# 从矿物粉晶表面反应性到矿物晶面反应性 ——以黄铁矿氧化行为的晶面差异性为例<sup>\*</sup>

何宏平<sup>1,2,3</sup> 鲜海洋<sup>1,2</sup> 朱建喜<sup>1,2</sup> 谭伟<sup>1,2</sup> 梁晓亮<sup>1,2</sup> 陈锰<sup>1,2</sup> HE HongPing<sup>1,2,3</sup>, XIAN HaiYang<sup>1,2</sup>, ZHU JianXi<sup>1,2</sup>, TAN Wei<sup>1,2</sup>, LIANG XiaoLiang<sup>1,2</sup> and CHEN Meng<sup>1,2</sup>

1. 中国科学院矿物学与成矿学重点实验室,中国科学院广州地球化学研究所,广州 510640

2. 广东省矿物物理与材料研究开发重点实验室,中国科学院广州地球化学研究所,广州 510640

1. CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

 Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

3. University of Chinese Academy of Sciences, Beijing 100049, China 2018-09-08 收稿, 2018-11-13 改回.

# He HP, Xian HY, Zhu JX, Tan W, Liang XL and Chen M. 2019. Perspective of mineral reactivity from surfaces to crystal faces: A case study on the oxidation behavior differences among various crystal faces of pyrite. *Acta Petrologica Sinica*, 35 (1):129-136, doi:10.18654/1000-0569/2019.01.09

Abstract Almost all geochemical reactions occurring in the Earth system start at mineral surfaces or mineral-water interfaces. To reveal the nature of surface reactivity, the surface structure of minerals needs to be investigated, which control their surface reactivity. However, due to the limitation of experimental techniques, most studies on the physical and chemical properties of mineral surfaces were mainly carried out by using mineral powders as studying materials. Despite that the using of mineral powder is widely accepted in many case studies, such as the dissolution and precipitation of silicate and carbonate minerals, such methods based on mineral powder still have certain deficiencies for the investigation of mineral surface reactivity. Surfaces with high energy, which can enhance their surface reactivity, will be produced during sample preparation by crushing or grinding. Thus, the obtained experimental results may lead to an overestimation of geochemical reaction in comparison to real situations. Based on the perspective of structure dependent surface reactivity, this study makes up the lack for understanding the rate and mechanism of pyrite oxidation and provides new insights into the oxidation mechanism. Our study demonstrates that the wide range of pyrite oxidation rates reported in literatures is resulted from the prominent surface reactivity differences among different crystal faces. In these reaction systems, water molecules act as both reactant and catalyst for electron transfer in the oxidation process and also is the core substance in the reactions. These understandings have clarified the importance of the surface reactivity differences among different crystal faces. The present study suggests that, to reveal the real geochemical processes, we should focus on the reactivity of certain crystal faces with high accuracy rather than of traditionally concerned powder surfaces. Such approaches, based on the perspective of crystal face reactivity, could provide fundamental knowledge for constructing accurate geochemical models.

Key words Pyrite; Crystal face; Reactivity; Oxidation rate; Oxidation mechanism

摘 要 地球系统中各种矿物相的物理化学反应大多是从矿物表面或界面开始的。要揭示矿物表面反应性的本质,就需要从控制其反应性的表面结构入手。由于实验条件的限制,绝大多数关于矿物表面物理化学性质的研究主要采用粉晶作为研究对象。尽管粉晶方法在研究诸如硅酸盐、碳酸盐溶解和沉淀结晶等过程中被普遍采用,但这种基于矿物粉晶的研究方法 还是有一定的不足。因为形成粉晶的破碎研磨过程会导致晶体高能面的出现,高能面所具有的高活性可能会加速其反应过

<sup>3.</sup> 中国科学院大学,北京 100049

<sup>\*</sup> 本文受国家自然科学基金项目(41573112)和国家外专局"创新国际团队项目"(20140491534)联合资助.

第一作者简介:何宏平,男,1967年生,研究员,主要研究方向:矿物表界面物理化学、粘土矿物学,E-mail: hehp@gig.ac.cn

程,应用于地球化学反应的计算结果就可能高估了实际的地球化学反应速率。本研究以黄铁矿表面氧化反应的晶面差异性 为例,从晶面结构制约反应性的角度出发,重新审视了黄铁矿氧化的相关问题,弥补了传统"粉晶研究"中对黄铁矿氧化速率 和氧化机理认识的缺陷。黄铁矿宽范围的氧化速率实测值很可能是由不同晶面间较大的反应性差异导致;水在黄铁矿的氧 化过程中同时扮演着传递电子的催化剂和反应物的角色,也是黄铁矿氧化反应速控步(rate-limiting step)的核心物质。这些认 识首次明确了黄铁矿不同晶面反应性差异的重要性,并提示我们应将传统表面矿物学的研究推向更为精确的晶面矿物学水 平。这一从晶面角度考察发生在矿物表面的地球化学反应的研究方法可为构建更为精确的地球化学模型提供理论基础。 关键词 黄铁矿;晶面;反应性;氧化速率;氧化机理

中图法分类号 P574; P578.295

地球环境是一个动态的物理化学系统,而该系统中可能 引起各种矿物相变化的物理化学反应过程大都开始于矿物 的表面或界面(Putnis, 2014)。无论是在单个矿物晶体上还 是它们的各类集合体中,各种发生于矿物表面的吸附、离子 交换、电子转移、沉淀、溶解、固溶体形成、水解和聚合等化学 反应,或是矿物晶核发育、生长和消融,以及元素富集(成矿) 与分散(环境污染)等地球化学过程,实际上主要发生在包绕 于矿物颗粒体相外的各个晶面上。

自然界中,绝大多数矿物颗粒的真实表面实际上因风 化、冲蚀及构造应力、剪切破碎等地质作用而由数量不等、对 应于不同米勒指数的晶面包绕所组成的。其中,既可能包含 能够形成单形的低米勒指数晶面,又可能是包含高米勒指数 的任意破裂面,或具较大面网密度的矿物解理面。这些矿物 颗粒的实际表面由于表层原子排列截断、重构、弛豫、表面羟 基化等等因素的影响,形成了不同于晶体相内部周期性结构 的特殊面网,在结构上与内部面网的原子结构和配位环境截 然不同,因而会表现出特殊的物理化学性质。

已有研究表明,矿物不同晶面的结构及表面物理化学性 质会有很大差异(索莫杰, 1991)。由于制样条件等的限制, 目前关于矿物表面物理化学性质的研究大多还是采用矿物 粉晶作为研究对象,例如,传统的矿物-水界面反应性多以机 械粉碎至一定粒径的矿物粉末为研究对象。对于这些经过 破碎的矿物颗粒而言,无论是矿物谱学性质还是宏观表面化 学反应性的研究,其结果通常只是众多矿物颗粒中无数组晶 面性质的总体加和或平均。由于不同矿物各向异性的差异 及其解理特性的不同,各组晶面出现的几率难以统计区分。 这种以粉晶为研究对象的研究过程无疑很难获得各个晶面/ 解理面的准确结构及其反应性信息,导致对相关地球化学过 程的认识和理解可能存在局限性。对具有极完全、完全解理 的矿物而言,在机械外力的破碎过程中保留下来的低能解理 面较多,因而在某种程度上能够反映实际的地球化学过程; 而对于中等、不完全、极不完全解理的矿物,在实验过程中, 对样品的破碎加工等处理均可能导致被测样品形成较多具 有高反应活性的高能面(断口),使得测定结果"虚高",并高 估某些重要矿物表面的反应速率。

自然界中大部分的矿物-水界面反应发生在天然矿物的 稳定(低能)晶面上。从低能晶面角度研究矿物表/界面反应 性可以更为准确、深入地了解矿物表面发生的地球化学反应 过程。本研究以笔者团队近期开展的黄铁矿不同晶面的反应性研究为例(Zhu et al., 2018),揭示了黄铁矿{100}、 {210}、{111}三个低能晶面的微观结构及其在不同湿度条件下的晶面氧化行为的差异,阐明了晶面结构制约黄铁矿氧化的机理,对理解复杂的地球化学过程与机制具有极其重要的意义。

# 1 "粉晶研究"在处理黄铁矿氧化问题上的 局限性

黄铁矿氧化过程在环境科学和地球化学领域颇受关注, 因为它不仅在形成酸性矿山废水(Acid mine drainage, AMD) (Ouyang et al., 2015; Blasco et al., 2016)和湖底沉积物氧 化酸化方面具有重要的环境意义,而且它也是全球硫循环中 的一个重要环节(Hurtgen, 2012; Rickard et al., 2017)。因 此,前人在这方面曾做过大量研究,其中,有关黄铁矿氧化研 究的核心问题是氧化速率和氧化机理。

表1列出了文献中报道的黄铁矿在潮湿空气中氧化的 速率。由表可以看出,前人对黄铁矿氧化速率的测定值大相 径庭,不同文献中报道的反应速率跨度超过两个数量级。如 此宽泛的反应速率,在相应的地球化学进程或环境评估过程 中,很难做出准确判断和估算。

黄铁矿的氧化过程比较复杂,既涉及 Fe 元素的氧化又 涉及 S 元素的氧化,但由于 S 元素的价态多变,增大了人们 对黄铁矿氧化机理认识的难度。目前,关于黄铁矿的氧化过 程可大体由如下两个总反应式进行描述(Nordstrom and Southam, 1997):

 $\text{FeS}_2 + 7/2O_2 + H_2O \rightarrow \text{Fe}^{2+} + 2SO_4^{2-} + 2H^+$  (1)

 ${\rm FeS}_2 + 14{\rm Fe}^{^{3}+} + 8{\rm H}_2{\rm O} {\rightarrow} 15{\rm Fe}^{^{2}+} + 2{\rm SO}_4^{^{2}-} + 16{\rm H}^+ \eqno(2)$ 

尽管已有大量研究专注于黄铁矿的氧化机理(Chandra and Gerson, 2010),其中包括有精心设计的动力学实验(Jerz and Rimstidt, 2004; Osborne *et al.*, 2010; Sun *et al.*, 2015) 和一些原位测试(Nesbitt and Muir, 1994; Guevremont *et al.*, 1998; Zhao *et al.*, 2010; Chandra and Gerson, 2011),但黄铁 矿的氧化机理本质仍不清楚。比如,Morth and Smith (1966) 认为,黄铁矿氧化的速控步(rate-limiting step)为由氧气解离 所形成的活化配合物的分解作用,他们仅将水作为反应媒介 而不是一种反应物。采用 XPS、UPS、STM 以及蒙特·卡洛

#### 表1 文献中报道的黄铁矿在潮湿空气中氧化的速率

Table 1 Oxidation rates of pyrite surfaces in humid air reported in the literatures

| 速率 (mol O <sub>2</sub> /m <sup>2</sup> s)              | 气氛                        | $T(^{\circ}\mathbb{C})$ | 考察物种                |                                            |
|--------------------------------------------------------|---------------------------|-------------------------|---------------------|--------------------------------------------|
| 10 <sup>-6.5</sup>                                     | 空气                        | N/A                     | SO4 <sup>2-</sup>   | Brayley (1960)转引自 Jerz and Rimstidt (2004) |
| 10 <sup>-7.7</sup><br>10 <sup>-7.2</sup>               | 空气<br>100% O <sub>2</sub> | 25                      | 02                  | Morth and Smith (1966)                     |
| 10 <sup>-7.4</sup>                                     | 空气                        | 25                      | SO4 <sup>2-</sup>   | Rogowski and Pionke (1984)                 |
| 10 <sup>-8.7</sup>                                     | 空气                        | 23                      | SO4 <sup>2-</sup>   | Nicholson et al. (1988)                    |
| 10 <sup>-5.7</sup> (表面速率)<br>10 <sup>-8.7</sup> (体相速率) |                           | 25                      | $\mathrm{SO_4}^2$ - | Hammack and Watzlaf (1990)                 |
| 10-7.0(初始速率)                                           | 空气                        | 25                      | 02                  | Jerz and Rimstidt (2004)                   |
|                                                        |                           |                         |                     |                                            |

(Monte Carlo)模拟方法,Eggleston *et al.* (1996)认为 Fe<sup>2+</sup>和 Fe<sup>3+</sup>之间的循环是黄铁矿氧化过程中的一个重要特征。Jerz and Rimstidt (2004)通过测量含氧气和黄铁矿的反应器与参 比反应器的气压差,认为空气中氧分压是控制黄铁矿氧化速 率的主要因素。

为了 厘清 黄铁矿 的 氧化 过程, Rimstidt and Vaughan (2003) 详细描述了 黄铁矿 氧化过程的可能反应。他们将黄铁矿的氧化看成发生在 Fe 和 S 位上的电化学反应, Fe 位为 阴极, S 位为阳极, 且总反应的速控步由阴极 Fe 位的反应所控制。除此之外, 近期的 DFT 计算表明, 黄铁矿氧化的速控步涉及两种表面羟基的形成, 也就是说速控步与水有关(Dos Santos et al., 2016)。由此可见, 已有的对黄铁矿氧化机理的解释众说纷纭, 且部分观点是相互对立或矛盾的, 特别是对于水在黄铁矿氧化过程中所起的作用还不明确。导致这一现状的一个重要原因是很多研究结果只是基于黄铁矿的粉晶实验, 或仅仅是黄铁矿 {100}一种晶面的理论计算与实验数据, 没有考虑到黄铁矿晶面反应的差异性问题。

# 2 黄铁矿结晶习性与典型低能晶面的稳 定性

黄铁矿广泛分布于三大岩类中,常以各种单形晶或聚形 晶出现。砂川一郎(Sunagawa, 1957)通过对日本花冈矿山的 66 种黄铁矿单形的测量发现,黄铁矿的三种主要单形出现频 率高低顺序依次为立方体{100}、五角十二面体{210}、八面 体{111}。陈光远等(1987)通过对胶东三县四个金矿区 2495 颗黄铁矿晶体中单形出现频率统计也发现类似规律,即 在单形晶体中,黄铁矿均由{100}、{210}、{111}单形组成, 相应的出现频率比值为224 : 42.8 : 1,且94.74%的聚形 晶均是由这三种单形组合而成。可见,黄铁矿在自然界的结 晶习性为立方体{100}、八面体{111}、五角十二面体{210} 三种单形晶及由这三种单形构成的不同聚形晶(图1)。

黄铁矿在自然界出现的单形晶频率与前人理论研究(Hung et al., 2002a, b; Alfonso, 2010)获得的黄铁矿最稳定的三种晶面是一致的,即{100}、{210}、{111}。关于黄铁矿



图 1 黄铁矿的常见结晶习性(据 Murowchick, 1985)

Fig. 1 Common pyrite crystal habits (after Murowchick, 1985)

这三组晶面稳定性的研究已有大量的文献报道。文献中黄 铁矿不同晶面的表面能数据详见表 2。综合这些数据来看, 文献已报道的四个晶面的稳定性顺序为: $|100\rangle > |111\rangle >$  $|210\rangle > |110\rangle$ 。这一稳定性顺序均是在分析具有化学计量 比的表面上进行的,难以反映实际情况下真实存在的表面结 构稳定性。为解决这一问题,Alfonso(2010)考察了这些晶面 所有可能的原子终止面,并计算了这些面在不同的硫分压条 件下的表面能(图 2)。不难发现,在不同硫环境下发育的最 稳定黄铁矿晶面为 $|100\rangle$ -S、 $|111\rangle$ -3S和 $|210\rangle$ -2S'。除  $|100\rangle$ -S为符合 FeS<sub>2</sub>化学计量比的黄铁矿表面外,其余两个 面均是富硫表面。这与在地质体中和模拟实验中观察到的  $|111\rangle$ 和 $|210\rangle$ 常产出于硫逸度较高的环境一致 (Murowchick, 1985;蔡元吉, 1990)。因此,本研究以黄铁矿  $|100\rangle$ 、 $|210\rangle$ 、 $|111\rangle$ 面为研究对象,旨在考察不同晶面的氧 化反应性异同。

#### 3 黄铁矿典型晶面在空气中的氧化动力学

本文以天然立方体{100}、八面体{111}、五角十二面体



图 2 计算获得的黄铁矿不同晶面的表面能随硫化学势 的变化趋势(据 Alfonso, 2010)

图上方的横坐标表示在 T = 300、600 和 900K 条件下的 S<sub>2</sub> 蒸汽压

Fig. 2 Calculated surface free energies of various pyrite surfaces as functions of the change in S chemical potential (after Alfonso, 2010)

Corresponding  $\mathrm{S}_2$  pressure axes at  $T=300\,,\ 600\,,\ \mathrm{and}\ 900\mathrm{K}$  are included

#### 表 2 已报道的黄铁矿不同晶面的表面能(J/m<sup>2</sup>)

Table 2 Summary data about the reported surface energy of different crystal faces of pyrites  $(J/m^2)$ 

| Surface                 | $\gamma_{\rm VAC}{}^a$ | $\gamma_{\mathrm{WATER}}{}^{b}$ | 文献                              |  |  |
|-------------------------|------------------------|---------------------------------|---------------------------------|--|--|
| { 100 }                 | 1.23                   | 1.13                            | 3 de Leeuw <i>et al.</i> (2000) |  |  |
|                         | 1.06                   | Cai and Philpott (200           |                                 |  |  |
|                         | 0.98                   |                                 | Stirling et al. (2003)          |  |  |
|                         | 1.06                   |                                 | Hung et al. (2002b)             |  |  |
|                         | 1.23                   |                                 | Qiu et al. (2004)               |  |  |
|                         | 1.10                   |                                 | Rosso (2001)                    |  |  |
|                         | 1.04                   |                                 | Sun et al. (2011)               |  |  |
|                         | 0.81                   |                                 | Zhang et al. (2012)             |  |  |
| $\{100\}$ "crenellated" | 3.19                   | 2.60                            | de Leeuw et al. (2000)          |  |  |
| { 110 }                 | 2.36                   | 1.66                            | de Leeuw et al. (2000)          |  |  |
|                         | 1.68                   |                                 | Hung et al. (2002b)             |  |  |
|                         | 1.72                   |                                 | Sun et al. (2011)               |  |  |
| $\{110\}$ "facetted"    | 1.97                   | 1.62                            | de Leeuw et al. (2000)          |  |  |
|                         | 1.54                   |                                 | Hung et al. (2002b)             |  |  |
| {111}                   | 1.40                   |                                 | Hung et al. (2002a)             |  |  |
|                         | 1.60                   |                                 | Rosso (2001)                    |  |  |
|                         | 1.43                   |                                 | Sun et al. (2011)               |  |  |
| {210}                   | 1.50                   |                                 | Hung et al. (2002a)             |  |  |
|                         | 1.49                   |                                 | Sun et al. (2011)               |  |  |

注:"在真空中弛豫过的表面;<sup>b</sup>在有一层水分子存在条件下的弛豫 表面

表 3 本研究所用的黄铁矿单晶样品的元素组成(wt%)

Table 3 Elemental compositions (wt%) of the single pyrite crystals used in this study

| 元素组成   | Fe     | S      | As    | Co    | Ni    | Au    |
|--------|--------|--------|-------|-------|-------|-------|
| 立方体    | 46.394 | 53.282 | —     | 0.232 | 0.071 | 0.017 |
| 八面体    | 46.541 | 53.334 | 0.050 | 0.044 | _     | 0.019 |
| 五角十二面体 | 46.362 | 53.527 | 0.024 | 0.040 | _     | 0.033 |
|        |        |        |       |       |       |       |

{210} 黄铁矿单晶作为研究对象。立方体和八面体黄铁矿单 晶样品产自西班牙 Navajun;五角十二面体黄铁矿单晶样品 产自中国湖南。这些天然黄铁矿晶体的电子探针数据(参见 表3)表明,样品中均含有少量 As、Co、Ni、Au等杂质元素,但 总含量均低于0.5%。根据本研究的最终结果发现,晶面结 构在黄铁矿表面氧化反应中起主导作用,因此本研究将杂质 元素对黄铁矿表面氧化反应的影响作为次要因素忽略,主要 考察晶面结构的影响。

氧化实验所使用的样品是从上述天然黄铁矿单晶中定 向切割加工而来。这些天然单晶采用金刚石低速锯将具有 镜面级平整的晶面部分切割成块体。切割后的样品表面采 用扫描电子显微镜(SEM)进行表面形态确认,以确保实验所 用的样品表面不存在微裂纹等可能影响实验结果的因素。 不同黄铁矿晶面的晶体学取向采用背散射电子衍射(EBSD) 进行确认。然后用这些包含{100}、{111}、{210}面的黄铁 矿块体在湿度控制的空气气氛条件下进行氧化实验,具体实 验过程可参考文献(Zhu et al., 2018)。

采用 X 射线光电子能谱(XPS)作为黄铁矿表面氧化过 程中氧化产物的检测手段,根据 XPS 谱中氧化产物和未被氧 化的物种的相对含量可以半定量地表征这些黄铁矿不同晶 面的氧化程度。图 3 中给出了黄铁矿表面上氧化产物和未 被氧化的物种之间的比值( $C_{oxidized}/C_{unoxidized}$ )与氧化时间(t) 的函数关系,总体呈现出明显的正相关关系。根据图 3 的 横、纵坐标定义可知,图 3 中的斜率  $k_{(hkl)}$ 代表了黄铁矿的平 均氧化速率。可以看出,在相同的湿度条件下,不同黄铁矿 晶面的 S 2p 和 Fe  $2p_{3/2}$ 谱学分析结果均表现出相同氧化速率 顺序,即在相对低的湿度条件( $47_{th}$ %)下, $k_{[210]} > k_{[111]} > k_{[210]}$ > $k_{[100]}$ 。

更进一步地,我们用 XPS 数据来定量表征黄铁矿的氧化 速率。根据 XPS 的分析原理, XPS 的样品检测深度(*d*)与起 飞角(*θ*)存在如下关系:

$$l = \lambda_{\rm IMFP} \cdot \cos\theta \tag{3}$$

式中, $\lambda_{IMFP}$ 为非弹性平均自由程。由于本研究采用的起飞角为0°,所以 $d = \lambda_{IMFP}$ 。对硫而言, $\lambda_{IMFP}$ 近似为2.67nm(Powell et al., 2005),即d近似等于2.67nm。假设黄铁矿表面被氧化的产物的相对含量与氧化深度(x)呈正比关系,则可以获得下式:

$$\frac{d \frac{x}{2.67 - x}}{dt} = \frac{d \frac{C_{\text{oxidized}}}{C_{\text{unoxidized}}}}{dt}$$
(4)



图 3 黄铁矿 {100} 、 {111 } 和 {210 } 面在不同相对湿度的空气中氧化过程中的 S 2p 和 Fe 2p<sub>3/2</sub> 谱中被氧化与未被氧化的物种的比值(C<sub>oxidized</sub>/C<sub>unoxidized</sub>)与氧化时间(t)的相关性曲线 (a、b)为相对湿度 47<sub>n</sub>%;(c、d)为相对湿度 98<sub>n</sub>%

Fig. 3 Plots of the concentration ratios of oxidized species to unoxidized species ( $C_{\text{oxidized}}/C_{\text{unoxidized}}$ ) vs. oxidation time (t) from S 2p and Fe  $2p_{3/2}$  XPS spectra of pyrite  $\{100\}$ ,  $\{111\}$ , and  $\{210\}$  surfaces oxidized in various relative humidities (a, b) denote the relative humidity of  $47_{rh}\%$ ; while (c, d) denote the relative humidity of  $98_{rh}\%$ 

式中,*t* 为氧化时间,单位为天;*k* 为黄铁矿晶面上被氧化与 未被氧化的物种的含量比值与时间*t*之间线性关系的斜率, 即图3中的斜率。通过数学变换,公式2可以转化为氧化深 度速率(*r*<sub>dept</sub>,单位为*nm*/天):

$$r_{\rm depth} = \frac{dx}{dt} = \frac{k(2.67 - x)^2}{2.67}$$
(5)

从式 5 可知,深度速率随氧化深度的增加而减小,且当 x达到 XPS 检测的最大深度时,深度速率则会变为零。基于图 3 中最大的被氧化与未被氧化的物种的含量比  $C_{\text{oxidized}}$ ,  $C_{\text{unoxidized}}$ ,可以估算得本研究实验的最大氧化深度约为 1.19nm。因此,式 5 所示的速率公式仅适用于氧化深度小于 1.19nm的情形。如果我们只考虑氧化反应起始阶段,即 x =0nm的时候,那么,我们便可以得到如式 5 所示的简化初始 速率公式:

$$r_{\rm depth} = 2.67k \tag{6}$$

基于黄铁矿密度(5.0g/cm<sup>3</sup>)和黄铁矿氧化的化学计量系数, 可以将深度速率(nm/天)转化为耗氧的摩尔速率(mol  $O_2/m^2s$ )。

图4中标识出了本研究获得的黄铁矿{100}、{111}、 {210} 晶面的初始氧化速率与文献中已报道的氧化速率的对 比。可以看出,前人报道的黄铁矿在潮湿空气中的氧化速率 数据在 10<sup>-8.7</sup>~10<sup>-5.7</sup> mol O<sub>2</sub>/m<sup>2</sup>s 的范围内, 而本研究获得 的黄铁矿不同晶面的速率范围为  $10^{-9} \sim 10^{-7} \text{ mol } 0,/\text{m}^2 s_{\circ}$ 根据黄铁矿不同晶面在自然界的产出频率,可以估算得黄铁 矿三种晶面的加权速率为9.84×10<sup>-9</sup>~3.08×10<sup>-8</sup> mol O<sub>2</sub>/ m<sup>2</sup>s。通过对比分析可以发现,(1)前人报道的大部分黄铁矿 在空气中的氧化速率均在本研究报道的晶面的氧化速率范 围内;(2)部分报道(Hammack and Watzlaf, 1990)的速率远 大于本研究获得的最大速率。作为一个无解理且自形程度 高的矿物,自然界中黄铁矿矿物晶体主要是由{100}、 {210}、{111}等相对稳定的低能晶面单形或它们之间的聚 形组成,所以黄铁矿粉体的氧化速率就可以看成是黄铁矿这 些低能面的统计平均数。需要指出的是,前人的数据绝大多 数是基于实验室人工粉碎研磨的黄铁矿粉末而获得,这些研 磨的矿物粉末通常是由不规则的微米级黄铁矿颗粒组成,颗 粒表面通常主要都是一些新鲜破裂面。在这些人为形成的



#### 图 4 采用晶面研究和前人采用粉末研究获得的黄铁矿 氧化速率对比

Fig. 4 Comparison of oxidation rates of pyrite observed from crystal faces in this study and from crystal powder in previous study

破裂断面中,不仅包含有低能面,也包含有一些高能面,这就 有可能导致使得所测定的氧化速率偏高。

## 4 黄铁矿氧化的晶面结构依赖性探讨

根据本研究的结果可知,在具有相同米勒指数的黄铁矿 晶面上,相对湿度越大其氧化程度越高;而在相同的湿度条 件下,{210}和{111}晶面的氧化速率是{100}晶面的 10 至 100倍,这与前人对黄铁矿{100}和{111}晶面的氧化速率的 研究结果一致(Elsetinow *et al.*,2000;Guevremont *et al.*, 1998)。然而,在相对湿度较高的条件下,{111}晶面的氧化 活性比{210}晶面更高,这是前人的研究并未曾发现的。

黄铁矿在空气中的氧化主要涉及两种反应物,即  $O_2$  和  $H_2O_0$  假设黄铁矿的氧化反应始于这两种反应物在黄铁矿 晶面上的吸附,通过对比 DFT 计算获得的吸附能与氧化速率 不难发现, $H_2O$  在黄铁矿不同晶面的吸附能绝对值大小顺序 与在相对湿度较低条件下的氧化反应速率顺序一致,即  $\{210\}(-103kJ/mol)>\{111\}(-88.91kJ/mol)>\{100\}(-35.31kJ/mol);<math>O_2$  在黄铁矿不同晶面的吸附能绝对值大 小顺序与在相对湿度较高条件下的氧化反应速率顺序一致, 即  $\{111\}(-573.50kJ/mol)>\{210\}(-469.15kJ/mol)>$   $\{100\}(-418.19kJ/mol)_0$ 

尽管我们发现了  $O_2$  和  $H_2O$  在黄铁矿表面的吸附能与 其反应速率有一定的关联,但仍然很难获知黄铁矿氧化反应 的速控步。精确的速控步需要对整个反应途径、过渡态与活 化能的详细分析,因此,本研究对于速控步相关的讨论均是 基于前人在黄铁矿 {100} 晶面获得的有限信息(Sit *et al.*, 2012; Dos Santos *et al.*, 2016)进行的。在上述文献中提出 的反应路径中, $H_2O$  在黄铁矿 {100} 晶面发生伴随电子转移 的解离反应的活化能(85.77~94.98kJ/mol)比  $O_2$  在黄铁矿 {100} 晶面发生解离的活化能(25.52kJ/mol)更高。从这一 角度上讲,伴随有电子转移的  $H_2O$  解离可以认为是黄铁矿 {100} 晶面氧化的速控步。换言之,由黄铁矿表面结构本身 性质导致的表面氧化反应性顺序应为 {210} > {111} > {100}.

黄铁矿氧化后,在表面会形成硫酸盐等氧化产物的含水 覆盖层(Jerz and Rimstidt, 2004)。因此,在形成这些氧化产 物覆盖层后,氧气就需要通过扩散的方式才能到达黄铁矿表 面参与反应。在相对低湿度条件下,氧化速率慢,氧化产物 厚度较小。氧气在 {210} 和 {111}晶面的扩散速率差别不 大,因此,反应主要受黄铁矿表面结构控制。根据黄铁矿不 同晶面的电子结构差异,这种受表面结构控制的反应速率应 该是 {210}大于 {111}。与之对应,在相对高湿度条件下,氧 化速率快,氧化产物厚度增大。因为 {111}面对氧气分子的 吸附能更低,所以氧气在 {111}表面的氧化产物覆盖层的扩 散速率比 {210}更大,因此,反应主要受氧气分子在介质中的 传质控制,所以在相对高湿度条件下获得了 {111}的反应速 率比 {210}更高。综上所述,黄铁矿在低相对湿度和高相对 湿度的氧化速率不同是由表面反应类型所决定的,前者受表 面结构控制,而后者受传质控制。

### 5 黄铁矿在空气中氧化的电子转移途径

根据上述结果与讨论,黄铁矿的不同晶面在空气中的氧化反应可以用前人的 DFT 计算(Dos Santos *et al.*, 2016)给出的两类反应进行解释。 I型反应主要涉及黄铁矿表面的 Fe(II)被 O<sub>2</sub>氧化形成 Fe(II)。这类反应的活化能较低,且需要消耗吸附在黄铁矿表面的水(Fe-OH<sub>2</sub>)。 II型反应为涉及 S = O 或 S-OH 形成的反应。这一反应过程相对 I型反应 具有更高的活化能,同时会将 I型反应生成的 Fe(II)还原成 Fe(II)。可见,Fe(II)与 Fe(II)的循环是黄铁矿氧化反应的主要特征(Eggleston *et al.*, 1996)。一个典型的 I型和 II型反应可以分别表示为:

 $\equiv \operatorname{Fe}(\ {\rm I\hspace{-.1em}I}) \operatorname{-O}_2 + \operatorname{Fe}(\ {\rm I\hspace{-.1em}I}) \operatorname{-OH}_2 {\rightarrow} \operatorname{Fe}(\ {\rm I\hspace{-.1em}I}) \operatorname{-OOH} + \operatorname{Fe}(\ {\rm I\hspace{-.1em}I}) \operatorname{-OH}$ 

(7)

$$2 \equiv \text{Fe}(\Pi) - \text{OH} + \text{Fe-S}(-I) + 2\text{H}_2\text{O} \rightarrow \text{Fe}(\Pi) - O\text{H}_2 + \text{Fe-S}(I) = 0^{2-}$$
(8)

这两类反应均可以看成与上面讨论的速控步一致。由 于Ⅱ型反应的活化能更高,所以Ⅱ型反应可以进一步被认为 速控步。Ⅱ型反应不仅涉及H<sub>2</sub>O的消耗,且H<sub>2</sub>O同时作为 中间体将电子由表面S原子转移至表面Fe原子,因此在只 考虑电子转移的情况下,H<sub>2</sub>O可以被认为是这一电子转移反 应的催化剂。

尽管可以用水作为催化剂的电子转移过程来解释这种 因黄铁矿晶面结构不同而导致其氧化反应能力不同的现象, 但上面所讨论的反应途径仅仅涉及形成 S = O/S-O,且这一 过程的 O 均是来自于 H<sub>2</sub>O,与前人的同位素标记实验结果不 符(Balci *et al.*, 2007; Kohl and Bao, 2011)。这些同位素标 记实验表明,黄铁矿氧化形成的硫酸盐中有 12.5% ~ 25% 的 O 来自于 O<sub>2</sub>。这就意味着 O<sub>2</sub> 也会参与后续的 S = O 的进一 步氧化过程。在黄铁矿的氧化过程中,除了硫酸根外,还能 检测到亚硫酸根和硫代硫酸根等。由于亚硫酸根和硫代硫酸根在空气中很容易被  $O_2$  氧化成硫酸根,因此,可以认为最终氧化产物硫酸根中来自于  $O_2$  的 O 发生在这一阶段。根据 Rimstidt and Vaughan (2003)提出的反应方程式,在黄铁矿表面形成 S(-I) = O/S(0)-OH 后可能发生如下反应:

$$= \text{Fe-S-S}(0) - \text{OH} + 5\text{Fe}(\blacksquare) - \text{OH} + 3\text{H}_2\text{O} \rightarrow$$

$$S_2\text{O}_2^{2-} + 6\text{Fe}(\blacksquare) - \text{OH}_2 \qquad (9)$$

$$\text{Fe-S-S}(0) \text{-OH} + 4\text{Fe}(\text{II}) \text{-OH} + 2\text{H}_2\text{O} \rightarrow$$

$$\begin{aligned} &\operatorname{Fe}(\ \ II\ )-\operatorname{OH}_2 + \mathrm{H} + +\operatorname{Fe}(\ \ II\ )-\mathrm{S}(-\ I\ )-\mathrm{SO}_3^{\ 2^-} \quad (10) \\ &\equiv \operatorname{Fe}-\mathrm{S}-\mathrm{S}(0)-\mathrm{OH} + 6\mathrm{Fe}(\ \ II\ )-\mathrm{OH} + 3\mathrm{H}_2\mathrm{O} \rightarrow \end{aligned}$$

$$6 \operatorname{Fe}( \ \ II \ ) - \operatorname{OH}_2 + \operatorname{H} + + \operatorname{Fe}( \ \ II \ ) - \operatorname{SO}_4^{2-}$$
(11)

$$\equiv \text{Fe-S}(-I) - S(I) = 0 + 4\text{Fe}(II) - 0\text{H} + 3\text{H}_20 \rightarrow$$

/

$$S_2 O_3^{2-} + 5 Fe(II) - OH_2$$
 (12)

$$\equiv \text{Fe-S}(-I) - S(I) = 0 + 3\text{Fe}(II) - 0\text{H} + 2\text{H}_20 \rightarrow$$

$$3Fe(\Pi) - OH_2 + H + Fe(\Pi) - S(-\Pi) - SO_3^{2-}$$
(13)  
= Fe-S(-I) - S(I) = O + 5Fe(\Pi) - OH + 3H\_2O \rightarrow

$$5 \text{Fe}(\mathbf{I}) - 0 \text{H}_2 + \text{H} + + \text{Fe}(\mathbf{I}) - S(-\mathbf{I}) - SO_4^{2} - (14)$$

上面的这些反应式可以归属于 II 型反应,形成的硫酸盐 中的氧均来自于 H<sub>2</sub>O。形成的这些硫-氧物种均为内层的配 合结构。这些内层形成的 S<sub>2</sub>O<sub>3</sub><sup>2-</sup>和 SO<sub>3</sub><sup>2-</sup>可以被空气中 O<sub>2</sub> 氧化形成硫酸根,然后脱附形成外层的硫酸根,可以表示为:

$$2SO_{3}^{2-} + O_{2} \rightarrow 2SO_{4}^{2-}$$
(15)

$$2S_2O_3^{2-} + 5O_2 \rightarrow 4SO_4^{2-}$$
(16)

由这两个反应式可以计算得这两个步骤中形成的硫酸 根中的 O 有 25% 至 62.5% 来自于 O<sub>2</sub>。由于这两个反应是直 接被 O<sub>2</sub> 氧化的,因此称之为 Ⅲ型反应。而最终形成的硫酸 盐既有来自于 Ⅱ型反应的,也有来自于 Ⅲ型反应的,因此最 终形成的硫酸盐中的氧的组成应该是 Ⅱ型与 Ⅲ型反应的加 权平均的结果。这就解释了前人的同位素标记实验中获得 的硫酸盐中 12.5% ~25% 的 O 来自于 O<sub>2</sub>。

基于上述这些讨论,本研究将黄铁矿表面的氧化反应电 子转移途径归纳成如下四步(参见图 5):

(1)表面的 Fe(Ⅱ)被 O<sub>2</sub> 氧化成 Fe(Ⅲ)-OH;

(2)表面 S(-I)被步骤(1)中形成的 Fe(Ⅲ)-OH 氧化
 形成 S(0)-OH 和 S(I) = O;

(3)S(0)-OH 和 S(I) = 0 被步骤(1)中形成的 Fe(Ⅲ)-OH氧化形成S<sub>2</sub>O<sub>3</sub><sup>2-</sup>、SO<sub>3</sub><sup>2-</sup>或SO<sub>4</sub><sup>2-</sup>;



#### 图 5 黄铁矿在空气中氧化反应的电子转移途径

Fig. 5 Summarized electron transfer routes of pyrite oxidation in air

(4) 步骤(3) 中形成的  $S_2 O_3^{2-}$ 和  $SO_3^{2-}$ 直接被  $O_2$ 氧化形成  $SO_4^{2-}$ 。

#### 6 结语

本研究通过对具有不同表面结构的黄铁矿典型低指数 晶面氧化行为的研究,从晶面结构制约其表面反应性的角度 出发,以晶面各向异性的视角重新审视了黄铁矿氧化的相关 问题。从这一新的视角出发,发现黄铁矿氧化速率和氧化机 理研究中传统"粉末研究"实验手段有明显局限性,明确了各 晶面较大的反应性差异是导致黄铁矿氧化速率宽范围的一 个重要因素,约束收窄了黄铁矿氧化速率范围。水在黄铁矿 的氧化过程中同时扮演着传递电子的催化剂和反应物的角 色,也是黄铁矿氧化反应速控步的核心物质,以此为基础我 们提出了全新的黄铁矿氧化过程全局电子转移途径。

以上研究获得的对黄铁矿不同晶面可导致的晶面反应 能力截然不同的全新认识,启示我们能够而且应该将传统的 表面矿物学工作推向更为精准、细致的晶面矿物学研究上 来。这一从晶面结构和反应性的角度考察发生在矿物表/界 面的地球化学反应行为与过程的研究方法可为构建更为精 确的地球化学模型提供理论支撑。

要实现从传统的矿物粉晶表面反应性到更为精确的矿物晶面反应性的认识转变还需要开展更为广泛和深入的工作。在未来的相关矿物表/界面物理化学研究中应更加注意理论与实践并重;在深入探究由矿物晶体各向异性导致的晶面结构差异性在制约其表面反应性的深层次机理的同时,也需要查明这种由结构异同驱使的反应性差异在各类地球化学具体过程中所扮演的角色。

谨以此文献给叶大年先生八十华诞!

#### References

- Alfonso DR. 2010. Computational investigation of FeS<sub>2</sub> Surfaces and prediction of effects of sulfur environment on stabilities. The Journal of Physical Chemistry C, 114(19): 8971 – 8980
- Balci N, Shanks III WC, Mayer B and Mandernack KW. 2007. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochimica et Cosmochimica Acta, 71 (15): 3796 - 3811
- Blasco M, Gázquez MJ, Pérez-Moreno SM, Grande JA, Valente T, Santisteban M, de la Torre ML and Bolívar JP. 2016. Polonium behaviour in reservoirs potentially affected by acid mine drainage (AMD) in the Iberian Pyrite Belt (SW of Spain). Journal of Environmental Radioactivity, 152: 60 – 69
- Cai J and Philpott MR. 2004. Electronic structure of bulk and (0 0 1) surface layers of pyrite  $FeS_2$ . Computational Materials Science, 30(3 4): 358 363
- Cai YJ. 1990. Experimental study of crystal forms of pyrite. Bull.
   Nanjing Inst. Geol. M. R., Chinese Acad. Geol. Sci., 11(2): 33
   -45 (in Chinese with English abstract)
- Chandra AP and Gerson AR. 2010. The mechanisms of pyrite oxidation

and leaching: A fundamental perspective. Surface Science Reports, 65(9): 293-315

- Chandra AP and Gerson AR. 2011. Pyrite (FeS<sub>2</sub>) oxidation: A submicron synchrotron investigation of the initial steps. Geochimica et Cosmochimica Acta, 75(20): 6239 – 6254
- Chen GY, Sun DS, Zhang L, Zang WS, Wang J and Lu AH. 1987. Morphogenesis of pyrite. Geoscience, 1(1): 60 – 76 (in Chinese with English abstract)
- de Leeuw NH, Parker SC, Sithole HM and Ngoepe PE. 2000. Modeling the surface structure and reactivity of pyrite: Introducing a potential model for FeS<sub>2</sub>. The Journal of Physical Chemistry B, 104(33): 7969 – 7976
- Dos Santos EC, de Mendonça Silva JC and Duarte HA. 2016. Pyrite oxidation mechanism by oxygen in aqueous medium. The Journal of Physical Chemistry C, 120(5): 2760 – 2768
- Eggleston CM, Ehrhardt JJ and Stumm W. 1996. Surface structural controls on pyrite oxidation kinetics: An XPS-UPS, STM, and modeling study. American Mineralogist, 81(9-10): 1036-1056
- Elsetinow AR, Guevremont JM, Strongin DR, Schoonen MAA and Strongin M. 2000. Oxidation of {100} and {111} surfaces of pyrite: Effects of preparation method. American Mineralogist, 85(3 -4): 623-626
- Guevremont JM, Elseinow AR, Strongin DR, Bebie J and Schoonen MAA. 1998. Structure sensitivity of pyrite oxidation: Comparison of the (100) and (111) planes. American Mineralogist, 83 (11 – 12): 1353 – 1356
- Hammack RW and Watzlaf GR. 1990. The effect of oxygen on pyrite oxidation. In: Proceedings of 1990 Mining and Reclamation Conference and Exhibition. Charleston: West Virginia University, 257 - 264
- Hung A, Muscat J, Yarovsky I and Russo SP. 2002a. Density-functional theory studies of pyrite FeS<sub>2</sub> (111) and (210) surfaces. Surface Science, 520(1-2): 111-119
- Hung A, Muscat J, Yarovsky I and Russo SP. 2002b. Density-functional theory studies of pyrite FeS<sub>2</sub> (100) and (110) surfaces. Surface Science, 513(3): 511 – 524
- Hurtgen MT. 2012. The marine sulfur cycle, revisited. Science, 337 (6092): 305 - 306
- Jerz JK and Rimstidt JD. 2004. Pyrite oxidation in moist air. Geochimica et Cosmochimica Acta, 68(4): 701 – 714
- Kohl I and Bao HM. 2011. Triple-oxygen-isotope determination of molecular oxygen incorporation in sulfate produced during abiotic pyrite oxidation (pH = 2 ~11). Geochimica et Cosmochimica Acta, 75(7): 1785 - 1798
- Morth AH and Smith EE. 1966. Kinetics of the sulfide-to-sulfate reaction. Am. Chem. Soc. Div. Fuel Chem., 10: 83-92
- Murowchick JB. 1985. The formation and growth of pyrite, marcasite, and cubic ferrous sulfide. The Pennsylvania State University
- Nesbitt HW and Muir IJ. 1994. X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water vapour and air. Geochimica et Cosmochimica Acta, 58(21): 4667 – 4679
- Nicholson RV, Gillham RW and Reardon EJ. 1988. Pyrite oxidation in carbonate – buffered solution. Geochim. Cosmochim. Acta, 52: 1077 – 1085
- Nordstrom DK and Southam G. 1997. Geomicrobiology of sulfide mineral oxidation. Reviews in Mineralogy, 35: 381 – 390
- Osborne OD, Pring A and Lenehan CE. 2010. A simple colorimetric FIA method for the determination of pyrite oxidation rates. Talanta, 82 (5): 1809 – 1813
- Ouyang YT, Liu Y, Zhu RL, Ge F, Xu TY, Luo Z and Liang LB. 2015. Pyrite oxidation inhibition by organosilane coatings for acid mine drainage control. Minerals Engineering, 72: 57 - 64
- Powell CJ, Jablonski A and Salvat F. 2005. NIST databases with electron

elastic-scattering cross sections, inelastic mean free paths, and effective attenuation lengths. Surface and Interface Analysis, 37 (11): 1068 – 1071

- Putnis A. 2014. Why mineral interfaces matter. Science, 343 (6178): 1441-1442
- Qiu GZ, Xiao Q, Hu YH, Qin WQ and Wang DZ. 2004. Theoretical study of the surface energy and electronic structure of pyrite  $\text{FeS}_2$  (100) using a total-energy pseudopotential method, CASTEP. Journal of Colloid and Interface Science, 270(1): 127 132
- Rickard D, Mussmann M and Steadman JA. 2017. Sedimentary sulfides. Elements, 13(2): 117 – 122
- Rimstidt JD and Vaughan DJ. 2003. Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism. Geochimica et Cosmochimica Acta, 67(5): 873 – 880
- Rogowski AS and Pionke HB. 1984. Hydrology and Water Quality on Strip-mined Lands. U.S. Environmental Protection Agency
- Rosso KM. 2001. Structure and reactivity of semiconducting mineral surfaces: Convergence of molecular modeling and experiment. Reviews in Mineralogy and Geochemistry, 42(1): 199 – 271
- Sit PHL, Cohen MH and Selloni A. 2012. Interaction of oxygen and water with the (100) surface of pyrite: Mechanism of sulfur oxidation. The Journal of Physical Chemistry Letters, 3(17): 2409 -2414
- Somorjai GA. 1991. Chemistry in Two Dimensions: Surfaces. In: Zhen KJ, Yang H, Mao WQ, Wu ZY, Wang GJ, Cui XH, Guo CX, Wu TH, Bi YL, Li MX and Ji YS (Trans.). Changchun: Jilin University Press (in Chinese)
- Stirling A, Bernasconi M and Parrinello M. 2003. Ab initio simulation of water interaction with the (100) surface of pyrite. The Journal of Chemical Physics, 118(19): 8917
- Sun HY, Chen M, Zou LC, Shu RB and Ruan RM. 2015. Study of the kinetics of pyrite oxidation under controlled redox potential. Hydrometallurgy, 155: 13 – 19
- Sun RS, Chan MKY and Ceder G. 2011. First-principles electronic structure and relative stability of pyrite and marcasite: Implications for photovoltaic performance. Physical Review B, 83(23): 235311
- Sunagawa I. 1957. Variation in crystal habit of pyrite. Report of Geological Survey of Japan, 175: 1-47
- Zhang YN, Hu J, Law M and Wu RQ. 2012. Effect of surface stoichiometry on the band gap of the pyrite FeS<sub>2</sub> (100) surface. Physical Review B, 85(8): 085314
- Zhao ZH, Zhang P, Chen YH, Yao Y, Wu YJ, Geng XH and Deng XZ. 2010. Study on oxidation of pyrite by in situ absorption spectroscopy. Spectroscopy and Spectral Analysis, 30(12): 3375 – 3378
- Zhu JX, Xian HY, Lin XJ, Tang HM, Du RX, Yang YP, Zhu RL, Liang XL, Wei JM, Teng HH and He HP. 2018. Surface structuredependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution. Geochimica et Cosmochimica Acta, 228: 259 – 274

#### 附中文参考文献

- 蔡元吉. 1990. 黄铁矿晶体形态模拟实验研究. 中国地质科学院南 京地质矿产研究所所刊, 11(2): 33-45
- 陈光远,孙岱生,张立,臧维生,王健,鲁安怀. 1987. 黄铁矿成因 形态学. 现代地质,1(1):60-76
- 索莫杰 GA. 1991. 二维表面化学. 见:甄开吉,杨洪,茂魏诠,吴志 芸,王国甲,崔相浩,郭纯孝,吴通好,毕颖丽,李敏学,稽玉 书译. 长春:吉林大学出版社