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Abstract
The identification and quantification of phosphorus (P) compounds derived from algal biomass are crucial for a better 
understanding of algal P dynamics in lake ecosystems. Quantity and species of P in algae collected from Chao Lake (a typi-
cal ultra-eutrophic lake) in China were analyzed by chemical analysis and 31P NMR. Total P (TP) in algae biomass ranged 
from 2671 to 5385 mg kg−1 of dry matter. Proportion of organic P (Po) accounted for 78.3 ± 2.6% in algae biomass collected 
from the western part of Chao Lake, which was higher than that (64.7 ± 1.4%) in the eastern part of the lake. Eight P species 
including inorganic P species (orthophosphate and pyrophosphate) and Po species (five monoesters P and diesters P) were 
identified in NaOH–EDTA extracts of algal samples. Monoesters P accounted for 48.4% in extracted TP, which was the main 
component of Po. β-glycerophosphates were the largest component of monoesters P, which accounted for 22.6% in extracted 
TP. This study improved knowledge on the mechanism of the cycling of endogenous P in the aquatic system and would be 
helpful in developing a strategy for control of repeated algae blooms in eutrophic Chao Lake.
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Introduction

Algae blooms are serious environmental problems around 
the world, especially in developing countries (Kagaloua 
et al. 2008; Pernet-Coundrier et al. 2012). Algae blooms 
occur in an aquatic environment if too much phosphorus 

(P) enters the system (Giles et al. 2015). For a eutrophic 
lake, release of P from dead algae is an important nutrient 
source that will support continuous algal blooms in lakes 
(Li et al. 2009; Feng et al. 2016a). Algae are not usually 
collected by humans because they are not valuable, so that 
the debris is allowed to decompose in situ. The decomposi-
tion of algal residues affects the bio-cycling and release of P, 
increasing the risk of resurgence of algal blooms (Feng et al. 
2016b; Lehman et al. 2017). Decaying algal debris releases 
both inorganic P (Pi) and Po. The Po constituents need to 
be hydrolyzed to bioavailable Po by various enzymes (Feng 
et al. 2016b). Therefore, the forms and concentrations of P in 
algae shall be evaluated while algae debris is decomposing. 
However, until now, studies of the species, concentrations, 
and effects of Po in algae of eutrophic lakes have been lim-
ited because of the complexity and limitations of analytical 
methods (Turner et al. 2005; Bell et al. 2017).

Typical analytical approaches, such as enzymatic reac-
tivity, high performance liquid chromatography (HPLC), 
and mass spectrometry are based on operational defini-
tions so that they cannot discern P classes at a molecular 
level (Suzumura 2005; Baldwin 2013; Karl 2014). Phos-
phorus-31 nuclear magnetic resonance spectroscopy (31P 
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NMR) is a non-destructive, non-invasive technique for iden-
tifying chemical forms in various environmental samples. 
Solid-state 31P NMR is focused on inorganic P compounds, 
solution 31P NMR is mainly used to determine organic P 
compounds (Turner et al. 2005; He et al. 2011; Abdi et al. 
2014; Sørensen et al. 2014). Several P compounds have been 
detected by solution 31P NMR, including phosphonates, 
orthophosphate,monoesters P, diesters P, pyrophosphates 
and polyphosphates (He et al. 2007; Turner et al. 2012; 
Zhu et al. 2013). Generally, monoesters P represent a wide 
range of important Po compounds, such as inositol phos-
phate and sugar phosphates (He et al. 2007; Doolette et al. 
2009; Jarosch et al. 2015). Therefore, it is an ideal technique 
for analyzing Po species in algae of eutrophic lakes, as it 
would not only provide important information pertaining to 
P biogeochemical cycling in lake ecosystems, but also yield 
abundant insight into identities of specific P compounds.

C h a o  L a k e  ( 3 1 ° 2 5 ′ 2 8 ″ – 3 1 ° 4 3 ′ 2 8 ″N , 
117°16′54″–117°51′46″E) is one of the five largest freshwa-
ter lakes in China. It is situated on the flood plains between 
the Yangtze River and Huai River in the central Anhui Prov-
ince of eastern China (Zan et al. 2010; Tang et al. 2015). 
Chao Lake is a typical shallow lake with a mean depth of 
3 m and a surface area of 780 km2 and drainage area of 

13,350 km2 (Wang et al. 2013). Due to the rapid increase 
in anthropogenic activities in the lake’s watershed over 
recent decades, the lake has suffered from serious pollution, 
eutrophication and algae blooms (Xu et al. 2005). As a mat-
ter of fact, since the mid 1980s, algae blooms have occurred 
each year in Chao Lake (Chen and Liu 2014). In order to 
assess the environmental risks of algae on the eutrophic lake, 
this study analyzed the P species in algae by solution 31P 
NMR, and based on the knowledge obtained, predicted the P 
bioavailability of the algal biomass in aquatic environments.

Materials and methods

Study sites and sample collection

Samples of algae were collected from six sites in Chao 
Lake in September 2015 (Fig. 1). These sampling sites were 
located in different eutrophic areas. Generally, Chao Lake is 
divided into two parts: the western part (samples C1 and C2) 
and the eastern part (samples C3, C4, C5 and C6) along the 
line of Zhongmiao–Mushan–Qitouzui, as shown in Fig. 1. 
The quality of water was worst in the western part of the lake 
and gradually became better from west to east (Zhu et al. 

Fig. 1   Major inlets and outlets of Chao Lake with algal sampling sites
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2006; Tang et al. 2015). The lake’s annual mean concentra-
tions of total nitrogen (TN) and TP approached 2.85 and 
0.26 mg l−1, respectively, and the annual mean chlorophyll-a 
reached up to 25.6 μg l−1 (Li et al. 2015). Algae were col-
lected by use of a plankton collector (HB403-BWS). Sam-
ples were placed in sealed bags and put in ice boxes imme-
diately. These algal samples were freeze-dried, ground, then 
passed through a 2-mm sieve before being stored at −20 °C 
(Feng et al. 2016a). The dominant species in Chao Lake was 
Microcystic aeruginosa with an appearance frequency of 
90.9% (Yang et al. 2011).

Extraction of P and chemical analysis

Samples of algae were extracted by use of opti-
mized NaOH–EDTA extracting agent (mixtures of 
0.5 mol l−1NaOH and 25 mmol l−1EDTA) with a ratio of 
150:1 (ml g−1), and the mixtures were shaken for 18 h at 
room temperature (Cade-Menun and Preston 1996; Feng 
et al. 2016b). The extracting solutions were centrifuged 
(8000 × g) for 30 min, and filtered through 0.45-μm glass-
fiber filters (Whatman GF/C). Extractable total phosphorus 
(ETP) after digestion and free molybdate reactive phos-
phorus (MRP) were measured using the molybdenum blue 
method (He and Honeycutt 2005). Extractable organic phos-
phorus (EOP) was calculated by the difference between ETP 
and MRP. The remaining extracts were freeze-dried for solu-
tion 31P NRM spectroscopy analysis.

Percentages of carbon (C) and nitrogen (N) in algae were 
determined by use of an elemental analyzer (Elementarvario 
macro EL, Germany). Total phosphorus (TP) and inorganic 
phosphorus (Pi) were determined by the SMT method 
described by Ruban et al. (2001). Organic phosphorus (Po) in 
algae samples was calculated by the difference between TP 
and Pi. There were three replications for extraction of P and 
chemical analysis. Data were checked for deviations from 
normality and homogeneity of variance before performing 
statistical analyses.

31P NMR analysis

A 100-mg sample of freeze-dried algal extracts was ground, 
and then redissolved in 1 ml 1 mol l−1 NaOH + 0.1 mol l−1 
EDTA and 0.2 ml D2O. After ultrasonication for 30 min and 
equilibration for 5 min, 2% (v/v) of bicarbonate buffered 
dithionite (0.11 mol l−1 NaHCO3 + 0.11 mol l−1 Na2S2O4) 
was added to the extract to reduce interference from para-
magnetic ions, such as Fe and Mn (He et al. 2009; Giles 
and Cade-Menun 2014). The pH of the supernatant solution 
was adjusted using 10 mol l−1 NaOH to ensure a pH > 12. 
The supernatant solution was centrifuged (8000 × g) for 
30 min and transferred to a 5-mm NMR tube. Solution 31P 
NMR spectra were acquired at 24 °C on a Bruker AVANCE 

400 MHz spectrometer at a 31P frequency of 161.98 MHz, 
using a 90° pulse, a 5 s relaxation delay and a 0.21 s acqui-
sition time, similar to the parameters used in Feng et al. 
(2016b). The scan time for each sample was more than 15 h. 
Peak areas were calculated by integration and completed 
using MestrelabMNova v.10.

Spiking experiments

The peak of specific monoesters P  forms (i.e., glu-
cose 6-phosphate, riboncleotides, α-glycerophosphate, 
β-glycerophosphate, myo-inositol hexaphosphate) needs to 
be confirmed with spiking experiments (Fig. 4). Methods for 
identifying specific P forms in NMR spectra of soil and other 
environmental samples are well-established and have been 
used for many years (Smernik and Dougherty 2007; He et al. 
2011; McDowell and Hill 2015), combined with P com-
pound libraries developed by Turner et al. (2003); Doolette 
et al. (2009) and Cade-Menun (2015). Standard samples of 
monoesters P were purchased from Sigma-Aldrich. Spiked 
samples were analyzed by 31P NMR as described above. 
Monoesters P compounds were identified by their chemical 
shifts, with the orthophosphate peak in all spectra stand-
ardized to 6.0 ppm. Spectral processing was done using 
MestReNove software version 9.0.1 (MestReNove Research 
SL).

Results and analysis

Nutrients (C, N and P) in debris of algae

Composition of C, N and their ratios in debris of algae are 
shown in Table 1. Percentages of C ranged from 31.5 to 
50.3% with a mean value of 41.9% in the algae samples 
from Chao Lake. Content of N was 5.2–7.8% with a mean 
value of 6.4%. Both contents of C and N of algae was greater 
than those of aquatic macrophytes, which has been widely 
reported previously (Zhong et al. 2012; Qu et al. 2013, Feng 
et al. 2016a). The ratio of C:N was a good predictor of deg-
radation in algae and aquatic macrophytes with a lower ratio 
of C:N for material more readily degradation (Reitzel et al. 
2006). In this study, the ratios of C:N in algae from the west-
ern lake (7.1 ± 0.3) were higher than those of the eastern lake 
(6.4 ± 0.3), suggesting higher lability of the algal debris of 
the eastern lake. The ratio of C:N of aquatic macrophytes 
(average 12.9) (Feng et al. 2016a) was greater than that of 
algae in Chao Lake (average 6.7) (Table 1). Therefore, the 
algae decomposed more easily than aquatic macrophytes in 
the same lake. This was also consistent with the results of 
previous studies (Liu et al. 2016).

Contents of TP in debris of algae ranged from 2671 
to 5385  mg  kg−1 dry mass (dm) with a mean value of 
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3936 mg kg−1. The greatest concentration of TP in debris 
of algae was observed in sample C6. This may be because 
of two major inflowing rivers (e.g., the Zhe gao river and 
Shuang qiao river) with heavy nutrition inputs (Tang et al. 
2015). Contents of TP in the surface sediments from Chao 
Lake only ranged from 420 to 1090 mg kg−1 with a mean 
value of 687 mg kg−1 (Zhang and Xing 2013). Content of 
TP in debris of algae from Chao Lake was approximately 5 
times higher than TP in surface sediments. Therefore, dead 
algae-derived P might be an important source of bioavail-
able P for repeated algal blooming in eutrophic lakes such 
as Chao Lake. Concentration of Po in these algal samples 
ranged from 2107 to 4136 mg kg−1with a mean value of 
2783 mg kg−1. The greatest concentration of Po was also 
observed in the heavily polluted region (i.e., sample C6). The 
proportion of Po in algae of the western lake (78.3% ± 2.6%) 
was higher than that in the eastern lake (64.7% ± 1.4%). The 
mean ratio of Po/TP of the six algal samples was 69.2% in 
Chao Lake (Table 1). This value was greater than that of 
algae from Tai Lake (mean ratio of Po/TP 57.8%) (Feng et al. 
2016b). The previous studies reported that Po could be con-
verted to bioavailable P (e.g., HPO4

2−) for algae blooming 
through a series of redox-driven solubilization reactions and 
phosphatase-mediated hydrolytic processes (Wang and Pant 
2010; Zhu et al. 2015). Thus, we believed that Po in debris 
of algae from Chao Lake possessed larger bioavailability 
potential than algae from Tai Lake per their difference in 
Po/TP ratios.

NaOH–EDTA extractable P from algae

In this study, contents of NaOH–EDTA extractable TP 
ranged from 1292 to 2774 mg kg−1, with an extraction 

efficiency of 40.5–78.3%, and contents of extractable Po 
from algae ranged from 351 to 1141 mg kg−1, with an extrac-
tion efficiency of 13.8–54.2% (Table 1). The recoveries of 
Po in debris of algae from Chao Lake were lower than those 
with pure algae such as Microcystis, Chlorella vulgaris, and 
Sprilinaplatensis (Feng et al. 2016a). However, the extrac-
tion efficiencies of Po of algae from Chao Lake were similar 
to those of particulate P from Tai Lake (23–56%) (Bai et al. 
2017) and of sediments from Haihe River (30–73%) (Zhang 
et al. 2017). The extraction efficiency of TP from algae 
from Chao Lake was similar to that of soils and sediments 
(49–83%) (Xu et al. 2005; Tang et al. 2015). Multiple-step 
extractions (e.g., additional or sequential HCl extraction) 
(He et al. 2008; Cade-Menun 2015; Zhu et al. 2016; Liu 
et al. 2017) seem needed to increase the P recovery from 
these algal samples.

Solution 31P NMR spectra of NaOH–EDTA extracts 
of algae

Eight main P species including inorganic P species 
(orthophosphate and pyrophosphate) and Po species 
(five monoesters P and diesters P) were identified in the 
NaOH–EDTA extracts of the six algal samples by solution 
31P NMR (Fig. 2; Table 2). The peak of orthophosphate 
was at 6.00 ppm in the 31P NMR spectra, monoesters P was 
at 3.33–5.49 ppm, diesters P was at −0.69 to −0.31 ppm, 
and pyrophosphate was at −4.21 to −4.12 ppm (Fig. 2). 
The sum of orthophosphate and monoesters P in ETP 
accounted for more than 93% of ETP (Table 1; Fig. 3b). 
With the peak of orthophosphate as the largest signal in 
these 31P NMR spectra. The content of orthophosphate 
was between 615.1 and 1331.7 mg kg−1, and accounted 

Table 1   Contents of C, N, and P in algae and their NaOH–EDTA extraction efficiency in Chao Lake

ETP extractable total phosphorus, EOP extractable organic phosphorus
a Mean ± standard deviation (n = 3)
b Values in brackets show the percentage of ETP, EOP in NaOH–EDTA extracts to TP and Po in the unextracted algae powders, respectively

Samples Coordinates Original algae powders NaOH–EDTA extract algae samples

C (%) N (%) C:N TP(mg kg−1) Po(mg kg−1) Po/TP(%) ETP(mg kg−1) EOP(mg kg−1)

C1 31°38′3.52″E, 
117°21′16.74″N

44.8 ± 2.5a 6.7 ± 0.5 6.7 ± 0.3 4173 ± 516 3372 ± 126 80.8 ± 1.6 1864 ± 126(44.7)b 785 ± 124(23.3)b

C2 31°34′3.50″E, 
117°24′51.80″N

39.5 ± 0.6 5.3 ± 0.8 7.5 ± 0.2 4059 ± 125 3072 ± 432 75.7 ± 3.5 1757 ± 214(43.3) 464 ± 52(15.1)

C3 31°30′9.64″E, 
117°28′56.52″N

38.3 ± 1.8 5.4 ± 0.2 7.1 ± 0.4 3787 ± 256 2536 ± 59 67.0 ± 2.5 1572 ± 56(41.5) 351 ± 98(13.8)

C4 31°27′56.84″E, 
117°34′50.00″N

31.5 ± 3.5 5.2 ± 0.1 6.1 ± 0.1 2671 ± 198 1476 ± 123 55.3 ± 1.4 1292 ± 89(48.4) 567 ± 15(38.4)

C5 31°33′27.70″E, 
117°36′46.18″N

50.3 ± 2.9 7.8 ± 0.8 6.5 ± 0.4 3543 ± 112 2107 ± 78 59.5 ± 0.9 2774 ± 21(78.3) 1141 ± 215(54.2)

C6 31°36′10.25″E, 
117°47′38.55″N

46.9 ± 4.6 7.8 ± 0.7 6.0 ± 0.2 5385 ± 290 4136 ± 19 76.8 ± 0.8 2183 ± 51(40.5) 1066 ± 164(25.8)
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for 41.5–54.0% of ETP (Table 1; Fig. 3). Polyphosphates 
were not detected in any algae of Chao Lake.  

Monoesters P comprised the largest Po fraction with 
NaOH–EDTA extracts, and accounted for 48.4% (average) 
in ETP (Table 2; Fig. 3b). Through the spiking experi-
ments (Fig. 4), the peak at 4.88 ± 0.02 ppm was assigned 
to α-glycerophosphates and the peak at 4.50 ± 0.02 ppm 
was assigned to β-glycerophosphates, based on Turner 
and Richardson (2004) and Doolette et al. (2009); the 
percentages of α- and β-glycerophosphates in ETP were 
3.4% (65.5 mg kg−1) and 22.6% (432.7 mg kg−1), respec-
tively. β-glycerophosphates were the largest component of 
monoesters P. The peak at 4.32 ± 0.01 ppm was assigned 
to ribonucleotides (He et al. 2011) and the percentage of 
ribonucleotides in ETP was 10.6% (218.2 mg kg−1). The 
peak at 5.12 ± 0.01 ppm was assigned to glucose 6-phos-
phate (Cade-Menun 2015), the percentage of which in ETP 
was 1.9% (38.7 mg kg−1). In addition, a few of the peaks 
in the monoesters P  region were unidentified, because 
chemical shifts were strongly influenced by subtle differ-
ences among samples for viscosity, pH, salts and paramag-
netic ions (Young et al. 2013; Abdi et al. 2014; He et al. 
2011; Giles et al. 2015). Unidentified monoesters P are 
defined as ‘other monoesters P’ in this study. These other 
monoesters P accounted for 9.9% of ETP in algae of Chao 
Lake (Table 2).

Pyrophosphate was detected in most samples except the 
sample C1, which is consistent with a number of other stud-
ies (Bedrock et al. 1995; Mahieu et al. 2000; He et al. 2011). 
In other literature, polyphosphates and pyrophosphate were 
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Fig. 2   Solution 31P NMR spectra of NaOH–EDTA extracts of algae 
in Chao Lake
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detected in some samples, but not necessarily (Busato et al. 
2005; Feng et al. 2016b).

Discussion

Identification of inositol hexaphosphate (IHP) 
in algae of Chao Lake

The inositol hexaphosphate (IHP) stereoisomers (scyllo-, 
myo-, chiro-, neo-IHP) were important monoesters P com-
ponents in many environmental samples (Turner et al. 
2012; Cade-Menun 2015). Each of these compounds 
contains six phosphates, and the conformation of those 
phosphate groups causes them to have multiple peaks in a 
single spectrum, in an arrangement specific to each com-
pound. The only exception is scyllo-IHP, which has one 
peak for the six phosphates; the peak at 3.55 ± 0.02 ppm 
was assigned to scyllo-IHP, based on Turner and Richard-
son (2004) and Doolette et al. (2009). None of the spectra 

shown in Fig. 2 have a peak at 3.55 ppm, so the scyllo-
IHP was not present in algae of Chao Lake. Myo-IHP has 
four peaks in a 1:2:2:1 arrangement (with respect to peak 
areas), with peaks at 5.79 ± 0.01, 4.88 ± 0.01, 4.55 ± 0.01 
and 4.42 ± 0.01 ppm (in Fig. 4e). Three of these peaks 
were not present in algae samples in Chao Lake (Fig. 2), so 
myo-IHP was not present in algae of Chao Lake. The fact 
that myo-IHP had not been observed in algae in a previous 
study is consistent with the observation of this study (Feng 
et al. 2016a). For chiro-IHP [in either the 4 equatorial/2 
axial (4e/2a) conformation or the 2e/4a conformation], 
three peaks must be clearly visible, in a 2:2:2 arrange-
ment, and the diagnostic peaks for each are at 6.2–6.5 ppm 
(Cade-Menun 2015); however, none of the spectra shown 
in Fig. 2 have any peaks between 6.0 and 7.0 ppm, so 
these compounds were not present in algae of Chao Lake. 
In addition, neo-IHP requires two peaks to be present, in 
a 4:2 arrangement, so that the peak at 6.4 ± 0.01 ppm is 
twice as large as the one at 4.3 ± 0.01 ppm. Given that 
there were no peaks between 6.0 and 7.0 ppm, it can be 
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assumed that neo-IHP was not present in algae of Chao 
Lake.

Degradation behaviors of diesters P in algae of Chao 
Lake

Apart from monoesters P, other important Po compounds, 
diesters P, were detected in some algae samples. The con-
centration of diesters P was generally low (mean 0.63% of 
ETP), compared to other Po fractions, and only detected in 
samples C4, C5 and C6 (9.2–61.6 mg kg−1).

It is well established that some diesters P such as phos-
pholipids and RNA can degrade to monoesters P [e.g., α-,β-
glycerophosphates (phospholipids) and various monophos-
phates (e.g., nucleotides) when analyzed at the high pH 
required for good peak separation in 31P NMR spectra]
(Turner et al. 2003; Doolette et al. 2009; He et al. 2011; 
Schneider et al. 2016). The degree of degradation will vary 
depending on the length of NMR experiment and other 
factors (Cade-Menun and Liu 2014; Cade-Menun 2015; 
Feng et al. 2018). It was essential that these degradation 
peaks were identified and quantified, in order to determine 
the correct concentrations of monoesters P and diesters 

P (Young et al. 2013; Vincent et al. 2013). Therefore, the 
corrected total monoesters P and corrected total diesters 
P were those corrected by moving the percentages of α- and 
β-glycerophosphates and nucleotides from monoesters P to 
diesters P. When uncorrected, the total monoesters P were 
significantly higher than the total diesters P, but the reverse 
was true for the corrected values.

Eutrophication and algal blooming 
versus biogeochemical cycling of algae‑derived P 
in Chao Lake

Based on the results in this study, we were able to think 
further about the biogeochemical cycling of P driven by 
algal blooming in Chao Lake. The TP of algae-derived bio-
mass loading was 10.94 × 103 kg in Chao Lake (Li et al. 
2015). With the Po content in algae determined in this 
study (Table 1), we estimated the Po biomass of algae to 
be approximately 7.57 × 103 kg in Chao Lake. In previous 
research (Feng et al. 2016b) with Tai Lake samples, we esti-
mated that approximately 32.7–41.3% of extractable Po from 
algae has the potential for phosphatase hydrolysis to soluble 
orthophosphate which can be released into the water body. 

Fig. 4   Solution 31P NMR spec-
tra of monoesters P standard 
compounds (a–e) and C1 algal 
sample in Chao Lake (f)
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Thus, in the case of Chao Lake, this bioavailable P would 
be 2475–3126 kg in algae and would be released into the 
water and promote repeated algal blooms in Chao Lake if 
not appropriately removed naturally or artificially. This con-
clusion indicated that decomposition of algal debris would 
be a key factor in regeneration of bioavailable P for life in 
eutrophic lakes, even when external P is excluded. It is there-
fore necessary to remove algae debris from eutrophic lakes 
to control the release of P from internal P cycling and the 
phenomenon of eutrophication of lakes.

Conclusion

This research used solution 31P NMR to provide insights into 
the P species and distribution of P in algae of the heavily 
polluted Chao Lake. Data derived from this study showed 
that the eutrophic lake algae have accumulated remarkable 
amounts of Pi and Po. The proportion of Po in algae ranged 
from 55.3 to 80.8% with a mean of 69.2% in Chao Lake.

Eight compounds P were detected in the NaOH–EDTA 
extracts of algal samples by 31P NMR. The sum of 
orthophosphate and monoesters P in ETP was greater than 
93% of algal P. Our observations implied that the release of 
P induced by the decomposition of algae debris could be a 
potential source of bioavailable P in aquatic systems of Chao 
Lake even without any more external P input. Thus, recy-
cling of the potential bioavailable P in algae might be the 
mechanism of repeated algae blooming in eutrophic Chao 
Lake. Remediation of the lake requires a strategy to remove 
the algal biomass P effectively.
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