新疆独山子区 VOCs 组成及其对 O3和 SOA 的贡献

张渊钰¹,王新明²,刘晓玲¹,张艳利²,迪丽努尔·塔力甫^{1*},张潇潇¹,阿布力克木·阿不力孜¹,刘 伟³(1.煤炭清洁 转化与化工过程自治区重点实验室,新疆大学,新疆 乌鲁木齐 830046; 2.中国科学院广州地球化学研究所有机地球化学国家 重点实验室,广东 广州 510640; 3.独山子区环境科研监测站,新疆 克拉玛依 833699)

摘要:参照美国环保署 USEPATO-14 标准方法,分别于非采暖、采暖和沙尘期采集新疆独山子区空气样品,用预浓缩仪和气相色谱/质谱联用系统对其 挥发性有机物(VOCs)进行分析.结果表明,采样期间独山子区各类 VOCs 对总 VOCs 的贡献大小依次是:烷烃(61.80%)>烯烃(18.62%)>芳香烃(10.16%)> 乙炔(9.42%);用气溶胶生成系数(FAC)估算 VOCs 的二次有机气溶胶(SOA)生成潜势表明,对 SOA 生成贡献最大的是芳香烃,在非采暖、采暖和沙尘期的 贡献率分别为 97.80%、87.28%和 69.52%;用 SPSS 软件和广义相加模型(GAM)分析气象因素、VOCs、O₃ 及 NOx 之间的关系,表明高温干燥天气有利 于 O₃ 生成,且独山子区 O₅ 生成主要受 VOCs 控制,一些烯烃(如 1-丁烯)与 O₃ 呈显著线性关系.

关键词: VOCs; NO_x; O₃; 二次有机气溶胶; 独山子区

中图分类号: X511 文献标识码: A 文章编号: 1000-6923(2020)05-1915-09

DOI:10.19674/j.cnki.issn1000-6923.2020.0215

Volatile organic compounds (VOCs) in Dushanzi, Xinjiang: Compositions and contributions to the formation of O₃ and SOA. ZHANG Yuan-yu¹, WANG Xin-ming², LIU Xiao-ling¹, ZHANG Yan-li², DILINUER·Talip^{1*}, ZHANG Xiao-xiao¹, ABULIKEMU·Abulizi¹, LIU Wei³ (1. Key Laboratory of Coal Clean Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, China; 2.State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry Chinese Academy of Sciences, Guangzhou 510640, China; 3.Dushanzi Environmental Research and Monitoring Station, Karamay 833699, China). *China Environmental Science*, 2020,40(5): 1915~1923

Abstract: Air samples were collected in the Dushanzi district of Xinjiang Uyghur Autonomous Region, China during the non-heating, heating and sandstorm periods for the analysis of volatile organic compounds (VOCs) by a preconcentrator coupled to a gas chromatography/mass spectrometer according to USEPATO-14 standard method. The results showed that group compositions of VOCs in Dushanzi district during the sampling period were ranked in the order of alkanes (61.80%), alkenes (18.62%), aromatics (10.16%) and acetylene (9.42%). The secondary organic aerosol (SOA) formation potentials of VOCs as estimated by fractional aerosol coefficient (FAC) method revealed that aromatics contributed the most to SOA formation during non-heating, heating and sandstorm period, with contribution percentages of 97.8%, 87.28% and 69.52%, respectively. SPSS software and generalized additive model (GAM) were used to analyze the relationships among meteorological factors, VOCs, O₃ and NO_x. The results demonstrated that high temperature and dry weather were conducive to the formation of O₃. The O₃ formation in Dushanzi district seemed to be VOCs-limited, and alkenes such as 1-butene showed significant linear correlation with O₃.

Key words: VOCs; NO_x; O₃; secondary organic aerosol; Dushanzi district

二次有机气溶胶(SOA)是城市大气环境 PM_{2.5} 的重要成分^[1-2],对气候变化、人类健康等产生严重 影响^[3-4].SOA可由挥发性有机物(VOCs)或半挥发性 有机物(semi-VOCs)经过复杂的大气物理化学过程 形成^[5].近年来国内外学者借助 FAC 系数法研究不 同地区 VOCs 的 SOA 的生成潜势,发现生成 SOA 的 优势组分为芳香烃和异戊二烯,而人为源 VOCs 中 芳香烃对 SOA 生成贡献最大^[6-10].近地面 O₃污染物 近年日益引起关注^[11].大气对流层 O₃污染危及人体 呼吸道、肺功能等系统^[12],主要由 NO_x 和 VOCs 光 化学反应产生^[13],并受区域风向、温度、风速、相对 湿度等气象因素的影响^[14].因此,研究 VOCs 组成及 其对 O₃和 SOA 贡献,对控制 PM_{2.5}和 O₃污染有重要 意义.

克拉玛依市独山子区位于天山北部,准噶尔盆地边缘,属于典型的干旱石化区域.虽然前期已有学者针对独山子区 PM_{2.5} 的化学组成、来源及其变化特征进行了分析研究^[15-16],但该区域 VOCs 和 NO_x

收稿日期: 2019-10-15

基金项目: 国家自然科学基金资助项目(41967050);有机地球化学国家重 点实验室开放基金资助项目(SKLOG-201915)

^{*} 责任作者, 教授, dilnurt@xju.edu.cn

及其对 SOA 和 O₃ 生成贡献的研究还鲜有报道.因此, 本文在前人研究基础上,于 2015~2016 年非采暖、采 暖和沙尘期对采集的独山子区大气 VOCs 进行分析, 探讨了 VOCs 的组成特征及其浓度水平;利用 VOCs、NO_x 浓度及气象参数分析讨论了区域大气 SOA 和 O₃ 生成潜势,并确定了 O₃ 生成的主要前驱 物,为制定独山子区域 SOA 和 O₃ 的控制措施提供了 理论依据.

1 材料与方法

1.1 样品采集

1.1.1 采样地点和时间 采样地点位于新疆克拉 玛依市独山子区(北纬:44°19′33″,东经:84°53′0″).采 样点西北部是大型化学工业区(天利高新,独山子石 化,水泥厂和乙烯厂等),北部是奎屯市.采样点周围 环绕着几条主要交通线路,属于混合型功能区^[15].采 样点距离地面高约 20m,周边半径 1km 内无高的建 筑.采样时间分为非采暖期(2015 年 9 月 14~19 日), 采暖期(12 月 10~16 日)和沙尘期(2016 年 4 月 19~24 日).每日的采样时间段为:早 9:30~10:30;中 14:30~15:30;晚 22:30~23:30,每天采集 3 个样品,每个 时期连续采样一周.

1.1.2 VOCs 样品采集 参照美国环保署 (USEPATO-14)标准,用特制体积为2L的不锈钢采 样罐(Canister)进行 VOCs 样品采集.采样前每个采 样罐均用高纯氮气进行 5 次以上的反复充气和抽 真空清洗,清洗后每 10 只采样罐选取 1 只注入高 纯氮气放置 24h 以上,并按样品分析标准流程进行 分析,保证采样罐内目标化合物不被检出或低于 检测限,抽查合格后抽真空备用.采样时,采样罐进 气口加限流阀进行小时平均样品采集,确保每个 样品持续时间约 60min.采样结束以后,拧紧阀门, 加盖采样帽,记录相关数据.所有样品均保证在一 个月之内完成分析.本研究所采集的样品,均在中 科院广州地球化学研究所有机国家重点实验室分 析完成.

1.2 样品分析

样品 VOCs 全组分由预浓缩仪(Entech7100, USA)和气相色谱/质谱(GC-MSD/FID/ECD,6890/ Agilent5973N 及 6890/Agilent5975)联用系统进行定 性定量分析.系统以高纯氦气作为运载气,载气流速 为 4mL/min,抽取采样罐中 350mL 样品,气体经预浓 缩进样通道,按程序进入一,二,三级冷阱捕集阱,具 体方法详见文献[17].实验根据色谱保留时间和质谱 图进行定性分析,采用外标法根据色谱峰面积进行 定量分析.

1.3 质量保证和质量控制

在采样前,为保证罐内目标化物质浓度小于检测限,采样罐严格按标准进行前处理.为保证仪器检测的数据有效,需要在样品分析之前或仪器重新开机后均先进行 MSD(mass spectrometry detector)自动调谐.每天进行样品分析前,先分析高纯氮试样进行空白检验,保证仪器系统未被污染;再通过分析标样(通常为 1.0×10⁻⁹ 混合标气)检验仪器响应曲线是否变化,若与校正曲线响应值差别大于 20%,则需要重新建立校正曲线.VOCs 定量通过特征离子峰面积由工作站软件自动完成^[17],浓度以标况下的体积分数ppbv(10⁻⁹)表示.本研究中目标 VOCs 组分方法检测限为(3~57)×10⁻¹²,其在样品中浓度均高于检测限.采样期间的气象参数、O₃、NO_x和 SO₂等数据由独山子环境监测站提供.

2 结果分析

2.1 VOC_s、NO_x及O₃时间分布特征

样品检出 VOCs 包括烷烃类 25 种,烯烃类 17 种,芳香烃类14种,炔烃类1种(图1),总 VOCs的平 均浓度为(23.2±5.8)×10⁻⁹,变化范围(5.3~58.2)×10⁻⁹. 非采暖期(9 月)VOCs 浓度为(23.1±5.5)×10⁻⁹,低于 上海 2011 年 9 月^[7]所测得的水平(30.9±30.8)×10⁻⁹; 上海秋季各类物质占比为烷烃 53.6%、烯烃 27.9%、芳香烃 11.0%^[7].独山子区秋季烷烃与芳香 烃类占比相对较多(60.4%与14.6%),而烯烃类占比 较少(12.0%);采暖期 VOCs 的浓度最大(29.0×10-9), 沙尘期最小(17.4×10⁻⁹).非采暖、采暖和沙尘期烷 烃的占比分别为 60.4%、67.1%和 54.7%;烯烃在采 暖期占 22.3%,沙尘期次之(20.0%),非采暖期最少 (12.0%);在整个采样期间芳香烃与炔烃的浓度较 少.采样期间,各类化合物中所测组分的占比如图 2 所示.烷烃类组分的贡献率为:乙烷(22.7%)>丙烷 (15.4%)>正己烷(13.3%)>异丁烷(12.0%)>异戊烷 (11.6%)>正丁烷(10.9%)>正戊烷(7.1%),其他烷烃 贡献率总和为 7.1%;烯烃类化合物中丙烯、乙烯、

1-丁烯、异戊二烯和其他烯烃贡献率分别为: 36.7%、35.4%、5.3%、6.6%、11.6%;芳香烃类组 分中甲苯、苯、苯乙烯、间/对二甲苯、邻二甲苯 以及乙苯贡献率分别为:31.2%、21.0%、12.6%、 6.4%、5.5%、4.6%,其他芳香烃贡献率总和为 18.6%. 由此看出,独山子区烯烃组分中最丰富的物质为丙 烯和乙烯;甲苯、苯、苯乙烯是独山子区 VOCs 中 芳香烃类物质最丰富的组分.与广州黄埔区 VOCs 的优势组分浓度特征相比(2017 年)^[18],独山子区主 要烷烃物质(如乙烷、丙烷)及苯系物的浓度较低, 但戊烷类浓度较高,这可能是由于独山子区的戊烷 生产企业挥发所致.

图 1 不同采样期 VOCs 浓度及其组成比较 Fig.1 Comparison of total concentrations of VOCs and their group compositions during the heating, non-heating and sandstorm periods

图 2 采样期间 VOCs 各组分主要成分及其占比

图 3 所示,独山子区由于春、秋日照较强,冬季 日照较弱,在沙尘和非采暖期 VOCs-NO_x 光化学反 应较为活跃,所以 O₃ 浓度的日均值呈现沙尘和非采 暖期浓度较高,采暖期最低的趋势,而 VOCs 和 NO_x 浓度呈现采暖期高,沙尘和非采暖期低的趋势. VOCs 浓度含量最高值位于采暖期(58.2×10⁻⁹),这可 能与采暖期煤炭燃烧有关.沙尘期整体 VOCs 浓度 分布较均衡,平均值为17.4×10⁻⁹.NO_x和O₃浓度在非 采暖、采暖、沙尘期的最高值分别为 26.0,51.0, 18.0µg/m³和 169.0,69.0,176.0µg/m³,与 2009 年和 2010年新疆阜康地区^[19]非采暖期NO_x和O₃浓度的 最高值(70.0×10⁻⁹、55.8×10⁻⁹和 96.9×10⁻⁹、53.2×10⁻⁹) 相比,独山子区 NO_x浓度较低,但O₃污染较严重.

2.2 气象因素对气相污染物的贡献

由于 VOCs-NO_x在大气中转化以及 O₃生成主 要是通过光化学反应,与气象因素息息相关^[19-21].采 样期间气象因素与气相污染物的皮尔森相关性分 析表明(表 1),温度与 VOCs 呈现负相关(-0.5*),与 NO_x 显著负相关(-0.8**),与 O₃ 呈显著正相关关系 (0.9**).说明较高的温度可能会促使 VOCs、NO_x转 化生成 O₃;另一方面,研究显示^[22-23]太阳短波紫外辐 射会引起温度变化,而随着辐射的增加温度上升,O₃ 浓度也增加,说明大气辐射对 O₃ 生成的影响不能忽 略;风速与 VOCs 及 NO_x之间均呈负相关(-0.2,-0.6*),与 O₃ 呈显著正相关(0.7**),这可能是因为大风 天气有利于 VOCs、NO_x的扩散,同时有可能造成 O₃ 的区域性输送^[19];而相对湿度与 O₃ 呈显著负相关 (一0.9**),对 VOCs 及 NO_x 均为正相关(0.5,0.7**).因 此可以认为高湿度、低温度不利于 VOCs、NO_x 转 化生成 O₃;表 1 结果进一步表明 VOCs 和 NO_x 均与 O₃ 呈负相关(一0.4,一0.5*),说明独山子区 O₃ 生成不 仅与 VOCs 和 NO_x 浓度有关,而且与温度、相对湿度 等气象因素关系很大.独山子区进入采暖期温度较 低,相对湿度较大,日照时间短以及较高的颗粒物浓 度都可能导致 O₃ 无法经过光化学过程生成.此外,O₃ 浓度还与天气过程有关,高压系统控制下的天气较 晴朗,容易形成高浓度 O₃;而在低气压控制的天气往 往会造成云雨,O₃ 浓度较低^[24].可见,在高温干燥晴 朗少云的天气易于 VOCs、NO₂转化生成 O₃.

图 1 采样期间各污染物与气象因素之间的统计相关系数 Table 1 Correlations between the pollutants and meteorological factors during the sampling period

项目	VOCs	O3	NOx	温度	风速	相对湿度
VOCs	1					
O_3	-0.4	1				
NOx	0.6^{*}	-0.5^{*}	1			
温度	-0.5^{*}	0.9^{**}	-0.8^{**}	1		
风速	-0.2	0.7^{**}	-0.6^{*}	0.8^{**}	1	
相对湿度	0.5	-0.9**	0.7^{**}	-0.9^{**}	-0.7^{**}	1

注:*.在0.05水平(双侧)上显著相关; **.在0.01水平(双侧)上显著相关.

2.3 气象参数、NO_x对 O₃生成的协同作用

为研究气象因素和 NO_x 对 O₃ 的协同作用,利用 R 软件采用逐步回归方法建立了 O₃ 与各气象参数 和 NO_x、VOCs 的回归方程^[25],并引入参数(能见度) 以提高模型拟合度,而在回归过程中 VOCs 被自动 剔除,最终所得回归模型为:

 $Y = 149.73 + 1.25X_1 - 1.61X_2 - 1.15X_1X_3 + 0.016X_2X_3X_7 + 0.0016X_2X_3X_7 + 0.0016X_2X_7 + 0.0016X_2X_7 + 0.0016X_2X_7 + 0.0016X_2X_7 + 0.0016X_2X_7 + 0.0016X_7 + 0.0016$

$$0.46X_2X_5^{\overline{6}}$$
 (1)

式中:Y 为 O₃ 浓度, μ g/m³; X_1 为温度,C; X_2 为相对湿度,%; X_3 为风速,m/s; X_3 为能见度,km; X_7 为 NO_x 浓度, μ g/m³.方程的检验结果见表 2、3.

由表 2 和 3 可看出, R²接近 1,t 检验与 F 检验值 小于 0.05, 默认模型可行.R 软件所得结果与 SPSS 的 相关性结论基本一致,说明温度与风速,相对湿度、 风速和 NO_x 的浓度以及相对湿度和能见度之间的 协同作用会对 O₃生成产生影响.为确定影响 O₃浓度 最大的参数需引入相对权重,各影响因子的贡献率 如表4所示,其中相对湿度(X₂)的贡献率最大(35.3%), 依次是温度(X₁),能见度(X₅), NO_x浓度(X₇)和风速(X₃). 此结果与表 1 的统计结果相近,再次说明独山子区相对湿度等气象因素对 O₃的生成起重要作用.

表2 优化气象模型初步检验

Table 2 preliminary test of optimized meteorological model

会粉	决定系数	校正复相关	回归系数显著性	回归方程显著性
参奴	R^2	系数 Adj-R ²	检验 t−test	检验 F-test
Y	0.8	0.8		2.2×10 ⁻¹⁶
β_0			2.0×10 ⁻¹⁶	
X_1			1.4×10 ⁻³	
X_2			9.30×10 ⁻⁷	
X_1X_3			1.2×10^{-4}	
$X_2 X_3 X_7$			5.2×10 ⁻³	
$X_2 X_5^{1/6}$			1.56×10 ⁻⁵	
条件	1	1	< 0.05	< 0.05

表 3 综合检验 Table 3 Comprehensive test

		-	
项目	数值	假定值	决定
数据综合	4.5	0.3	假设可接受
偏度	0.4	0.5	假设可接受
峰度	1.4	0.2	假设可接受
连接函数	1.7	0.2	假设可接受
异方差检验	1.0	0.3	假设可接受

表 4 各变量的贡献率

Table 4 Parameter contribution rates

参数	所占比重(%)
X_1	29.0
X_2	35.3
X_3	4.8
$X_{5}^{\frac{1}{6}}$	24.5
X_7	6.4

2.4 VOCs 对 O3 的贡献

Fig.4 VOCs/NO_x ratios in Dushanzi duringdifferent periods

研究表明,当环境中存在 VOCs 时,VOCs 与 HO· 发生光化学反应生成 HO2·、RO2·等以促进 O₃ 的形 成,使 O₃ 与 NO_x 的转换失衡,进而使得 O₃ 在大气中 积累^[26].大气中 VOCs 种类繁多且化学结构各不相 同,意味着它们参与大气化学反应的能力以及对 O₃ 形成所做的贡献也不相同^[27].

经验动力学模型(EKMA)在 20 世纪 80 年代开始 采用,它揭示了 O₃ 与其前体物的非线性关系^[28]. EKMA 方法 VOCs-NO_x控制区 O₃等体积分数线充分 说明了 VOCs 和 NO_x 对于 O₃ 生成的重要性.用 VOCs/NO_x值可以粗略判断 VOCs 和 NO_x在 O₃生成 时所起的作用,了解O₃生成的控制因素,给污染物排放 控制提供理论依据.研究指出,当 VOCs/NO_x>8/1 时,O₃ 对 NO_x 的浓度比较敏感;当 VOCs/NO_x<8/1 时,VOCs 对 O₃ 的生成影响较大,位于 VOCs 的控制区.

图 4 给出了 3 个时期独山子区 VOCs 和 NO_x 的变化范围.从图可以看出 VOCs 与 NO_x 的比值基 本在 8/1 线的上方,说明独山子区的 O₃ 生成受 VOCs 的影响较大,属于 VOCs 控制区,但是受影响 程度会因时期的不同而有所变化.此结果与罗蕊 等^[29]得出的深圳市 O₃ 污染属于 VOCs 敏感型的 结论一致.

由图 4 进一步看出,采暖期的数据点均位于 4/1 线的上方,这可能是由于采暖加大了煤的燃烧造成; 非采暖期的部分数据点落在了 8/1 和 4/1 线的中间, 说明非采暖期O3的生成主要受VOCs的控制,但NOx 的影响也不能忽略.为了进一步了解 VOCs 各组分对 O3浓度的影响,本研究用 SPSS 软件分析了 VOCs 各 组分浓度与 O₃浓度之间的相关性(如图 5 所示).所测 得的 57 种 VOCs 中共有 34 种与 O3浓度呈负相关, 其余呈现正相关趋势.而只有乙炔与 O₃在 0.05 水平 上显著正相关.由图可以看出芳香烃与 O3 浓度呈负 相关,烯烃大部分都是正相关,烷烃中碳 C2~C5 与 O3 呈现正相关,C6~C12 呈现负相关,且芳香烃整体与 O3 浓度的相关性都较大.这一结果进一步验证了之前的 研究所表明的烯烃与芳香烃是影响O3生成的重要组 分^[29-31]的结论,也可说明独山子区大气生成 O₃ 的 VOCs 的优势组分与其他地区相同.

表 5 修正 GAM 模型的回归结果 Table 5 Regression results of modified GAM model

平滑效应项	估计自由度	参考自由度	F	Р
1-丁烯	1.0	1.0	14.6	4.0×10 ^{-3**}
乙炔	4.3	5.0	12.1	4.4×10 ^{-4***}
环戊烷	5.0	5.0	14.3	5.6×10 ^{-4***}

利用广义相加模型(GAM)^[32]拟合独山子区 VOCs 各组分与 O₃ 的浓度关系表明(表 5 和图 6), VOCs 各组分中只有 1-丁烯、乙炔和环戊烯与 O3的生成有一定的关系.图 6 中实线表示解释变量 与 O3 浓度之间拟合的光滑曲线,两条虚线表示函数 的标准差,即置信区间的上下限.由此效应图可知,实 验样本数据均在函数标准差之内,环戊烷、乙炔与 O3 呈非线性关系,1-丁烯与 O3 呈线性关系.O3 浓度 随 1-丁烯浓度的增加而呈上升趋势;当乙炔的浓度 <2000×10⁻⁹时,O₃的浓度随着乙炔浓度的增加而增 加,但乙炔的浓度>2000×10⁻⁹后,O3浓度的增加趋于 平稳;环戊烷的浓度区间不同,对 O3浓度的影响也不 同.在(200~400)×10⁻⁹的区间呈现正相关,在 200×10⁻⁹ 以内呈现负相关.研究表明独山子区乙炔与 1-丁烯 主要来源于煤炭燃烧^[33],乙炔又是典型的不完全燃 烧过程产物[34],一些研究表明 1-丁烯是火力发电厂 烟气的标记物质[35-37],可以更具体为火力发电厂燃 烧排放:环戊烷可能是由于石油工业园生产过程中 泄漏所致.因为采样区为西部不可或缺的石油工业 基地,所以 O₃ 生成过程中除去对其影响较大的烯烃 与芳香烃,还包括了环戊烷等组分.

2.5 VOCs 的 SOA 生成潜势

本研究利用 1989 年与 1992 年 Grosjean 等^[28,38] 的气溶胶生成系数(FAC)与 VOCs 物种中参与反应 的分数(FVOCr)数据估算了 VOCs 的 SOA 生成潜势, 公式如下^[8]:

$$SOA_P = VOC_{S_0} \times FAC$$
 (2)

式中:SOA_P代表 SOA 生成潜势,µg/m³;VOCs₀代表污 染物的初始浓度,µg/m³;FAC 是 SOA 的生成系数.由采 样点的实测数据 VOCs %用公式(3)换算可得 VOCs₀.

$$VOCs_{\mathfrak{F}} = VOCs_0 \times (1 - FVOC_p)$$
(3)

按 Grosjean 等的假设,每天 SOA 的生成均从 8:00~17:00,VOCs 生成 SOA 的产率不随环境条件而 变化,且只与 OH·发生反应.根据烟雾箱实验提出用 FAC 来反映 SOA 与 VOCs₀ 浓度之间的关系,并对多 种 VOCs 的 FAC 进行测定.式(2)和式(3)中的 *FAC* 和 FVOC_r 来自烟雾箱实验.由于较早的研究并未证明 异戊二烯与 SOA 的关系,所以并未测得异戊二烯的 FAC.本文中,异戊二烯的 VOCs₀ 计算式为(4)、(5)^[14]: VOC_{sa}=VOC_{so}×exp(-k_i[OH]Δt) (4)
$$\begin{split} \Delta t &= \frac{1}{[\mathrm{OH}](k_{\mathrm{E}} - k_{\mathrm{X}})} \times \left(\ln \left\{ \frac{\mathrm{E}}{\mathrm{X}} \right|_{t=t_0} \right\} - \ln \left\{ \frac{[\mathrm{E}]}{[\mathrm{X}]} \right|_{t=t} \right\} \right) (5) \\ \mathrm{xt} &= k_i \text{ by VOCs}_* \text{ border of the equation of the$$

大气环境中 VOCs 的不同组分生成 O₃和 SOA 的能力不同,且不同地区各组分的贡献也不同.计算 结果表明,独山子区测得的 57 种 VOCs 中对 SOA 生 成有贡献的有20种,其中烷烃有7种,芳香烃有12种, 烯烃有1种.且非采暖期 SOA 的生成潜势最大,采暖 期次之,沙尘期最少.图 7显示了不同时期 VOCs 中 3 大组分对 SOA 生成的贡献率,可以看出整个采样期 间芳香烃对 SOA 生成的贡献最大,非采暖期达到 97.8%.芳香烃中甲苯、邻二甲苯、间乙基甲苯、均三 甲苯和间/对二甲苯的 SOA 生成潜势较大.沙尘期烯 烃的贡献率由最低 0.5% 增加到 25.0%. 烯烃中的主要 贡献物是异戊二烯,而烷烃主要为正葵烷(>C₅).烯烃 和烷烃在各采样期间的贡献不同,可能是在各采样期 间 VOCs 的种类和浓度有较大差异.上述结果与 Barthelmie 等^[41]、Dechapanya 等^[42]、Kourtidis 等^[43] 和吕子峰等^[6]的探讨结果相同.总体而言,独山子区 VOCs 中除芳烃之外,烯烃即异戊二烯对二次有机气 溶胶的生成所起到的作用不容忽视.

	表 6	采样期间独山子区 SO	A 生成潜势和各 VOCs	的贡献率	
Table 6	Potential of SOA gen	neration and contribution	rate of VOCs in Dushanzi	district during the	sampling period

种类		VOC	s 浓度(µg/r	m ³)	FVOCr	FAC	FAC SOA 浓度(µg/m ³)			贡献率(%)		
		非采暖期	采暖期	沙尘期	(%)	(%)	非采暖期	采暖期	沙尘期	采暖期	采暖期	沙尘期
	甲基环戊烷	0.70	1.36	0.97	10.00	0.20	0.13	0.26	0.18	0.03	1.82	1.50
	2,4-二甲基戊烷	0.08	0.19	0.10	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2-甲基己烷	0.17	0.23	0.14	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2,3-二甲基戊烷	0.07	0.12	0.07	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3-甲基己烷	0.25	0.26	0.15	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
솔	2,2,4-三甲基戊烷	0.11	0.08	0.09	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
风风	正庚烷	0.21	0.22	0.29	14.00	0.06	0.01	0.02	0.02	0.00	0.11	0.16
定	2,3,4-三甲基戊烷	0.01	0.02	0.01	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2-甲基庚烷	0.06	0.07	0.06	10.00	0.50	0.03	0.04	0.03	0.01	0.28	0.25
	3-甲基庚烷	0.04	0.05	0.03	10.00	0.50	0.02	0.03	0.02	0.00	0.19	0.13
	正辛烷	0.09	0.10	0.10	17.00	0.06	0.01	0.01	0.01	0.00	0.05	0.06
	正壬烷	0.35	0.21	0.16	20.00	1.50	0.66	0.40	0.31	0.16	2.79	2.51
	正癸烷	2.52	0.10	0.04	22.00	2.00	6.46	0.26	0.10	1.54	1.85	0.85
	苯	1.47	1.52	0.87	2.00	0.65	0.97	1.01	0.58	0.23	7.11	4.74
	甲苯	3.44	0.72	0.58	12.00	5.40	21.10	4.45	3.56	5.03	31.38	29.14
	乙苯	0.41	0.17	0.19	15.00	5.40	2.63	1.06	1.21	0.63	7.45	9.92
	间/对二甲苯	0.75	0.29	0.28	34.00	4.70	5.33	2.06	1.99	1.27	14.52	16.29
-151:	邻二甲苯	1.08	0.14	0.10	26.00	5.00	7.30	0.97	0.66	1.74	6.81	5.38
万禾	异丙基苯	1.47	0.06	0.01	13.00	4.00	6.76	0.27	0.06	1.61	1.91	0.52
省	丙苯	3.66	0.05	0.01	12.00	1.60	6.65	0.09	0.02	1.59	0.60	0.12
凡工	间乙基甲苯	5.14	0.06	0.02	31.00	6.30	46.90	0.51	0.15	11.18	3.58	1.25
	对乙基甲苯	4.39	0.04	0.01	21.00	2.50	13.88	0.12	0.02	3.31	0.87	0.12
	均三甲苯	6.16	0.05	0.01	74.00	2.90	68.73	0.52	0.10	16.39	3.67	0.79
	偏三甲苯	14.03	0.12	0.02	58.00	2.00	66.81	0.58	0.09	15.93	4.07	0.73
	邻三甲苯	22.20	0.10	0.01	51.00	3.60	163.10	0.75	0.07	38.89	5.30	
烯烃	异戊二烯	0.51	0.17	0.21	-	2.00	1.90	0.80	3.06	0.45	5.63	25.03
	合计	69.33	6.48	4.51			418.43	13.77	10.69	100.0	100.0	100.0

Fig.7 Contribution of SOA formation potentials by different groups of VOCs during non-heating, heating and dust periods

3 结论

3.1 2015~2016年独山子区大气 VOCs 的平均体积 浓度为(23.2±5.8)×10⁻⁹,变化范围(5.3~58.2)×10⁻⁹,浓 度变化为:采暖期>非采暖期>沙尘期.

3.2 O₃浓度与气象参数相互关系的统计分析表明,高湿度、低温度不利于 VOCs 和 NO_x转化生成 O₃.

3.3 独山子区大气 O₃ 生成属 VOCs 控制,其中烯烃 是影响 O₃ 生成的重要前驱 VOCs.

3.4 芳香烃在 VOCs 平均占比为 10.3%,但对 SOA 的生成潜势贡献占比最大,非采暖、采暖和沙尘期分 别达 97.8%、87.3%和 69.5%.

参考文献:

- Feng Y L, Chen Y J, Guo H, et al. Characteristics of organic and elemental carbon in PM_{2.5} samples in Shanghai, China [J]. Atmospheric Research, 2009,92(4):434–442.
- [2] LinP, Hu M, DengZ, et al. Seasonal and diurnal variations of organic carbon in PM_{2.5} in Beijing and the estimation of secondary organic carbon [J]. Journal of Geophysical Research Atmospheres, 2009,114(D2).
- [3] Huang R J, Zhang Y L, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China [J]. Nature, 2014,514(7521):218–222.
- [4] 王扶潘,朱 乔,冯 凝,等.深圳大气中 VOCs 的二次有机气溶胶生成潜势 [J]. 中国环境科学, 2014,34(10):2449-2457.
 Whang F P, Zhu Q, Feng N, et al. The generation potential of secondary organic aerosol of atmospheric VOCs in Shenzhen [J]. China Environmental Science, 2014,34(10):2449-2457.
- [5] Daniel S T; Albert A P, Neil M D, et al. Secondary organic aerosol formation from intermediate-volatility organic compounds: cyclic, linear, and branched alkanes [J]. Environmental Science & Technology, 2012,46(16):8773-8781.
- [6] 吕子峰,郝吉明,段菁春,等.北京市夏季二次有机气溶胶生成潜势的 估算 [J]. 环境科学, 2009,30(4):969-975.
 Lv Z F, Hao J M, Duan J C, et al. Estimate of the formation potential of secondary organic aerosol in Beijing summertime [J]. Environmental Science, 2009,30(4):969-975.
- [7] 王 倩,陈长虹,王红丽,等.上海市秋季大气 VOCs 对二次有机气溶

胶的生成贡献及来源研究 [J]. 环境科学, 2013,34(2):424-433. Wang Q, Chen C H, Wang H L, et al. Forming potential of secondary organic aerosols and sources apportionment of VOCs in autumn of Shanghai, China [J]. Environmental Science, 2013,34(2):424-433.

[8] 邹 宇,邓雪娇,李 菲,等.广州番禺大气成分站复合污染过程 VOCs 对 O₃ 与 SOA 的生成潜势 [J]. 环境科学, 2017,38(6):2246-2255.

Zou Y, Deng X J, Li F, et al. Effect of VOCs on O₃ and SOA formation potential during the combinedpollution process in Guangzhou Panyu atmospheric composition station [J]. Environmental Science, 2017, 38(6):2246–2255.

- [9] Dechapanya W, Russell M, Allen D T. Estimates of anthropogenic secondary organic aerosol formation in Houston, Texas special issue of aerosol science and technology on findings from the fine particulate matter supersites program [J]. Aerosol science and technology, 2004, 38(S1):156–166.
- [10] Barthelmie R J, Pryor S C. Secondary organic aerosols: formation potential and ambient data [J]. Science of the Total Environment, 1997,205(2/3):0–178.
- [11] Wang H X, Zhou L G, Tang X Y. Ozone Concentrations in Rural Regions of the Yangtze Delta in China [J]. Journal of Atmospheric Chemistry, 2006,54(3):255–265.
- [12] Lehman J, Swinton K, Bortnick S, et al. Spatio-temporal characterization of tropospheric ozone across the eastern United States [J]. Atmospheric Environment, 2004,38(26):4357–4369.
- [13] Wang Y, Hopke P K, Xia X, et al. Source apportionment of airborne particulate matter using inorganic and organic species as tracers [J]. Atmospheric Environment, 2012,55(3):525–532.
- [14] Wang H L, Chen C H, Wang Q, et al. Chemical loss of volatile organic compounds and its impact on the source analysis through a two-year continuous measurement [J]. Atmospheric Environment, 2013,80(6): 488-498.
- [15] Yusan T, Dilinuer T, Wang X, et al. Temporal distribution and source apportionment of PM_{2.5} chemical composition in Xinjiang, NW-China [J]. Atmospheric research, 2019,218:257–268.
- [16] 沈 浩,迪丽努尔·塔力甫,王新明,等新疆独山子石化区域 PM_{2.5} 中水溶性无机离子的形成机制 [J]. 环境化学, 2018,37(11):113-121.
 Shen H, Dilinuer T, Wang X M, et al. Formation mechanism of water-soluble inorganic ions inPM_{2.5} in Dushanzi petrochemical district, Xinjiang [J]. environmental chemistry, 2018,37(11):113-121.
- [17] 张艳利.区域大气二次污染物有机前体物和消耗臭氧层物质研究
 [D]. 北京:中国科学院大学, 2013.
 Zhang Y L.Study on organic precursors and ozone depleting substances of regional secondary atmospheric pollutants [D]. Beijing: University of Chinese Academy of Sciences, 2013.

[18] 钟漂斯.广州市黄埔区臭氧污染特征研究 [D]. 广州:广州大学, 2018.

Zhong P S. Study on characteristics of ozone pollution in huangpu district, Guangzhou [D]. Guangzhou: Guangzhou University, 2018.

- [19] 陈 林,王式功,王莉莉.新疆阜康地区秋季大气 NO_x和 O₃ 变化特征 及影响要素 [J]. 干旱气象, 2012,30(3):345-352.
 Chen L, Wang S G, Wang L L. The change characteristics and influencing factors of NO_x and O₃ in autumn in fukang region, xinjiang [J]. Journal of Arid Meteorology, 2012,30(3):345-352.
- [20] 刘新春,钟玉婷,何 清,等,乌鲁木齐及周边城市空气质量变化特征 及影响因素分析 [J]. 沙漠与绿洲气象, 2010,4(4):12-17.
 Liu X C, Zhong Y T, He Q, et al. The variety characteristics and influencing factors of air quality in Urumqi and its surrounding cities
 [J]. Desert and Oasis Meteorology, 2010,4(4):12-17.
- [21] 谭艳梅,王 旭,马 禹.新疆雾天气的分析 [J]. 沙漠与绿洲气象,
 2002,25(2):9-10.

Tan Y M, Wang X, Ma Y. The analysis of in Xinjiang [J]. Desert and Oasis Meteorology, 2002,25(2):9–10.

- [22] 曾贤刚,阮芳芳,姜艺婧.中国臭氧污染的空间分布和健康效应 [J]. 中国环境科学, 2019,39(9):4025-4032.
 Zeng X G, Ruan F F, Jiang Y J. Spatial distribution and health effects of ozone pollution in China [J]. China Environmental Science, 2019, 39(9):4025-4032.
- [23] 谈建国,陆国良,耿福海,等.上海夏季近地面臭氧浓度及其相关气象因子的分析和预报 [J]. 热带气象学报, 2007,23(5):101-106.
 Tan J G, Lu G L, Geng F H, et al. Analysis and prediction of surface O₃ concentration and related meteorological factors in summertime in urban area of Shanghai [J]. Journal of Tropical Meteorology, 2007, 23(5):101-106.
- [24] 王 宏,陈晓秋,林长城,等.福州近地层臭氧分布及与天气条件关系的研究 [C]//中国气象学会年会, 2011.
 Wang H, Chen X Q, Lin C C, et al. Study on ozone distribution and its relationship with weather conditions in Fuzhou [C]//Annual meeting of China meteorological society, 2011.
- [25] 李颖若,汪君霞,韩婷婷,等,利用多元线性回归方法评估气象条件和 控制措施对 APEC 期间北京空气质量的影响 [J]. 环境科学, 2019, 40(3):16-26.
 Li Y R, Wang J X, Han T T, et al. Using multiple linear regression method to evaluate the impact of meteorological conditions and

control measures on air quality in Beijing during APEC 2014 [J]. Environmental Science, 2019,40(3):16–26.

- [26] Atkinson R. Atmospheric chemistry of VOCs and NO_x [J]. Atmospheric Environment, 2000,34(12–14):2063–2101.
- [27] Sillman S. The relation between ozone, NO_x and hydrocarbons in urban and polluted rural environments [J]. Atmospheric Environment, 1999,33(12):1821–1845.
- [28] Kinosian John R. Ozone-precursor relationships from EKMA diagrams [J]. Environmental Science & Technology, 1982,16(12):880–883.
- [29] 罗 蕊,王学中,林国梁,等.一次污染物对臭氧生成的影响研究 [J]. 环境科学研究, 2006,19(4):26-30.
 Luo R, Wang X Z, Lin G L, et al. Study on the impact of primary pollutants on ozone formation [J]. Environmental Science, 2006, 19(4):26-30.
- [30] 邓雪娇,王新明,赵春生,等.珠江三角洲典型过程 VOCs 的平均浓度 与化学反应活性 [J]. 中国环境科学, 2010,30(9):1153-1161.

Deng X J, Wang X M, Zhao C S, et al. The mean concentration and chemical reactivity of VOCs of typical processes over Pearl River Delta Region [J]. China Environmental Science, 2010,30(9):1153–1161.

- [31] 司雷霆,王 浩,李 洋,等.太原市夏季大气 VOCs 污染特征及臭氧 生成潜势 [J]. 中国环境科学, 2019,39(9):3655-3662.
 Si L T, Wang H, Li Y. et al. Pollution characteristics and ozone formation potential of ambient VOCs in summer in Taiyuan [J]. China Environmental Science, 2019,39(9):3655-3662.
- [32] 胡成媛,康 平,吴 锴,等.基于 GAM 模型的四川盆地臭氧时空分 布特征及影响因素研究 [J]. 环境科学学报, 2019,39(3):163-174.
 Hu C Y, Kang P, Wu K, et al.Study of the spatial and temporal distribution of ozone and its influence factors over Sichuan Basin based on generalized additive model [J]. Acta Scientiae Circumstantiae, 2019,39(3):163-174.
- [33] Yan Y, Peng L, Li R, et al. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China [J]. Environmental Pollution, 2017,223:295–304.
- [34] Barletta B, Meinardi S, Rowland F S, et al. Volatile organic compounds in 43Chinese cities [J]. Atmospheric Environment, 2005, 39(32):5979–5990.
- [35] Santos C Y M D, Azevedo D D A, Neto F R D A. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station [J]. Atmospheric Environment, 2004,38(9):1247–1257.
- [36] Fernández-Martínez G, López-Vilario J M, López-Mahía P, et al. Determination of volatile organic compounds in emissions by coal-fired power stations from Spain [J]. Environmental Technology Letters, 2001,22(5):567-575.
- [37] Fernández-Martínez G, López-Mahia P, Muniategui-Lorenzo S, et al. Distribution of volatile organic compounds during the combustion process in coal-fired power stations [J]. Atmospheric Environment, 2001,35(33):5823-5831.
- [38] Grosjean, Daniel. In situ organic aerosol formation during a smog episode : estimated production and chemical functionality [J]. Atmospheric Environment, Part A: General Topics, 1992,26(6):953–963.
- [39] Liu Y, Shao M, Fu L, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part I [J]. Atmospheric Environment, 2008,42(25):6247–6260.
- [40] Yuan B, Shao M, Lu S, et al. Source profiles of volatile organic compounds associated with solvent use in Beijing, China [J]. Atmospheric Environment, 2010,44(15):1919–1926.
- [41] Barthelmie R J, Pryor S C. Secondary organic aerosols: formation potential and ambient data [J]. Science of the Total Environment, 1997,205(2/3):0–178.
- [42] Dechapanya W, Russell M, Allen D T. Estimates of anthropogenic secondary organic aerosol formation in Houston, Texas special issue of aerosol science and technology on findings from the fine particulate matter supersites program [J]. Aerosol Science and Technology, 2004, 38(S1):156–166.
- [43] Kourtidis K, Ziomas I. Estimation of secondary organic aerosol (SOA) production from traffic emissions in the city of Athens [J]. Global Nest, 1999,1(1):33–39.

作者简介:张渊钰(1994-),女,山西晋中人,新疆大学硕士研究生,主要从 事大气环境检测及健康风险评价等相关研究.