZirconsextractedfromaGroupIIdiorite sample16BG12–10showos-
cillatoryzoninginCLimagesandhavecrystal lengthsof~100–200μmand
length/width ratios of 2:1 to 3:1 (Fig. 3a), indicating amagmatic origin
(HoskinandSchaltegger,2003).Theanalyzedzircongrainshavevariable
contents of U (138–414 ppm) and Th (125–418 ppm), and Th/U ratios
ranging from 0.73 to 1.22, also confirming a magmatic origin. Fifteen
spot analyses of zircons yield concordant 206Pb/238U ages of 160.4 to
166.9 Ma (LA–ICP–MS), with a weighted-mean 206Pb/238U age of
162.5±1.2Ma (MSWD=0.7; Fig. 3d).

4.2. Mineral compositions

According to the classification of amphibole, the Kenama diorites
only contain Mg-hornblende (Si > 6.5; Fig. 4a; Leake et al., 1997;
Hawthorne and Oberti, 2007). In this study, amphibole grains can be
classified into a low-Al area (Al2O3 < 10 wt%, Si/Altot > 4; Fig. 4b).
Based on the major element compositions of amphiboles, low-Al am-
phiboles in Group II diorites have lower MgO contents (Figure S1d)
and higher FeO, K2O, and Cl contents than the amphiboles in Group I di-
orites (Figure S1c, S1g–h). The amphibole Mg# (Mg/(Mg + Fe2+))
values for the Group I diorites range from 0.64 to 0.81, slightly higher
than those for Group II diorites (0.56–0.69). Moreover, amphibole AlIV

content shows positive correlations with Ti and (Na + K)A, suggesting
the composition was controlled by Ti-tschermark and edenite substitu-
tions that are sensitive to crystallization temperature and pressure
(Fig. 5b, c; Rutherford and Devine, 2003; Kiss et al., 2014). However,
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Fig. 4. Classification diagrams of (a) Si (apfu) versus Molar Mg/(Mg+ Fe2+) (Leake et al., 1997
Apfu = atom per formula unit.
amphiboles in both groups of diorites show no relationship between
AlIV and AlVI (Fig. 5d).

Low-Al amphiboles from both diorite groups have relatively consis-
tent REE patterns that are slightly convex upward with Ce–Pr–Nd–Sm
enrichment and distinctive negative Eu anomalies (Fig. 6a, c). On prim-
itive mantle-normalized trace element diagrams, these amphibole
grains show negative Pb, Sr, Eu, Zr, Hf, and Ti anomalies (Fig. 6b, d).

4.3. Whole-rock major and trace element compositions

Major and trace element data for the studied diorite samples are
listed in Table S5. The Group I diorites have low SiO2 contents
(47.6–53.4 wt%) and high MgO contents (5.0–9.1 wt%) and Mg# values
(51–69). They have relatively high K2O (1.0–3.6 wt%), Na2O
(1.7–3.4 wt%), and Na2O+ K2O (2.7–5.4 wt%) contents. They have vari-
able Al2O3 (13.8–19.8 wt%), Fe2O3 (6.3–11.1 wt%), CaO (7.6–10.6 wt%)
and low TiO2 (0.59–1.28wt%) contents. All of these rocks exhibit enrich-
ment in LREE ((La/Yb)N=5.7–10.5)with slightly negative Eu anomalies
(δEu= 0.72–0.89) (Fig. 7a). On a primitive mantle-normalized trace el-
ement spiderdiagrams, they areenriched in large ion lithophile elements
(LILEs; e.g., Pb, Rb, and Ba) and the depletion of high field strength ele-
ments (HFSEs; e.g., Nb and Ta). All these samples exhibit strong negative
Nb, Ta, Ti, and P anomalies and positive Th anomalies (Fig. 7b).

The Group II diorites have relatively high contents of SiO2

(56.9–59.5 wt%), Al2O3 (16.7–17.5 wt%), K2O (0.7–2.4 wt%) and Na2O
(3.1–3.9 wt%). These rocks also contain relatively low contents of
Fe2O3

T (5.8–6.4 wt%), MgO (2.9–3.8 wt%), TiO2 (0.77–0.81 wt%), and
low Mg# values (47–55). Chondrite-normalized REE patterns of the di-
orites exhibit LREE enrichment ((La/Yb)N =8.9–10.4) and slightly neg-
ative Eu anomalies (δEu = 0.77–0.89) (Fig. 7a). In a primitive mantle-
normalized trace element spider diagrams (Fig. 7b), the rocks are char-
acterized by enrichment in LILEs (e.g., Rb, Ba, Th, and U) and depletion
in HFSEs (e.g., Nb, Ta, Ti, P, Zr, and Hf), with positive Th and K anomalies
and negative Nb, Ta, Ti, and P anomalies.

4.4. Whole-rock Sr\\Nd isotopic compositions

Whole-rock Sr\\Nd isotopic composition data for the diorites are
listed in Table S6 and shown in Fig. 8a. The Group I diorites exhibit var-
iable initial 87Sr/86Sr ratios (0.7073–0.7094) and negative εNd(t) values
(−10.3 to −5.9) with single-stage Nd model ages (TNdDM) ranging from
1.28 to 1.93 Ga. The Group II diorites show uniform initial 87Sr/86Sr ra-
tios (0.7083–0.7087) and negative εNd(t) values (−9.5 to −9.0) with
single-stage Nd model ages (TNdDM) ranging from 1.59 to 1.69 Ga. The
Sr − Nd isotopic compositions of these diorites are essentially similar
to those arc magmas from the Daru Tso high-Mg andesites (Fig. 8a).
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4.5. Zircon Hf\\O isotopic compositions

Zircon in situ Hf\\O isotope data for samples 16BG10–2, 16BG12–6,
and 16BG12–10 are listed in Table S7 and shown in Fig. 8b. The mea-
sured δ18O values for zircons from Group I diorite samples 16BG10–2
and 16BG12–6 have δ18O values ranging from 6.9‰ to 7.3‰ (averaged
of 7.1 ± 0.26‰, 2SD; Fig. 9a) and 6.5‰ to 7.2‰ (averaged of 6.75 ±
0.39‰, 2SD; Fig. 9c), respectively. The zircons δ18O values from the
Group II diorite sample 16BG12–10 vary from 6.6‰ to 7.5‰ (Fig. 9e),
with an average of 7.0 ± 0.6‰ (2SD). The average zircon O isotope
values for all samples are slightly higher than values for igneous zircons
(5.3 ± 0.3‰) in equilibrium with mantle magmas (Valley et al., 2005).

Zircons fromGroup I diorite samples 16BG10–2 and 16BG12–6 have
a large range of initial 176Hf/177Hf ratios of 0.282399–0.282548 and
0.282253–0.282534, corresponding to εHf(t) values of −9.7 to −4.4
and − 14.8 to −4.9 (Fig. 9b, d), respectively. They yield single-stage
Hf model ages ranging from ca. 1.02 to 1.22 Ga and 1.09 to 1.44 Ga, re-
spectively. The zircons from Group II diorite sample 16BG12–10 have
a slightly wider range of initial 176Hf/177Hf ratios of
0.282381–0.282554, corresponding to εHf(t) values of −10.3 to −4.2
(Fig. 9f) and single-stage Hfmodel ages ranging from ca. 0.98 to 1.22Ga.

5. Discussion

5.1. Crystallization conditions

Amphibole can be used to estimate crystallization conditions
(Erdmann et al., 2014). Empirical and experimental studies have
shown that amphibole compositions can be effectively used to estimate
magma conditions during the crystallization of igneous rocks
(e.g., Krawczynski et al., 2012; Ridolfi et al., 2010). Here, we constrain
crystallization pressures, temperatures, H2Omelt concentration, and oxy-
gen fugacity for the Kenama magmas using the empirical amphibole
formulation (Ridolfi et al., 2010). Amphiboles from the Kenama diorites
plot inside the stability field of consistent amphiboles, indicating that
they are suitable for determining crystallization conditions (Fig. 10).
As illustrated in Figure S2, amphiboles in Group I diorites yield pressures
of 131± 36MPa, temperatures of 810± 30 °C H2Omelt of 5.8± 0.4wt%,
which overlap the conditions of the low-Al amphiboles (121± 27MPa,
797 ± 25 °C and 5.3 ± 0.3 wt%) in Group II diorite samples (Fig. 10a).
Therefore, the amphibole from Kenama diorites crystallized under hy-
drous (H2O=4.6–6.9 wt%) and low-pressure (69–226MPa) conditions
that correspond to upper crustal depths and at temperatures of
745–871 °C. The results indicate that olivine and clinopyroxene may
have crystallized prior to amphibole and separated from the residual
magma.

5.2. Petrogenesis of the diorites

5.2.1. Crustal assimilation
Crustal contamination is an important processwhenmantle-derived

magmas ascend through continental crust or stay within a crustal
magma chamber, and may modify both elemental and isotopic compo-
sitions of magmas (e.g., Castillo et al., 1999; DePaolo, 1981). Given that
crustal components are generally characterized by high 87Sr/86Sr and
Rb/Sr ratios, and distinctly low εNd(t) and εHf(t) values and MgO con-
tents (Rudnick and Fountain, 1995), any crustal contamination during
magma ascent would have caused an increase in (87Sr/86Sr)i and a
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decrease in εNd(t) in the magma suites (Rogers et al., 2000). Although
the Kenama diorites have high initial 87Sr/86Sr and negative zircon εHf
(t) and whole-rock εNd(t) values, the absence of correlations of
(87Sr/86Sr)i, εNd(t) and (Nb/La)PM with MgO, SiO2 and Rb/Sr are incon-
sistent with crustal contamination processes (Fig. 11a–g). Additionally,
the Ce/Pb ratio does not decrease with the increase of SiO2 content
(Fig. 11h), indicating that no obvious crustal contamination. Therefore,
crustal contamination played an insignificant role during the magma
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5.2.2. Fractional crystallization and accumulation
The variable major and trace element compositions of the Kenama

diorites suggest that varying degrees of fractional crystallization and/
or crystal accumulation possibly played an important role in their for-
mation. In general, mantle-derived primary melts have Ni >400 ppm
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and Cr >1000 ppm (Wilson, 1989), and Mg# = 73–81 (Sharma, 1997).
The Kenama diorite samples exhibit variable MgO concentrations and
Mg# values, suggesting that they underwent varying degrees of frac-
tional crystallization. They show large variations in Mg# values
(47–69) and the contents of compatible elements such as Cr
(5.18–629 ppm) andNi (5.67–107.5 ppm). Their MgO contents are pos-
itively correlated with Cr and Ni contents (Figure S3h, i), indicating a
significant fractionation of olivine and chromite. In addition, there is a
well-defined positive correlation between CaO and MgO (Figure S3e),
indicating clinopyroxene fractionation (Herzberg et al., 2007). The
Kenama diorites show obvious negative Eu anomalies in a chondrite-
normalized REE diagrams (Fig. 7), suggesting that plagioclase fraction-
ation occurred during magma evolution. We further explore the frac-
tional crystallization models using Rhyolite-MELTSs (Gualda and
Ghiorso, 2015) with a starting composition of sample 16BG10–1. The
modeling results indicate that fractional crystallization likely occurred
along the liquid lines of descent of olivine, clinopyroxene, amphibole,
feldspar and Fe\\Ti oxides at lower pressure (1–2 kbar), ~4 wt% H2O
content and higher oxygen fugacity (NNO, NNO + 1, and NNO + 2)
(Fig. 12). The Group I diorites have low SiO2 (47.6–53.4 wt%), and
high MgO (5.0–9.1 wt%), resulting from the accumulation of
amphiboles.

5.2.3. Magma source characteristics
Variousmodels have beenproposed to explain the origin of interme-

diate igneous rocks, including (1) partial melting of mafic lower crust
(e.g., Cai et al., 2015; Jung et al., 2002); (2) mixing between mantle-
derived basaltic magma and crust-derived felsic melt (e.g., Guo et al.,
2007; Reubi and Blundy, 2009; Streck et al., 2007; Zhang et al., 2013);
(3) fractional crystallization of mantle-derived mafic magmas
(e.g., Pichavant and Macdonald, 2007; Stevenson et al., 1999); and
(4) interaction between slab-derived melts/fluids and mantle wedge
(e.g., Shimoda et al., 1998; Tatsumi and Hanyu, 2003; Wang et al.,
2008, 2011).

Experimental studies have shown that dehydration melting of
crustal rocks (basaltic and pelitic) would produce low-Mg# (generally
<40) melts regardless of the degree of melting (Patiño Douce and
Johnston, 1991; Rapp and Watson, 1995). The Group I diorites have
high and variable Mg# values of 51–69, indicating they were derived
mainly from the mantle rather than the crustal material. The rocks
show low SiO2 (47.6–53.4 wt%) contents and variable MgO
(5.0–9.10 wt%), Ni (5.7–107.5 ppm) and Cr (5.2–629.7 ppm) contents,
suggesting they are products of evolved melts. Additionally, these dio-
rites did not contain mafic microgranular enclaves and show similar
Sr–Nd–Hf–O isotopic compositions (Figs. 8 and 9), indicating that
magma mixing is not considered as a plausible mechanism accounting
for their formation.

The negative zircon εHf(t) andwhole-rock εNd(t) values andhigh ini-
tial 87Sr/86Sr ratios (Fig. 8) of the Kenama Group I diorites can be attrib-
uted either to melts derived from asthenospheric mantle with crustal
contamination or from enriched lithospheric mantle. The Group I dio-
rites are characterized by relative enrichment in LILEs, LREEs and U,
and depletion in HFSEs (e.g., Nb, Ta, and Ti), indicating a typical arc-
like geochemical affinities (Fig. 7b). Previous studies have demon-
strated that slab-derived aqueous fluids contain high LILEs (Ba, Rb, Sr,
U, and Pb) concentrations, whereas subducted oceanic sediment-
derived melts contain high contents of Th and LREEs with distinctly el-
evated Th/Ce ratios (Hawkesworth et al., 1997). The Group I diorites
have relatively high Th/Yb (0.92–4.50), Th/La (0.11–0.41), and La/Sm
(3.20–7.58) ratios, and low Ba/La (6.7–24.6), Ba/Th (27.9–169.5), and
U/Th (0.10–0.26) ratios, and they plot in the range of slab-derived
melts on Ba/La versus Th/Yb and Ba/Th versus La/Sm diagrams
(Fig. 13a, b). These results suggest lithospheric metasomatism was in-
duced by sediment-derived melts (Plank, 2005; Woodhead et al.,
2001). Moreover, the abundant amphiboles (Fig. 2c) as a hydrous min-
eral in the diorites, indicates that the Group I diorites were derived from
a hydrous mantle source, as amphibole is stable under the conditions of
lithospheric mantle, but not in convecting upper mantle or upwelling
thermal mantle plumes (Class and Goldstein, 1997). The coeval high-
Mg andesites in the Daru Tso (i.e., our study area) have similar geo-
chemical and isotopic compositions to the Kenama diorites (Fig. 8),
also suggesting that an enriched lithosphere mantle existed beneath
the margin of the northern Lhasa subterrane during Jurassic times
(Tang et al., 2019; Zeng et al., 2016). Therefore, the Group I diorites
were most likely derived from enriched lithospheric mantle that had
been metasomatized by subducted oceanic sediment-derived melts
(e.g., Davidson, 1987; Hawkesworth et al., 1997; Zheng et al., 2015).

Oxygen isotopes are a powerful tool for determining the involve-
ment of continental crustal materials in magma genesis, given the
large difference in δ18O between crustal rocks and mantle-derived
rocks (James, 1981). Zircon is a generally robust and strongly refractory
accessory mineral in igneous rocks. It is commonly accepted that the ig-
neous fractionation has a negligible effect on the oxygen isotopic com-
position of zircon (Valley et al., 2005; Zheng et al., 2004). The zircons

http://georoc.mpch-mainz.gwdg.de/georoc/
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from theKenamadiorites show slightly high δ18O (6.5‰ to 7.5‰) values
relative to igneous zircons (5.3 ± 0.3‰) in equilibrium with mantle
magmas (Valley et al., 2005) (Fig. 8b), suggesting that they contain an
18O-enriched supracrustal component (e.g., a subducted oceanic
sediment-derived melt) (Kemp et al., 2007; Turner et al., 2009). There-
fore, we suggest that the parental magmas of these diorites originated
from an enriched lithospheric mantle source that had been
metasomatized by melts derived from the subducted oceanic slab
with minor crustal contamination.

Compared with the Group I diorite samples, the Group II diorites
have relatively high SiO2, K2O, and Na2O contents, and low TiO2, CaO,
Fe2O3
T,MgO, Cr, andNi contents (Figure S3). TheGroup II diorites display

similar chondrite-normalized REE and primitive mantle-normalized
trace element patterns to the Group I diorites (Fig. 7), suggesting that
they were formed by fractional crystallization of similar parental
magmas. The Group II diorites exhibit negative zircon εHf(t) (−10.25
to −4.16) values, elevated δ18O values (6.62‰ to 7.54‰), low εNd
(t) values (−9.5 to −9.0), and high initial 87Sr/86Sr ratios
(0.7083–0.7087) of whole rock, also similar to the Group I diorites
(Fig. 8). Therefore, the Group II diorites were also sourced from an
enriched lithospheric mantle metasomatized by subduction-related
sediment melts.
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5.3. Role of amphibole fractionation in arc magmas

Amphiboles are common hydrous minerals in magmatic rocks.
The textures and compositions of amphibole crystals have been utilized
to infer magmatic processes and crystallization parameters (Chelle-
Michou and Chiaradia, 2017; Davidson et al., 2007). Amphiboles from
the two groups of diorites are typically characterized by low AlIV

(0.37–1.43; Fig. 4b) and low crystallization temperatures
(~871–745 °C; Fig. 10), suggesting they were derived from a cold silicic
magma (Chambefort et al., 2013; Kiss et al., 2014; Ridolfi et al., 2010).
Meanwhile, the amphiboles of both diorite groups show similar compo-
sitional trends on Al2O3 versus TiO2, CaO, Na2O, and Cl diagrams
(Figure S1b, e, f, and h), indicating crystallization from a single magma
source. The weak negative correlation between AlIV and Mg# (Fig. 5a)
indicates the absence of mafic magma replenishment (Kiss et al.,
2014; Ridolfi et al., 2010). Negative Eu anomalies and depletion in Sr,
Zr and, Ti (Fig. 6b, d) indicate that the amphiboles were formed after
plagioclase and magnetite crystallization (Chambefort et al., 2013;
Coint et al., 2013; Kiss et al., 2014; Krawczynski et al., 2012). Moreover,
based on partition coefficients between amphibole and melt (Shimizu
et al., 2017), the calculated equilibriummelts show lower REE composi-
tions than the host diorites, possibly suggesting that the amphibole
crystallized at an early stage.

To better assess the role of mineral fractionation in arc magmatism,
we investigated the relationships between major- and trace- element
variations in the amphiboles. Notably, the increase in Dy and Eu concen-
trations with increasing Dy/Yb ratio, suggests that the differentiation of
deep magmas in the Kenama area was dominated by the fractionation
of amphiboles (Fig. 14a, b). Moreover, Ti concentrations in the amphi-
bole crystals broadly correlate with their Dy/Yb ratios (Fig. 14c), sug-
gesting that the deep magmas evolved towards lower Ti
concentrations by fractional crystallization of amphiboles (Peters
et al., 2017). In addition, the Eu/Eu* ratio of the amphiboles increase
with theirMg# values, suggesting that the parentmagmas of the amphi-
boles may have evolved towards lower Eu andMg# by progressive frac-
tionation of amphibole and/or feldspar (Fig. 14d).

Therefore, we suggest that both groups of Kenama diorites probably
originated from an enriched lithospheric mantle metasomatized by
subducted oceanic sediment-derived melts. Their parental magmas
may have similar geochemical characteristics and underwent varying
degrees of accumulation and fractional crystallization. The Group I dio-
rites were likely generated by accumulation of amphibole and fractional
crystallization of olivine, clinopyroxene, and plagioclase from mafic
magmas. Instead, the group II dioriteswere formedby fractional crystal-
lization of clinopyroxene and plagioclase frommafic magmas that were
geochemically similar to the Group I diorites.
5.4. Geodynamic implications

The tectonic setting of the Jurassic–Cretaceous magmatic rocks in
the BNSZ is debated, with previous studies proposing an island arc set-
ting (Li et al., 2018; Liu et al., 2016; Wang et al., 2016; Zeng et al., 2016;
Zhu et al., 2016; Zhu et al., 2017, 2019a) or a post-collisional setting (Ma
et al., 2017; Yan et al., 2016). The debate stems from insufficient petro-
genetic constrains on the Jurassic mafic-intermediate magmatic rocks,
as well as a lack of synthetic comparison of magmatic activity with
other geological records.

Ma et al. (2017) proposed that the Lhasa–Qiangtang collision took
place in late Middle Jurassic time (166 Ma), based on the field observa-
tion of an angular unconformity that truncated the Jurassic succession
and the recognition of siliciclastic provenance changed from arc mag-
matic sources to uplifted orogenic sources in the Biluoco–Qixiangco
area from the southern Qiangtang basin. However, many researchers
suggest an oceanic subduction tectonic setting for the BNSZ during the
Jurassic time. The lines of evidence for subduction and closure of the
BNTO are as follows: (1) High-magnesium andesitic rocks have been
identified in the Daru Tso and Jiaqiong areas in the middle-eastern seg-
ment of the BNSZ. These high-magnesium andesitic rocks were derived
from interaction between partial melting of subducted sediments and
overlying mantle peridotite, and formed in an arc setting related to
the subduction of the Bangong–Nujiang Tethys oceanic lithosphere
(Tang et al., 2019; Zeng et al., 2016); (2) Sedimentary provenance and
age-spectra of detrital zircons of the Early Cretaceous strata (Duba and
Duoni Formations) from our study area indicate that the Lhasa–
Qiangtang collision took place during the late Early Cretaceous
(~122–113 Ma) (Lai et al., 2019; Zhu et al., 2019b); (3) To the west of
the study area in the Nyima basin, major deformation and denudation
occurred at ca. 125–118 Ma, resulting in an evolution from marine to
nonmarine environments (Kapp et al., 2007). This indicates that the
Lhasa–Qiangtang collision was well underway in the Early Cretaceous;
(4) Farther to the west in Domar within the southern Qiangtang
subterrane, structural mapping and detrital zircon U\\Pb dating indi-
cated a significant Late Jurassic–Early Cretaceous shortening
(Raterman et al., 2014); (5) Jurassic–Early Cretaceous ophiolite frag-
ments were widely distributed along the BNSZ (Fig. 1b; Wang et al.,
2016), and generated in a fore-arc oceanic setting (Liu et al., 2016;
Wang et al., 2016). The ages of these ophiolites indicate that the BNTO
still exists during the Early Cretaceous (Wang et al., 2016; Zhong et al.,
2017); and (6) Paleomagnetic results of the Middle Jurassic limestones
from the Shuanghu area in the southernQiangtang terrane indicate that
the width of the BNTO was 2600 ± 710 km (23.4° ± 6.4°) during the
Middle Jurassic, and the closure of BNTO occurred in the Cretaceous
(Cao et al., 2019).
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The early Late Jurassic Kenama diorites of our study have recently
been discovered in the Kenama area along the southern margin of the
BNSZ. The U\\Pb ages of these diorites are consistent with the high-
magnesium andesitic rocks (~165–161 Ma) that identified in the Daru
Tso and Jiaqiong areas in the middle-eastern segment of the BNSZ
(Tang et al., 2019; Zeng et al., 2016). In addition, previous studies indi-
cate that ophiolitic mélange in the Dongqiao–Lanong area is Jurassic in
age (i.e., our study area) (Wang et al., 2016). The Dongqiao and Lanong
ophiolites were produced during the Early Jurassic (~188 Ma; Liu et al.,
2016) and Late Jurassic (~147 Ma; Zhong et al., 2017), respectively. All
these ophiolites were formed in a fore-arc oceanic setting and indicate
that the BNTO, in particular its middle and eastern segments, were not
closed until the Late Jurassic (Liu et al., 2016; Wang et al., 2016; Zhong
et al., 2017). The Kenama diorites have the geochemical characteristics
of typical arc-like rocks and were derived from a lithospheric mantle
source that had been metasomatized by sediment melts of the
subducted oceanic slab. In combinationwith regional geology, in partic-
ular adjacent ophiolites, high-magnesian andesitic rocks and Cretaceous
sedimentary rocks, we suggest that all of the Kenama diorites were
formed in an early Late Jurassic arc setting related to the subduction of
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the Bangong–Nujiang Tethys oceanic lithosphere. This result is also con-
sistent with paleomagnetic data of the Middle Jurassic limestones from
the Shuanghu area in the southern Qiangtang Terrane (Cao et al., 2019).

6. Conclusions

(1) New SIMS and LA–ICP–MS zircon U\\Pb dating results suggest
that the Kenama diorites were formed during the early Late Ju-
rassic (162–159 Ma).

(2) Amphiboles from Group I and II diorites have low Al2O3 contents
and were formed under conditions of 751–871 °C and 69–226
Mpa (Group I) and 745–832 °C and 77–162 Mpa (Group II).
Distinctive negative Eu anomalies and negative anomalies in
Pb, Sr, Eu, Zr, Hf, and Ti suggest that these amphiboles crystallized
from arc magma that had previously crystallized plagioclase and
magnetite.

(3) Geochemical and isotopic characteristics suggest that both
groups of Kenama diorites originated from an enriched litho-
spheric mantle metasomatized by subducted sediment-derived
melts. Their parental magmas may have similar geochemical
characteristics and underwent varying degrees of accumulation
and fractional crystallization. The Group I diorites were gener-
ated by accumulation of amphibole and fractional crystallization
of olivine, clinopyroxene, and plagioclase from mafic magmas,
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and Group II diorites were formed by the fractional crystalliza-
tion of olivine, clinopyroxene, and plagioclase from mafic
magmas that were geochemically similar to the Group I diorites.
All of the Kenama diorites were generated in an early Late Juras-
sic arc setting that resulted from subduction of the Bangong–
Nujiang Tethys oceanic lithosphere.
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