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ARTICLE

Revisiting the ca. 845–820-Ma S-type granitic magmatism in the Jiangnan
Orogen: new insights on the Neoproterozoic tectono-magmatic evolution of
South China
Teng Denga,b,c, Deru Xua,c, Guoxiang Chic, Yuhua Zhu a,b, Zhilin Wangd, Genwen Chena, Zenghua Lic,
Junling Zhanga, Tingwei Yea,b and Deshui Yua,b

aKey Laboratory of Mineral and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangzhou,
China; bUniversity of Chinese Academy of Sciences, Beijing China; cDepartment of Geology, University of Regina, Regina, Canada; dSchool of
Geoscience and Info–Physics, Central South University, Changsha, China

ABSTRACT
The Neoproterozoic tectonic evolution of the Jiangnan Orogen is controversial, with one of the
issues being whether the ca. 850–820-Ma granitoids were generated by mantle plumes or the
collision between the Yangtze and Cathaysia blocks. This paper tackles this problem by examining
the age and petrogenesis of one of the granitoids, the Getengling pluton in the central Jiangnan
Orogen, and through comparison with a regional geochronological–geochemical database com-
piled from previous studies. The Getengling pluton is characterized by high A/CNK values (~1.5),
slight negative whole-rock εNd(t) values (−2.8 to −3.4), and positive zircon εHf(t) values (0.7 ± 1.1),
suggesting S-type granite affinities with juvenile contributions. Rb/Sr, Rb/Ba, and high CaO/Na2O
ratios indicate psammitic sources with both clay-rich and clay-poor characters. These geochemical
characteristics are distinct from those of the granitoids (typically of A type) associated with mantle
plumes. The zircon laser ablation-inductively coupled plasma-mass spectrometry U–Pb age of
845 ± 4 Ma obtained in this study, together with other ca. 835–820 Ma ages of S-type granites in
the Jiangnan Orogen, indicates that the felsic magmatism in the Jiangnan Orogen lasted for ca.
25 Ma, which is longer than typical plume-related felsic magmatism. In addition, the mafic rocks in
the Jiangnan Orogen and elsewhere in the South China Block are geochemically distinct from the
coeval mantle plume-related ones in Australia and west Laurentia. In geochemical diagrams
diagnostic of tectonic settings, the Getengling pluton and other ca. 850–820 Ma intrusions plot
in the syn- and post-collisional fields, whereas the pre-850 and post-820-Ma igneous rocks plot in
the arc and within-plate settings, respectively. This sequential tectonic evolution from plate
subduction through collision to within-plate environments further supports the hypothesis that
the ca. 850–820-Ma granitoids in the Jiangnan Orogen resulted from the Yangtze–Cathaysia
collision rather than from mantle pluming.
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KEYWORDS
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1. Introduction

The Jiangnan Orogen, also called the Jiangnan Oldland,
has been widely interpreted as the collisional belt
between the Yangtze and Cathaysia blocks of the South
China Block (Li et al. 2003a; Yao et al. 2013, 2014a; Wang
et al. 2014; Xu et al. 2017). However, the timing and
evolution of the orogeny are still debatable (Li 1999;
Zhou et al. 2002; Zheng et al. 2008, 2008b; Zhao and
Cawood 2012; Yao et al. 2014a, 2015b). One group of
researchers suggested that the collision of the Yangtze
and Cathaysia blocks happened at ca. 1100–900 Ma, asso-
ciated with the global Grenville orogeny (Li et al. 1999,
2007b, 2008c; Ye et al. 2007; Yang et al. 2016; Lyu et al.
2017), whereas others considered that the assembly

occurred at ca. 860–820 Ma (Zhou et al. 2009; Zhao and
Cawood 2012; Yao et al. 2014a, 2015b).

Widespread Neoproterozoic felsic-dominated mag-
matism has been reported in the Jiangnan Orogen,
including the ca. 1000–860-Ma I-type dominated, ca.
860–820-Ma S type, and ca. 820–730-Ma A- and S-type
granites, as well as small amounts of mafic rocks (Li
2003; Li et al. 2003a; Gao et al. 2009; Wang et al.
2012c). In addition, there are several ca. 860–790 Ma
bimodal volcanic rock intervals in the Neoproterozoic
formations (Wang et al. 2008a; Wang et al. 2011b; Lyu
et al. 2017). The controversy of the timing of Yangtze–
Cathaysia collision arises from the different tectonic
interpretations for the Neoproterozoic magmatic rocks.
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According to the first model, the ca. pre-880-Ma meta-
morphic and magmatic events in the Jiangnan Orogen
were generated by the collision between the Yangtze
and Cathaysia blocks, while the post-860-Ma magmatic
rocks including the bimodal volcanic rocks were gener-
ated under a rift setting in relation to mantle plume
activities peaking at ca. 825 and ca. 780 Ma (Wang et al.
2008a, 2011b; Li et al. 2010b; Yang et al. 2016; Lyu et al.
2017). In contrast, the second model suggests that the
1000–860-Ma magmatic rocks with some having adaki-
tic signatures were generated by plate subduction,
whereas the ca. 860–820-Ma S-type granites, ophiolites,
and other associated mafic–felsic rocks are related to
collision between the Yangtze and Cathaysia blocks
(Shu et al. 2006; Wang et al. 2006; Zhang et al. 2012b,
2013a; Cawood et al. 2017), and the post-820-Ma A- and
S-type granites, bimodal volcanic rocks and other
igneous rocks resulted from re-separation of the
Yangtze and Cathaysia blocks after the first collision
(Zhou et al. 2009; Zhao and Cawood 2012; Wang et al.
2012c; Yao et al. 2014a).

One of key differences between the two models is
about the genesis of the ca. 835–820-Ma granitoids in
the Jiangnan Orogen (Li et al. 2003a; Wang et al. 2006).
The first model (referred to as the ‘plume-rift model’
hereinafter) interprets these granitoids to be formed by
mantle plume activities under an anorogenic setting,
which is consistent with the development of coeval
bimodal volcanic rocks (Li et al. 2003a; Li et al. 2008c;
Lyu et al. 2017). The second model (referred to as the
‘slab-arc model’ hereinafter), however, believes that
these granitoids resulted from collision between the
Yangtze and Cathaysia blocks, as supported by their
S-type signatures (with certain I-type characteristics)
(Wang et al. 2006; Zhao et al. 2011; Zhao and Cawood
2012). While acknowledging the geochemical character-
istics of the granitoids are atypical of those associated
with mantle plume activity (typically of A type), the
‘plume-rift model’ argued that tectonic interpretations
based on geochemical discrimination diagrams are
unreliable due to modification by mixed sources (Li
et al. 2003a, 2006; Wang et al. 2010). Thus, further
examination of the ages and petrogenesis of these
granitoids is required in order to understand the tec-
tonic setting in which they were emplaced.

The Getengling pluton, located in northeastern
Hunan Province (Figure 1) and representative of the
Neoproterozoic S-type granites in the Jiangnan
Orogen, is selected for such a study. Several previous
studies have been carried out for this pluton, including
geochronology and petrochemistry, but there are still
uncertainties about its age and petrogenesis. HNBGMR
(1988) reported a single-zircon evaporation U–Pb age of

ca. 844 Ma and a biotite K–Ar age of ca. 1124 Ma for the
Getengling pluton, whereas Wang et al. (2004) treated
this and other Neoproterozoic granitoids in northeast-
ern Hunan as the western extension of the Jiuling bath-
olith in Jiangxi Province (Figure 1(a)), which has a zircon
SHRIMP U–Pb age of 819 ± 9 Ma (Li et al. 2003a). As
biotite K–Ar dating is susceptible to later thermal
events, and single-zircon evaporation U–Pb dating is
likely affected by inherited zircon, which is common in
S-type granites, a more updated zircon U–Pb dating
with in-situ techniques is desirable for the Getengling
pluton. Based on whole-rock major and trace element
geochemistry, Li et al. (2007a) suggested that the
Getengling pluton was derived from partial melting of
metapelites of the Lengjiaxi Group, whereas Wang et al.
(2004) proposed a psammitic source in the Lengjiaxi
Group for the magma. New geochemical data for the
Getengling pluton, including whole-rock major and
trace elements and Nd isotopes, and zircon Hf isotopes,
were collected in this study for further petrogenetic
analysis.

Although tectonic discrimination diagrams may not
be reliable for individual magmatic rocks due to
potential complication caused by mixed sources, as
suggested by Li et al. (2003b, 2006) and Wang et al.
(2010), they have been successfully applied to various
tectonic settings worldwide based on statistics from
large databases (Wood 1980; Pearce et al. 1996;
Cawood et al. 2017). Therefore, in addition to the
new geochemical studies of the Getengling granitoid,
we have made a compilation of geochemical data of
various magmatic rocks from the Jiangnan Orogen
and plotted them on tectonic discrimination dia-
grams, thus providing a regional database to further
constrain the petrogenesis and tectonic setting of the
Getengling pluton. A sequential trend of tectonic
evolution of the Jiangnan Orogen is revealed by this
regional comparison, which, combined with previous
studies on Neoproterozoic igneous rocks and sedi-
mentary rocks in South China, Australia, and western
Laurentia, provides new insights on the
Neoproterozoic tectono-magmatic evolution of the
South China Block.

2. Geological setting

The South China Block is composed of the Yangtze
Block in the northwest and the Cathaysia Block in the
southeast (present coordinates). The Jiangnan Orogen,
an ENE–NE-trending Neoproterozoic continent–conti-
nent collisional belt, with a length of about 1500 km
and a width of nearly 120 km, is located in the
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southeast margin of the Yangtze Block (Figure 1(a); Li
et al. 2003a; Yao et al. 2014a).

The Jiangnan Orogen mainly consists of
Neoproterozoic rocks, with minor Mesoproterozoic
rocks. The Mesoproterozoic metasedimentary rocks are
represented by the Tianli Schists in NE Jiangxi, which
have a maximum depositional age of ca. 1530 Ma and
went through two metamorphic events at ca. 1000 and
ca. 960–940 Ma (Li et al. 2007b). The majority of the
formations exposed in the Jiangnan Orogen are two
sets of Neoproterozoic greenschist-facies metamor-
phosed volcanic-sedimentary rocks, which are given
different names in different provinces (Figure 1(a);

Zhou et al. 2002; Li et al. 2008c). The early
Neoproterozoic rocks are named the Lengjiaxi Group
in Hunan Province, Sibao Group in Guangxi Province,
Fanjingshan Group in Guizhou Province,
Shuangqiaoshan Group in Jiangxi Province, Shangxi
Group in Anhui Province, and Shuangxiwu Group in
Zhejiang Province. The unconformably overlying mid-
dle Neoproterozoic strata are called the Banxi, Danzhou,
Xiajiang, Luokedong, and Likou groups in the different
provinces (Wang et al. 2004; Xu et al. 2007; Wang et al.
2008c; Wang et al. 2012a; Li et al. 2007b, 2009; Zhao
et al. 2011; Zhao and Cawood 2012). Recent geochro-
nology studies show that the maximum depositional

Figure 1. Simplified geological maps of (a) the Jiangnan Orogen (modified after Zhao and Cawood 2012) and (b) northeastern
Hunan (Deng et al. 2017).
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ages for the early Neoproterozoic strata are ca.
870–835 Ma, as constrained by the youngest detrital
zircons of these strata (Wang et al. 2007; Wang et al.
2012a; Zhao et al. 2011), and the minimum depositional
ages of these strata are ca. 815–800 Ma, as defined by
the ages of volcanic rocks in the uncomfortably over-
lying middle Neoproterozoic strata (Wang et al. 2003;
Gao et al. 2010b, 2011). The ages of the middle
Neoproterozoic strata range from 815 Ma to younger
than 730 Ma (Wang et al. 2003; Zhao et al. 2011).

Two major Neoproterozoic ophiolitic belts, i.e. the
northeastern Jiangxi and Fuchuan ophiolitic mélange
belts, have been recognized in the northeastern
Jiangnan Orogen. Recent geochronological data sug-
gest that the northeastern Jiangxi ophiolite was formed
at ca. 1000 Ma (Chen et al. 1991; Shu et al. 1994; Li et al.
2008a; Gao et al. 2009; Deng et al. 2017), while the
Fuchuan ophiolite was generated at ca. 848–819 Ma
(Ding et al. 2008; Zhang et al. 2012a, 2013b). There are
many pre-850 Ma mafic–felsic intrusions and volcanic
rocks in the Jiangnan Orogen, some of which have
adakitic signatures (Table 1). Most of them are inter-
preted as products of arc magmatism related to plate
subduction in an active continent margin (Li 2003; Ye
et al. 2007; Gao et al. 2009; Li et al. 2009; Chen et al.
2009a, 2016; Yao et al. 2014b). The 880 ± 19-Ma leuco-
granitic rocks in northeastern Jiangxi were interpreted
as obduction related (Li et al. 2008a), and the ca.
906–904-Ma keratophyes in the Pingshui Group of
Zhejiang Province were considered as the result of
arc–continent collision by Chen et al. (2009b).

A number of ca. 850–820 Ma S-type granites intrud-
ing the Lengjiaxi Group and its equivalent strata occur
in the Jiangnan Orogen (Figure 1(a)), including the
Getengling, Daweishan, Changsanbei, and
Zhangbangyuan plutons in Hunan (HNBGMR, 1988; Li
et al. 2007a); the Jiuling pluton in Jiangxi (Li et al.
2003a); the Xucun, Shexian, and Xiuning plutons in
Anhui (Wu et al. 2006a; Zheng et al. 2008, 2008b); the
Tianpeng, Sanfang, Bendong, Yuanbaosha, Zhaigun,
Dongma, and Tianpeng plutons in Guangxi (Li et al.
2003a; Wang et al. 2006); and the Motianling pluton in
Guizhou (Ma et al. 2016). Latest zircon U–Pb dating
demonstrates that these S-type granites were emplaced
from ca. 835 to 800 Ma, with the majority clustered at
ca. 835–820 Ma (Li et al. 2003a; Wang et al. 2006; Wu
et al. 2006a; Zheng et al. 2008, 2008b; Zhao et al. 2011).
Along with these, S-type granitic intrusions are some
coeval mafic intrusions, which account for about 8% of
the total intrusions in terms of exposure area (Li et al.
1999, 2008c; Wang et al. 2006; Zhou et al. 2007b; Zhou
et al. 2009). There is also a number of post-820 Ma
Neoproterozoic igneous rocks in the Jiangnan Orogen,

including A- and S-type granites (Li et al. 2003b, 2008b;
Wu et al. 2005; Zheng et al. 2008; Xue et al. 2010; Wang
et al. 2012c; Yao et al. 2014a), mafic intrusions (Ge et al.
2001; Zhou et al. 2007a; Wang et al. 2012c), bimodal
volcanic rocks, and other mafic–granitic volcanic rocks
(Table 1; Wu et al. 2007; Zhou et al. 2007a; Li et al.
2008b; Wang et al. 2008c, Wang et al. 2012c; Zheng
et al. 2008). The Getengling pluton is located in the
middle part of the Jiangnan Orogen, half in Hunan
Province and half in Jiangxi Province (Figure 1(b)), hav-
ing a total exposure area of 114 km2. It intruded into
the Lengjiaxi Group (Figure 2(a)), which was locally
migmatized (HNBGMR (Bureau of geology and mineral
Resource of Hunan province) 1988).

3. Sample descriptions and analytical methods

3.1. Sample description

Eight fresh samples were collected from the Getengling
pluton. The samples are grey medium–fine grained
granites (Figure 2(a)). Major minerals include quartz
(36–40 vol%), plagioclase (30–35 vol%), K-feldspar (10–
15 vol%), biotite (~8 vol%), and muscovite (~5 vol%)
(Figure 2(c–f)). Petrographic classification diagram
shows that the samples are granodiorites (Figure 3(a)).
Quartz commonly shows wavy extinction and has grain
sizes ranging from 0.2 to 1.5 mm (Figure 2(c)).
K-feldspar is characterized with contact twinning and
plagioclase with polysynthetic twinning, and they have
some extents of sericitization. K-feldspar and plagio-
clase have grain sizes of 0.4–0.8 and 0.3–1 mm, respec-
tively (Figure 2(d,e)). Muscovite grains (with some being
secondary) have sizes of 0.1–1.3 mm (Figure 2(c,d)), and
biotite grains have sizes of 0.2–1 mm and eminent
cleavages (Figure 2(c–f)).

3.2. Analytical methods

3.2.1. Whole-rock major and trace elementary
geochemistry
Whole-rock major and trace element analyses were
carried out at the State Key Laboratory of Isotope
Geochemistry, Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences (GIGCAS). Fresh rock sam-
ples were crushed to centimetre-size grains, washed
with HNO3, dried, and then milled to below 200-mesh
powder. Sample powder was melted with Li2B4O7 (1:8)
to make homogeneous glass discs at 1250°C using a
V8C automatic fusion machine. The major elements
were measured with the X-ray fluorescence spectrome-
try technique (Rigaku 100e). Analytical errors for the
major elements were better than 1%. Aliquots of the
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Table 1. List of existing and new ages for the Proterozoic strata and igneous rocks in the Jiangnan Orogen.
Number Rock Location Age (Ma) Method Reference

1 Tianli Schists Northeast Jiangxi 1530 Zircon SHRIMP U–Pb (the youngest
detrital zircons)

Li et al. (2007b)

2 Tianli Schists Northeast Jiangxi 1042–1015 Ar–Ar on S1 muscovite Li et al. (2007b)
3 Tianli Schists Northeast Jiangxi 966 ± 4 Ar–Ar on S2 muscovite Li et al. (2007b)
4 Blueschist Northeast Jiangxi 866 ± 14 Glaucophaen K–Ar Shu et al. (1994)
5 Gabbro Fuchuan, northeast Jiangxi 875 ± 8 Zircon LA-ICP-MS U–Pb Zhang et al.

(2013a)
6 Gabbro Yuanbaoshan, Northeast

Jiangxi
854.7 ± 5.3 Zircon LA-ICP-MS U–Pb Yao et al.

(2014b)
7 Taohong I-type granite Northeast Zhejiang 913 ± 15 Zircon SHRIMP U–Pb Ye et al. (2007)
8 Xiqiu I-type granite Northeast Zhejiang 905 ± 14 Zircon SHRIMP U–Pb Ye et al. (2007)
9 Xiwan adakitic granite Northeast Jiangxi 970 ± 21 Zircon SHRIMP U–Pb Gao et al.

(2009)
10 Xiwan adakitic granite Northeast Jiangxi 968 ± 23 Zircon SHRIMP U–Pb Li (2003)
11 High-Mg diorite Pingshui area, northeast

Zhejiang
932 ± 7 Zircon LA-ICP-MS U–Pb Chen et al.

(2009a)
12 Nb-enriched basaltic porphyry Pingshui area, northeast

Zhejiang
916 ± 6 Zircon LA-ICP-MS U–Pb Chen et al.

(2009a)
13 Plagiogranite Pingshui area, northeast

Zhejiang
902 ± 5 Zircon LA-ICP-MS U–Pb Chen et al.

(2009a)
14 ‘Obduction-type’ granite Xiwan, northeast Jiangxi 880 ± 19 Zircon SHRIMP U–Pb Li et al. (2008a)
15 Sibao Group Guangxi 868.2 ± 9.7 Zircon LA-ICP-MS U–Pb (the

youngest detrital zircons)
Wang et al.
(2007)

16 Sibao Group Guangxi 835.3 ± 3.6 Zircon LA-ICP-MS U–Pb (the
youngest detrital zircons)

Wang et al.
(2012a)

17 Sibao Group Guangxi 834.9 ± 3.8 Zircon LA-ICP-MS U–Pb (the
youngest detrital zircons)

Ma et al. (2016)

18 Lengjiaxi Group Hunan 862 ± 11 Zircon LA-ICP-MS U–Pb (the
youngest detrital zircons)

Wang et al.
(2007)

19 Fanjinshan Group Guizhou 872 ± 3 Zircon LA-ICP-MS U–Pb (the
youngest detrital zircons)

Zhou et al.
(2009)

20 Lengjiaxi Group Hunan ca.
878–879

Zircon LA-ICP-MS U–Pb (the
youngest detrital zircons)

Zhao et al.
(2011)

21 Sibao Group Guangxi ca.
865–872

Zircon LA-ICP-MS U–Pb (the
youngest detrital zircons)

Zhao et al.
(2011)

22 Shuangqiaoshan Group Jiangxi ca.
849–871

Zircon LA-ICP-MS U–Pb (the
youngest detrital zircons)

Zhao et al.
(2011)

23 Shuangqiaoshan Group Jiangxi ca.
831–815

Zircon LA-ICP-MS U–Pb (the
youngest detrital zircons)

Wang et al.
(2013b)

24 Xikou Group Southern Anhui ca.
833–817

Zircon LA-ICP-MS U–Pb (the
youngest detrital zircons)

Wang et al.
(2013b)

25 Xikou Group Southern Anhui 842 ± 10 Zircon LA-ICP-MS U–Pb (the
youngest detrital zircons)

Yin et al. (2013)

26 Xingzi Group Northwest Jiangxi ca.
820–810

Zircon LA-ICP-MS U–Pb Wang et al.
(2016)

27 Kangwanggu Group Northwest Jiangxi ca. 830 Zircon LA-ICP-MS U–Pb Wang et al.
(2016)

28 Qigong Group Yiyang area, Hunan ca. 830 Zircon LA-ICP-MS U–Pb Yao et al. (2013)
29 Hongchi greywacke Yiyang area, Hunan ca. 860 Zircon LA-ICP-MS U–Pb Yao et al. (2013)
30 Spilite in Pingshui Group Northwest Zhejiang 952 ± 5 Zircon LA-ICP-MS U–Pb Chen et al.

(2016)
31 Keratophye in Pingshui Groupa Northwest Zhejiang 954 ± 8 Zircon LA-ICP-MS U–Pb Chen et al.

(2016)
32 Keratophye in Pingshui Groupb Zhejiang 904 ± 8 Zircon LA-ICP-MS U–Pb Chen et al.

(2009b)
33 Keratophye in Pingshui Groupb Zhejiang 906 ± 10 Zircon LA-ICP-MS U–Pb Chen et al.

(2009b)
34 Beiwu andesitic rock Fuyang, eastern Zhejiang 926 ± 15 Zircon SHRIMP U–Pb Li et al. (2009)
35 Zhangcun rhyolitic rock Fuyang, eastern Zhejiang 891 ± 12 Zircon SHRIMP U–Pb Li et al. (2009)
36 Olistostrome of andesite Northeast Jiangxi 871 ± 7 Zircon LA-ICP-MS U–Pb Yao et al. (2015)
37 Olistostrome of andesite Northeast Jiangxi 868 ± 7 Zircon LA-ICP-MS U–Pb Yao et al. (2015)
38 Olistostrome of andesite Northeast Jiangxi 864 ± 14 Zircon LA-ICP-MS U–Pb Yao et al. (2015)
39 Quartz-keratophyre in the bottom of

Shuangqiaoshan Group
Jiangxi 878 ± 5 Zircon SHRIMP U–Pb Wang et al.

(2008b)
40 Tuff in the bottom of Shuangqiaoshan

Group
Jiangxi 879 ± 6 Zircon SHRIMP U–Pb Wang et al.et al.

(2008b)
41 Dolerite Shuige, Hangzhou, eastern

Zhejiang
863 ± 6 Zircon LA-ICP-MS U–Pb Yao et al.

(2014a)
42 Huangshan bimodal volcanic rocks Zhejiang 860 ± 9 Zircon SIMS U–Pb Lyu et al. (2017)
43 Meiling bimodal volcanic rocks Zhejiang 840 ± 5 Zircon SIMS U–Pb Lyu et al. (2017)

(Continued )
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Table 1. (Continued).

Number Rock Location Age (Ma) Method Reference

44 Shuikou basalt Northeast Hunan 860 ± 20 Zircon SHRIMP U–Pb Zhang et al.
(2013b)

45 Nanqiao basalt Northeast Hunan 838 ± 12 Zircon SIMS U–Pb Zhang et al.
(2013b)

46 Fangxi dolerite Northwest Jiangxi 847 ± 18 Zircon LA-ICP-MS U–Pb Zhang et al.
(2013b)

47 Bentonite in Sibao Group Guangxi 841.7 ± 5.9 Zircon SHRIMP U–Pb Gao et al.
(2010a)

48 Dacite Shiershan, Anhui 825 ± 11 Zircon LA-ICP-MS U–Pb Zheng et al.
(2008)

49 Dacite Shiershan, Anhui 820 ± 16 Zircon LA-ICP-MS U–Pb Zheng et al.
(2008)

50 Volcanic rock in Fanjinshan Group Guizhou 831 ± 4 Zircon LA-ICP-MS U–Pb Zhao et al.
(2011)

51 Volcanic rock in Fanjinshan Group Guizhou 827 ± 15 Zircon LA-ICP-MS U–Pb Zhao et al.
(2011)

52 Dacite of Jingtan Formation in Shangxi
Group

Anhui 820 ± 16 Zircon SHRIMP U–Pb Wu et al. (2007)

53 Bentonite in Lengjiaxi Group Hunan 822 ± 10 Zircon SHRIMP U–Pb Gao et al.
(2011)

54 Cangshuipu andesite Hunan 822 ± 28 Zircon SHRIMP U–Pb Zhang et al.
(2012b)

55 Cangshuipu andesite Hunan 824 ± 7 Zircon SIMS U–Pb Zhang et al.
(2012b)

56 Mafic rock Guizhou 822 ± 15 Zircon LA-ICP-MS U–Pb Zhou et al.
(2009)

57 Gabbro Fuchuan ophiolite, Anhui 819 ± 3 Zircon LA-ICP-MS U–Pb Zhang et al.
(2013a)

58 Gabbro Fuchuan ophiolite, Anhui 827 ± 3 Zircon LA-ICP-MS U–Pb Zhang et al.
(2013a)

59 Gabbro Fuchuan ophiolite, Anhui 822 ± 3 Zircon LA-ICP-MS U–Pb Zhang et al.
(2013a)

60 Gabbro Fuchuan ophiolite, Anhui 824 ± 3 Zircon SHRIMP U–Pb Zhang et al.
(2012a)

61 Gabbro Fuchuan ophiolite, Anhui 827 ± 9 Zircon SHRIMP U–Pb Ding et al.
(2008)

62 Gabbro Fuchuan ophiolite, Anhui 848 ± 12 Zircon SHRIMP U–Pb Ding et al.
(2008)

63 Anorthosite Northeast Jiangxi ophiolite 968 ± 23 Zircon SHRIMP U–Pb Li et al. (1994)
64 Zhuji gabbro Western Zhejiang ophiolite 858 ± 11 Zircon SHRIMP U–Pb Shu et al. (2006)
65 Gabbro Fuchuan ophiolite, Anhui 1024 ± 30 Whole-rock Sm–Nd isochron Zhou et al.

(1990)
66 Getengling S-type granite Northeast Hunan 845 ± 4 Zircon LA-ICP-MS U–Pb This paper
67 Yuanbaoshan S-type granite Guangxi 828 ± 5 Zircon LA-ICP-MS U–Pb Yao et al.

(2014b)
68 S-type granite Shier mountain, Anhui 822 ± 12 Zircon LA-ICP-MS U–Pb Zheng et al.

(2008)
69 S-type granite in Fanjinshan Groupa Guizhou 838 ± 2 Zircon LA-ICP-MS U–Pb Wang et al.

(2011a)
70 Zhaigun S-type granite Guangxi 836 ± 3 Zircon LA-ICP-MS U–Pb Wang et al.

(2006)
71 Dongma S-type granite Northern Guangxi 824 ± 13 Zircon LA-ICP-MS U–Pb Wang et al.

(2006)
72 Tianpeng S-type granite Northern Guangxi 794.2 ± 8.1 Zircon LA-ICP-MS U–Pb Wang et al.

(2006)
73 Jiuling S-type granite Jiangxi 820 ± 10 Zircon SHRIMP U–Pb Zhong et al.

(2005)
74 Jiuling S-type granite Jiangxi 819 ± 9 Zircon SHRIMP U–Pb Li et al. (2003a)
75 Xucun S-type granite Southern Anhui 823 ± 8 Zircon SHRIMP U–Pb Li et al. (2003a)
76 Xiuning S-type granite Southern Anhui 824–825 Zircon LA-ICP-MS U–Pb Wu et al.

(2006a)
77 Shexian S-type granite Southern Anhui 823–824 Zircon LA-ICP-MS U–Pb Wu et al.

(2006a)
78 Shexian S-type granite Southern Anhui 838 ± 11 Zircon LA-ICP-MS U–Pb Xue et al. (2010)
79 Xucun S-type granite Southern Anhui 850 ± 10 Zircon LA-ICP-MS U–Pb Xue et al. (2010)
80 Xucun S-type granite Southern Anhui 823–827 Zircon LA-ICP-MS U–Pb Wu et al. (2006)
81 Eshan S-type granite Yunan 819 ± 8 Zircon SHRIMP U–Pb Li et al. (2003a)
82 S-type granite in Sibao Group Guangxi 826.8 ± 5.9 Zircon SHRIMP U–Pb Gao et al.

(2010a)
83 Bendong S-type granite Guangxi 819 ± 9 Zircon SHRIMP U–Pb Li (1999)

(Continued )
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Table 1. (Continued).

Number Rock Location Age (Ma) Method Reference

84 Bendong S-type granite Guangxi 823 ± 3.8 Zircon LA-ICP-MS U–Pb Wang et al.
(2006)

85 Sanfang S-type granite Guangxi 826 ± 10 Zircon SHRIMP U–Pb Li (1999)
86 Sanfang S-type granite Guangxi 804.3 ± 5.2 Zircon LA-ICP-MS U–Pb Wang et al.

(2006)
87 S-type granite in Fanjinshan Groupb Guizhou 827.5 ± 7.4 Zircon SIMS U–Pb Zhao et al.

(2011)
88 Motianling S-type granite Guizhou 825.6 ± 3.0 Zircon LA-ICP-MS U–Pb Ma et al. (2016)
89 Zhangbangyuan granite Northeast Hunan 816 ± 4.6 Zircon SHRIMP U–Pb Ma et al. (2009)
90 Shexian S-type granite Southern Anhui 838 ± 11 Zircon LA-ICP-MS U–Pb Xue et al. (2010)
91 Xiuning S-type granite Southern Anhui 832 ± 8 Zircon LA-ICP-MS U–Pb Xue et al. (2010)
92 Mafic–ultramafic dike and sill Sanfang, Guangxi 828 ± 7 Zircon SHRIMP U–Pb Li et al. (1999)
93 Mafic rock Yuanbaoshan, Guangxi 841 ± 22 Zircon SHRIMP U–Pb Zhou et al.

(2007b)
94 Shenwu dolerite dike Northern Zhejiang 849 ± 7 Zircon SHRIMP U–Pb Li et al. (2008b)
95 Hejiawan layered diabase Guangxi 811.5 ± 4.8 Zircon LA-ICP-MS U–Pb Wang et al.

(2006)
96 Gabbro of Shuangqiaoshan Group Jiangxi 801 ± 4 Zircon SHRIMP U–Pb Wang et al.

(2008b)
97 Volcanic and clastic rock overlying Tianli

Schists
Northeast Jiangxi 818 ± 12 Zircon SHRIMP U–Pb Wang et al.

(2003)
98 Cangshuipu dacitic volcanic

conglomerate
Base of Banxi Group in
northeast Hunan

814 ± 12 Zircon SHRIMP U–Pb Wang et al.
(2003)

99 Bentonite in Xiajiang Group Guizhou 814 ± 6.3 Zircon SHRIMP U–Pb Gao et al.
(2010b)

100 Lingshan granite Anhui 823 ± 18 Zircon LA-ICP-MS U–Pb Xue et al. (2010)
101 Lianhuashan granite Anhui 814 ± 26 Zircon LA-ICP-MS U–Pb Xue et al. (2010)
102 Youershan Anhui 783 ± 8 Zircon LA-ICP-MS U–Pb Xue et al. (2010)
103 Bentonite in Banxi Group Northeast Hunan 802.6 ± 7.6 Zircon SHRIMP U–Pb Gao et al.

(2011)
104 Granite Shier mountain, Anhui 779 ± 11 Zircon SHRIMP U–Pb Li et al. (2003b)
105 Hongchicun intermediate to felsic

volcanic rock
Zhejiang 797 ± 11 Zircon SHRIMP U–Pb Li et al. (2003b)

106 Bimodal volcanic rocks Northeast Jiangxi 803 ± 9 SHRIMP Wang et al.
(2015)

107 Lushanlong rhyolite Northeast Jiangxi ca.
827–829

LA-ICP-MS Wang et al.
(2016)

108 Xingzi amphibolites Lushan, Jiangxi 811 ± 12 SHRIMP Li et al. (2013)
109 Shaojiwa rhyolite Lushan, Jiangxi 828 ± 6 SHRIMP Li et al. (2013)
110 Shangshu bimodal volcanic rock Northern Zhejiang 792 ± 5 Zircon SHRIMP U–Pb Li et al. (2008b)
111 Granite porphyry of Xucun composite

dikes
Southern Anhui 805 ± 4 Zircon LA-ICP-MS U–Pb Wang et al.

(2012c)
112 Diabase of Xucun composite dikes Southern Anhui 804 ± 7 Zircon LA-ICP-MS U–Pb Wang et al.

(2012c)
113 Shangshu basalt Northeast Jiangxi 802 ± 8 Zircon LA-ICP-MS U–Pb Wang et al.

(2012c)
114 Shangshu dacite Southern Anhui 794 ± 7 Zircon LA-ICP-MS U–Pb Wang et al.

(2012c)
115 Shangshu rhyolitic porphyry Southern Anhui 797 ± 6 Zircon LA-ICP-MS U–Pb Wang et al.

(2012c)
116 Shangshu rhyolite Between southern Anhui and

northeast Jiangxi
797 ± 5 Zircon LA-ICP-MS U–Pb Wang et al.

(2012c)
117 Rhyolite in Puling Formation Anhui 765 ± 7 Zircon LA-ICP-MS U–Pb Wang et al.

(2012c)
118 Tuff in Puling Formation Anhui 751 ± 8 Zircon LA-ICP-MS U–Pb Wang et al.

(2012c)
119 Tuff in Puling Formation Anhui 763 ± 12 Zircon LA-ICP-MS U–Pb Wang et al.

(2012c)
120 A-type granite Daolinshang, Jiangxi 790 ± 5 Zircon LA-ICP-MS U–Pb Yao et al.

(2014a)
121 Qianyang diabase Western Hunan 747 ± 18 Zircon SHRIMP U–Pb Wang et al.

(2008b)
122 Tongdao altered ultramafic rock Western Hunan 756 ± 12 Zircon SHRIMP U–Pb Wang et al.

(2008b)
123 Longsheng gabbro–diabase Northern Guanagxi 761 ± 8 Zircon TIMS Pb–Pb concordant age Ge et al. (2001)
124 Guzhang diabase Western Hunan 768 ± 28 Zircon SHRIMP U–Pb Zhou et al.

(2007a)
125 Sanmenjie Rhyo-dacite Northern Guanagxi 765 ± 14 Zircon SHRIMP U–Pb Zhou et al.et al.

(2007a)
126 Dacite of Jingtan Formation Southern Anhui 773 ± 7 Zircon LA-ICP-MS U–Pb Wu et al. (2007)

(Continued )
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same sample powders were used for trace element
analysis with ICP-MS, following the procedures of Liu
et al. (1996). Analytical uncertainty of the elements was
better than 5%, except for few samples with low con-
tents of trace elements, for which the uncertainty was
about 10%. The obtained values of the trace and REE
elements in the standards are all consistent with their
recommended values reported by Liu et al. (1996).

3.2.2. Zircon U–Pb dating
Zircon U–Pb dating was conducted using the laser ablation
inductively coupled plasmamass spectrometry (LA-ICP-MS)
system at the State Key Laboratory of Isotope
Geochemistry, GIGCAS. The U–Pb and trace elements of
the zircons were analysed with an Agilent 7500a ICP-MS
and a Resonetics Resolution M-50 laser-ablation system.
The conditions were 80 mJ laser energy, a repetition rate
of 8 Hz with a spot size of 31 μm in diameter, and 50 s
ablation time (Li et al. 2012). To optimize data quality, a two-
volume laser-ablation cell and a squid smoothing device
were used (Tu et al. 2011; Li et al. 2012). The external
calibration standards are PLESOVICE and TEMORA.
PLESOVICE was analysed twice for every 10 analyses and
TEMORA was analysed twice for every 5 analyses (Tu et al.
2011; Li et al. 2012). The internal standard used to calculate
the content of trace elements is 29Si. The analytical results

were processed with ICPMSDataCal 7.4 (Liu et al. 2010a,
2010b), and U–Pb ages were calculated with Isoplot 3.23
(Ludwig 2004). The single spot data error is expressed in 1σ,
and that for weighted average, 206Pb/238U age is in 2σ. The
obtained mean weighted 206Pb/238U age (416.3 ± 3.2 Ma,
2σ, MSWD = 0.5) from all the TEMORA zircons is consistent
with the recommended age of 416.75 ± 0.24 (Black et al.
2003).

3.2.3. Nd isotope
Whole-rock Nd isotopic ratios of the Getengling pluton
samples were measured using a multi-collector inductively
coupled plasma mass spectrometry at the State Key
Laboratory of Isotope Geochemistry, GIGCAS, following
the procedures of Wei et al. (2002) and Liang et al. (2003).
Measured 143Nd/144Nd values were normalized to
146Nd/144Nd = 0.7129 for mass fractionation. Themeasured
value of the Nd standards (JNdi-1) is 0.512092 ± 7, which is
consistent with the recommended values of 0.512080–
0.512120.

3.2.4. Zircon Hf isotope
In-situ zircon Hf isotopic analysis of the Getengling pluton
samples was carried out using a Geolas-193 laser-ablation
microprobe at the State Key Laboratory of Isotope
Geochemistry, GIGCAS. The laser ablation for Hf isotope

Table 1. (Continued).

Number Rock Location Age (Ma) Method Reference

127 Tuff of Jingtan Formation Western Zhejiang 779 ± 7 Zircon LA-ICP-MS U–Pb Zheng et al.
(2008)

128 Granite in Shiershan Southern Anhui 771 ± 17 Zircon LA-ICP-MS U–Pb Zheng et al.
(2008)

129 Granite in Shiershan Southern Anhui 777 ± 7 Zircon LA-ICP-MS U–Pb Zheng et al.
(2008)

130 Granite in Shiershan Southern Anhui 775 ± 5 Zircon LA-ICP-MS U–Pb Zheng et al.
(2008)

131 Granite in Shiershan Southern Anhui 777 ± 9 Zircon LA-ICP-MS U–Pb Wu et al. (2005)
132 Granite in Shiershan Southern Anhui 779 ± 11 Zircon SHRIMP U–Pb Li et al. (2003b)
133 Daolinshan A-type granite Northern Zhejiang 794 ± 9 Zircon SHRIMP U–Pb Li et al. (2008b)
134 Xiajiang Group Congjiang, southeast Guizhou 794.6 ± 4.2 LA-ICP-MS Ma et al. (2016)
135 Xiuning Formation Southern Anhui 763 ± 10 LA-ICP-MS Wang et al.

(2013a)
136 Xiajiang Group Northeast Guizhou 741 ± 6 LA-ICP-MS Wang et al.

(2010)
137 Danzhou Group Northern Guangxi 730–770 LA-ICP-MS Wang et al.

(2012)
138 Nanhua Sequence Southern Anhui 751 ± 8 LA-ICP-MS Wang et al.

(2013b)
139 Nanhua Sequence Southern Anhui 753 ± 8 LA-ICP-MS Wang et al.

(2013b)
140 Xiajiang Group Guizhou 770–800 SIMS Wang et al.

(2012b)
141 Chang’an Formation, Jiangkou Group Guizhou 750–799 SIMS Wang et al.

(2012b)
142 Banxi Group Hunan 782.3 ± 4.3 SIMS Wang et al.

(2012b)
143 Danzhou Group Guangxi 731.3 ± 4.4 SIMS Wang et al.

(2012b)
144 Dengshan greywacke (covering

sequence)
Yiyang, Hunan ca. 745 LA-ICP-MS Yao et al. (2013)

The data from this study are highlighted in bold.
a,b To differenciate the different rocks with the same name.
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analysiswas carriedout on the sameor approximate spot as
that for U–Pb analysis, which was shown in Figure 4. A spot
size of 40 μm and a 10-Hz repetition rate were used for
analyses. The analytical procedures have been described
previously in detail byWu et al. (2006b). External calibration
was made by measuring zircon standard Penglai to evalu-
ate the reliability of the analytical data, which yielded a
weighted mean 176Hf/177Hf ratio of 0.282891 ± 28 (2σ).
This value is in good agreement with the recommended
value of 0.2828906 ± 10 (2σ, Li et al. 2010a). The mean βYb
valuewas applied for the isobaric interference correction of
176Yb on 176Hf in the same spot.

4. Results

4.1. Zircon U–Pb dating

U–Pb isotopic analyses were carried out on 39 zircon
grains from sample SZT07 (Supplementary Table 1).
Most of the zircon grains with lengths of up to 200
μm and length-to-width ratios between 1.5:1 and 2:1
are euhedral. These zircon grains show fine oscillatory
zoning and contain inherited cores (Figure 4). The rims
have variable abundances of Th ranging from 58 to
1786 ppm and U from 203 to 650 ppm, with Th/U
ratios from 0.18 to 4.26. The inherited cores have

Figure 2. Thin section photographs of the Getengling pluton. (a) Quartz is well preserved and shows clear wavy extinction, and
there are also biotite and feldspar (cross-polarized light). (b) Alkali feldspar with simple contact twinning (cross-polarized light), and
there are abundant muscovite (cross-polarized light). (c) Plagioclase has polysynthetic twinning. (d) Large and abundant biotite
grains (plain-polarized light). Q: Quartz; Pl: plagioclase; Afs: alkali feldspar; Bi: biotite; Mu: muscovite; Ser: sericite.
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similar abundances of Th (65–479 ppm) and U (197–
627 ppm), with Th/U ratios ranging from 0.15 to 0.96.
Most of the inherited cores have ages from ca. 1350 to
1000 Ma, except for two old ages of 2227 and
2038 Ma. For the spots in the rim, three were excluded
from age calculation because they have <90% concor-
dance (spots SZT07-18, SZT07-39, and SZT07-40). Three
additional spots, whose ages are either significantly

older (SZT07-1 and SZT07-27), possibly affected by
older cores, or significantly younger (SZT07-36) than
other spots in the rim, are excluded as well. For the
remaining 20 analyses, 206Pb/238U ratios agree intern-
ally within analytical precision and yield a mean
206Pb/238U age of 845 ± 4 Ma (Figure 5(a)), indicating
that the Getengling granodiorite is of Neoproterozoic
age (Figure 5(b)).

Figure 3. (a) QAP diagram and (b) TAS classification (modified after Middlemost 1994) for the Getengling pluton.

Figure 4. Cathodoluminescence (CL) images of zircons from the Getengling pluton with 206Pb/238U ages are also shown. Smaller solid spots
mark the locations of LA-ICP-MS U–Pb dating and large dotted spots mark the locations of MC-LA-ICP-MS Hf isotope analyses.
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4.2. Zircon Hf isotope

Lu–Hf isotopic analyses were performed on the 24 zircon
grains from Sample SZT-07 (Supplementary Table 2).
Initial 176Hf/177Hf and εHf(t) values were calculated at
t = 845 Ma. Most spots show positive εHf(t) values of
−4.9–6.3, with a weighted mean of 0.7 ± 1.1, lying in
the range of other igneous rocks in the Jiangnan Orogen
(Figure 6). The single-stage Hf model age (TDM1) is 1.61–
1.17 Ga, with a weighted mean of 1.36 ± 0.04 Ga.

4.3. Major and trace element geochemistry

Major and trace element geochemical data for the
Getengling pluton are listed in Supplementary

Table 3, and the data are generally consistent with
those of Li et al. (2007a). The samples have loss on
ignition (LOI) values of 1.29–2.15%, indicating minor
effects of secondary hydrothermal alteration and/or
metamorphism. Zr in igneous rocks is considered an
immobile element during low-to-medium-grade meta-
morphism and alteration (Li et al. 2009). Al2O3, CaO,
KO2, Sr, Rb, Y, and Nb contents do not change signifi-
cantly, and Na2O and Ba contents decrease slightly
with those of Zr (Supplementary Figure 1), suggesting
minimal metamorphic and alteration effects on these
elements, thus suitable for petrogenetic studies. The
samples have a narrow SiO2 range of 65.97–71.05%,
with K2O + Na2O contents of 5.63–7.00%, indicating a
granodiorite composition (Figure 3(b)). The contents
of Al2O3, CaO, and Na2O are 14.10–16.29%, 0.37–
1.43%, and 2.16–2.55%, respectively, and the ratios of
A/CNK and A/NK range from 1.43 to 1.83 and from 1.80
to 2.13, respectively. In the A/NK versus A/CNK dia-
gram, all the Getengling pluton samples plot in the
S-type granite field (Figure 7(a)) and are strongly per-
aluminous. The K2O contents vary between 3.41% and
4.44%, indicating that the Getengling pluton belongs
to the high-K calc-alkaline series (Figure 7(b)). Mafic
components (TiO2 + Fe2O3 + MgO) of the Getengling
pluton samples are relatively high, accounting for
6.46–7.62% of the rocks.

All the Getengling pluton samples show light rare
earth elements (LREE) enrichment (Figure 8(a)), nega-
tive Eu anomalies (δEu = 0.44–0.53), and no obvious Ce
anomalies (δCe = 0.98–1.07). In the primitive mantle-
normalized spidergram (Figure 8(b)), the Getengling
pluton shows enrichment in Pb and large ion lithophile
elements such as Rb and Ba and depletion in Sr and
high field strength elements such as Nb, Ta, and Ti. The
zircon saturation temperature calculated with the
method of Watson and Harrison (1983) ranges from

Figure 5. (a) Zircon LA-ICP-MS U–Pb age of the Getengling pluton; (b) histogram for the ages of Proterozoic igneous rocks in the
Jiangnan Orogen. The ages’ values are from Table 1.

Figure 6. Histogram for zircon εHf(t) values of the Proterozoic
igneous rocks in the Jiangnan Orogen. The εHf(t) values of the
Getengling granitoid are from this paper, while others are from
Wu et al. (2006a), Zheng et al. (2008), Wang et al. (2008b),
Wang et al. (2012c), Li et al. (2009), Zhou et al. (2009), Chen
et al. (2009a), Zhang et al. (2012a, 2012b, 2013a), and Yao et al.
(2014a, 2014b, 2015).
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718 to 838°C with an average of 810°C (Supplementary
Table 3).

4.4. Whole-rock Nd isotopes

Sm–Nd isotopic data for the Getengling pluton are
presented in Supplementary Table 4. The samples
have a narrow range of 147Sm/144Nd ratios (0.124–
0.130) and 143Nd/144Nd ratios (0.512070–0.512102).
Calculated εNd(t) values are −2.8 to −3.4 at t = 845 Ma.
The calculated two-stage Nd model ages (TDM2) cluster
at 1.78–1.75 Ga.

5. Discussion

As mentioned in Section 1, two different viewpoints
have been proposed regarding the timing of the colli-
sion between the Yangtze and Cathaysia blocks to
form the South China Block, i.e. ca. 1100–900 Ma
(Grenville orogeny) (Li et al. 1999, 2007b, 2008c; Ye
et al. 2007; Yang et al. 2016; Lyu et al. 2017) versus ca.

860–820 Ma (Zhou et al. 2009; Zhao and Cawood 2012;
Yao et al. 2014a, 2015). One of the key differences
between the two hypotheses lies in the genesis of
the ca. 850–820-Ma S-type granites, with the former
proposing a mantle plume origin and linking them
with coeval mafic rocks in Australia (Ye et al. 2007; Li
et al. 2007b, 2008a, 2008c; Huang et al. 2015) and the
other attributing the formation of these granitoids to
continental collision between the Yangtze and
Cathaysia blocks (Zhou et al. 2009; Wang et al. 2012c,
2014; Yao et al. 2015). The new geochronological and
geochemical data of the Getengling pluton obtained
in this study confirm the S-type nature of the magma
and support the notion that the collision between the
Yangtze and Cathaysia blocks took place at ca.
860–820 Ma. The high CaO/Na2O ratios and two-
stage Nd model ages (1.78–1.75 Ga) support a psam-
mitic sedimentary source (Patino Douce and Harris
1998; Sylvester 1998) for the Getengling magma, pos-
sibly caused by crustal thickening in relation to the
collision.

Figure 7. (a) A/NK versus A/CNK (modified after Maniar and Piccoil, 1989) and (b) K2O versus SiO2 diagrams for the Getengling
pluton (Morrison 1980).

Figure 8. (a) Chondrite-normalized REE patterns (Sun and McDonough 1989) and (b) N-MORB-normalized trace element spider-
grams (Sun and McDonough 1989) for the Getengling intrusion.
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However, as introduced earlier, the data of one intrusion
alone cannot convincingly rule out the possibility of a
mantle-plume origin for the S-type granites and
Proterozoic tectonic evolution of the Jiangnan Orogen.
Therefore, the tectonic significance of the geochronologi-
cal and geochemical data of the Getengling pluton is dis-
cussed in context of compilation of the geochronological
and geochemical data of Proterozoic rocks in South China,
Laurentia, and Australia, as shown in Figures 9–11. Based
on general trends revealed by this regional database, we
argue that the Getengling pluton, like other ca.
850–820 Ma granitoids in the Jiangnan Orogen, was
formed during the collision between the Yangtze and
Cathaysia blocks, rather than during rifting of a previously
(Grenvillian) formed united South China Block. The detailed
reasoning and significance for the tectonic evolution of the

Jiangnan Orogen and South China block are discussed
below.

First of all, combined with the previously reported
ca. 835–820 Ma granitoids (Li et al. 2003a; Wang et al.
2006, 2013b; Zheng et al. 2008; Zhao et al. 2011), the
zircon LA-ICP-MS U–Pb age of 845 ± 4 Ma obtained in
this study for the Getengling pluton suggests that the
magmatic activities lasted for 25 Ma. This time interval
is much longer than those of felsic magmatism induced
by mantle plume activity, which are commonly <5 Ma
(Lightfoot et al. 1993; Chesley and Ruiz, 1998; Xu et al.
2013). Although the high mafic contents
(TiO2 + Fe2O3 + MgO = 6.46–7.62%), positive εHf(t),
and slight negative εNd(t) values suggest involvement
of mantle-derived components, these features are likely
caused by remelting of juvenile crust generated by arc

Figure 9. Geochemical discrimination diagrams of Th–Hf–Ta of Wood (1980) for the (a) ca. 800–850-Ma mafic rocks in South China
and ca. 820-Ma Gairdner–Amata dike swarms in Australia, and (b) ca. 730–790-Ma mafic rocks in South China and ca. 780-Ma
Gunbarrel mafic rocks in western Laurentia. See Supplementary Table 5 for the data resources.
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magmatic activities, as proposed by Wu et al. (2006a)
for other S-type granites in the Jiangnan Orogen.
Furthermore, A- and I-type granites, rather than S-type
granite, are typically related to mantle plume actives
(Hamilton et al. 1998; Hames et al. 2000; Wang et al.
2006; Xu et al. 2013).

Second, different from the felsic-dominated magma-
tism in South China, the ca. 825 and ca. 780-Ma igneous
rocks in Australia and west Laurentia are mainly mafic
(Downes et al. 2006; Wang et al. 2006, 2010a; Sandeman
et al, 2007; Mackinder, 2014; Huang et al. 2015). No ca.
780 Ma felsic rocks were reported in western Laurentia,
and the minor ca. 820-Ma granitoids were A type (Preiss
et al. 2008), different from those in South China.
Moreover, the ca. 825 and ca. 780-Ma mafic rocks in
Australia and western Laurentia mostly plot in the field
of continental flood basalt, which is typically related to
mantle plumes (Figure 9). However, the data of the
mafic rocks in South China are scattered, with only

few located in the field of continental flood basalt,
suggesting that the ca. 850–730-Ma mafic rocks in
South China were not generated by the
Neoproterozoic mantle plume activities.

Third, petrochemical characteristics of granitic rocks
of different ages from the Jiangnan Orogen suggest an
evolution from magmatic arc through collisional to
within-plate environments, the timing of which does
not fit the model of 1100–900 Ma collision and the
mantle plume peaking at ca. 825 Ma. Different from
the subduction-related pre-850 Ma granitoids, the
Getengling granitoid and all the other ca. 835–820 Ma
S-type granites in the Jiangnan Orogen have Y + Nb
and Rb values similar to the syn- and post-collisional
granitoids (Figure 10(a)), implying that the tectonic set-
ting in the Jiangnan Orogen changed from plate sub-
duction to continental collision at ca. 850 Ma. The pre-
850-Ma plate subduction processes is further demon-
strated by the ca. 970–968-Ma Xiwan adakitic granitoid

Figure 10. Geochemical discrimination diagrams of (a) Rb – Y + Nb of Pearce et al. (1996) for the Proterozoic granitic intrusions and
(b) Th – Hf − Ta of Wood (1980) for the mafic rocks in the Jiangnan Orogen. See Supplementary Table 5 for the data resources.
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(Li 2003; Gao et al. 2009), the 932 ± 7-Ma high-Mg
diorite bearing similarities with adakitic andesite, the
916 ± 6-Ma Nb-enriched basaltic porphyry (Chen et al.
2009a), and other ca. 950–850 Ma mafic–felsic mag-
matic rocks (Shu et al. 2006; Ye et al. 2007; Li et al.
2008a, 2009; Chen et al. 2009a; Yao et al. 2014b, 2015).

In addition, the pre-820-Ma bimodal volcanic rocks
in South China could be generated under local exten-
sional tectonic setting during the collision in the
Jiangnan Orogen and the subduction in northern
and southwestern Yangtze (Li et al. 2002; Ling et al.
2003; Lyu et al. 2017). The lower unites of the

Neoproterozoic strata could be the clastic sources
for the upper unites, resulting in the similar sedimen-
tary provenances between the two sets of strata as
indicated by Yang et al. (2015). Consequently, the ca.
825–815-Ma angular unconformity between the two
Neoproterozoic successions in the Jiangnan Orogen,
as constrained from ages of the volcanic rocks in the
upper and lower units, is also likely to be generated
by the collision.

In contrast, the post-820-Ma igneous rocks in the
Jiangnan Orogen include a series of A- and S-type
granites, bimodal volcanic rocks, and other rift-related

Figure 11. Schematic diagram for the tectonic evolution of the Jiangnan Orogen.
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volcanic-intrusive rocks; most granite and some basalt
samples plot in the intra-plate granite and basalt fields
(Figure 10(a,b)). This suggests that the Jiangnan Orogen
stepped into the post-collisional stage after ca. 820 Ma,
likely related to the re-splitting between the Yangtze
and Cathaysia blocks (Li et al. 2008c; Zhao and Cawood
2012; Wang et al. 2012b), or a failed intracontinental rift
between the Yangtze and Cathaysia blocks (Li et al.
2008c).

In view of the above arguments, the Proterozoic
tectonic evolution of the Jiangnan Orogen is outlined
as follows (Figure 11). (A) The subduction resulted in
a series of metamorphic and mafic–felsic magmatic
activities before ca. 850 Ma. (B) The collision between
the Yangtze and Cathaysia blocks may have occurred
at ca. 850–820 Ma, generating the unconformity
between the early and middle Neoproterozoic strata,
widespread mafic–felsic volcanic rocks, S-type gran-
ites, and associated mafic intrusions. (C) The post-
820-Ma intracontinental rifting led to the breakup
between the Yangtze and Cathaysia blocks, forming
S- and A-type granites, bimodal volcanic rocks, and
other mafic–felsic rocks.

6. Conclusions

(1) The Getengling granitoid with the zircon LA-
ICP-MS U–Pb age of 845 ± 4 Ma is one of the
Neoproterozoic S-type granites in the
Jiangnan Orogen. Both ancient crustal sedi-
ments and juvenile mantle-derived compo-
nents generated by precursor arc magmatic
activities may have served as the magma
source for the pluton.

(2) Both the ca. 850–730-Ma granitoids and mafic
rocks in South China are geochemically different
from the coeval large igneous provinces in
Australia and western Laurentia, suggesting that
they are not generated by mantle plume
activities.

(3) The geochemical characteristics of the pre-850-
Ma, ca. 850–820-Ma, and post-820-Ma igneous
rocks in the Jiangnan Orogen suggest a tectonic
evolution from plate subduction-related mag-
matic arcs, through collision between the
Yangtze and Cathaysia blocks, to post-collisional
extensional environment.

(4) The collision between the Yangtze and
Cathaysian blocks to form the South China
block took place at ca. 850–820 Ma, rather

than during the ca. 1100–900-Ma Grenville
orogeny.
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