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Abstract

The occurrence of the {2 1 0} shape of pyrite crystals has been used as an empirical indicator for gold enrichment in ore
deposits. Such indicating, also called ‘typomorphism’ in ore mineralogy, was conventionally attributed to environmental fac-
tors such as sulfur fugacity and temperature and pressure conditions in the ore-forming hydrothermal fluid. Here we show
that the crystal-face specific redox reactivity of pyrite is also an important governing potency that drives gold enrichment
in the pyrite crystals with particular shapes. This conclusion was drawn from data compiled from chemical analysis of field
samples, laboratory testing of gold deposition on natural pyrite crystals, as well as theoretical calculations. Kinetic measure-
ments of gold reductive deposition first revealed the highest precipitation rate on the {2 1 0} faces, particularly when pyrite
crystals are enclosed by complex forms containing {2 1 0}. Corroborating with the experimental observations, density func-
tional theory (DFT) calculations further indicated that the {2 1 0} possesses a high adsorption energy for gold, a high energy
state of the highest occupied molecular orbital and consequently a low Eh. These results afford evidence supporting the view
that the face specific reactivity, an intrinsic property of crystal, plays an important role in the gold concentration in pyrite and
the occurrence of specific pyrite shapes. Our findings not only provide a surface chemical view for understanding the empirical
prospecting method but also exemplified the significance of crystal face specific-reactivity in understanding crystallographic
orientation related geochemical processes. The crystal face specific reactivity may be a critical factor controlling geochemical
reactions at mineral-water interface, such as prebiotic synthesis on pyrite surfaces and mineral-water interface controlled
kinetic isotope fractionation.
� 2019 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Gold has been a measure of wealth for human society
even since the metal’s discovery in the early stage of civiliza-
tion. As such, gold prospecting and exploration have never
lost its frontier position in geoscience. Gold commonly
occurs in sulfide minerals, such as bornite, chalcopyrite,
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as an ‘‘invisible” form in various ore deposits (Cook and
Chryssoulis, 1990; Maddox et al., 1998; Cabri et al.,
2000), including Carlin-type Au deposits (Palenik et al.,
2004) and Archean Au lodes (Yang and Zhou, 2001;
Goldfarb et al., 2005). Of these metal sulfides, pyrite is
the most significant due to the indicative of crystal mor-
phology to the enrichment of gold in ore deposits (Chen
et al., 1987; Sazonov et al., 2009; Xue et al., 2014;
Pshenichkin et al., 2015). For instance, high-concentration
gold is emperically found to be correlatable to the occur-
rence of pyritohedral {2 1 0} and complex form of pyrite
crystals (Table S1 in Supplementary Information).
Although most of the collected data compiled in Table S1
are qualitative description, quantitative data from five gold
deposits in China can be linearly plotted in Fig. 1.

The correlation in Fig. 1 could be interpreted by the
occurrence of non-equilibrium {2 1 0} form, which is also
linked to crystal size, i.e., specific surface area (SSA). Thus,
the gold enrichment in pyritic {2 1 0} was traditionally
attributed to SSA. Although the SSA dependence was fre-
quently shown in both experimental and natural pyrites
(Tauson et al., 2014; Tauson et al., 2018), conflicting obser-
vations were frequently reported in the literature. For
instance, euhedral – subhedral pyrite pyritohedron (i.e.,
the {2 1 0} form) with larger crystal size (3–5 mm), from
gold deposits of Beishan area in eastern Xinjiang, China,
contain higher gold concentration (110 ppm) than that
(3.33 pm) from euhedral {1 0 0} with small crystal size
(1.5–3 mm) (Sun and He, 1997), indicating that the relation
shown in Fig. 1 may have underlying controlling factors
other than SSA only.

Alternately, the indicating of gold concentration by the
crystal shape of pyrite (which is usually called ‘typomorphic
forms’ in ore mineralogy) could also be interpreted indi-
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Fig. 1. Correlation between the occurrence of pyritohedral and
complex pyrite crystals (%) and the gold concentration (ppm).
Shaded area is 95% confidence interval for the linear correlation. (
denotes data from Denggezhuang gold deposite (Xue et al., 2014);
denotes data from Daiwangshan gold deposit in inner Mongolia
(Wang et al., 2017); and denote data from Qixia gold deposit,
and Xiadian gold deposit in Linglong, Shandong, respectively
(Chen, 1987); denotes data from an anonymous gold deposit in
Shandong, China (Yang and Huang, 1997).)
rectly as an indication of gold enrichment in high sulfur
fugacity conditions. This interpretation was drawn based
on that the development of pyritohedral morphology on
pyrite crystals was shown to correlate with high S content
in gold-bearing fluid at a wide pressure–temperature range
(Chen et al., 1987; Cai and Zhou, 1994). An implicit
hypothesis of this interpretation is that the partition of gold
between pyrite and ore-forming fluid is irrelevant to the
crystal faces and pertinent surface structures on pyrite
grains. However, experimental studies provided direct evi-
dence showing no correlation between gold’s incorporation
rate in pyrite and the solution phase concentration of gold
ions (Mycroft et al., 1995). Furthermore, a plethora of lit-
erature data suggest that the reactivity of pyrite is
crystallographic-direction specific (Guevremont et al.,
1998; Elsetinow et al., 2000; Zhu et al., 2018). For instance,
the oxidation rates of the {2 1 0} and {1 1 1} faces on pyrite
are two orders of magnitude greater than that of the {1 0 0}
face (Zhu et al., 2018). Hence, a critical gap exists in our
current understanding of gold ore formation: is Au enrich-
ment on specific pyrite faces associated with S-induced
development of the {2 1 0} form or caused by the high sur-
face reactivity of the {2 1 0} faces?

Whereas the adsorption and reductive precipitation of
gold on pyrite surfaces is widely known (Mycroft et al.,
1995; Widler and Seward, 2002), the fundamental driving
factor responsible for Au+ or Au3+ to Au0 transformation
on specifically shaped pyrite crystals has not been eluci-
dated in the context of physiochemical principles. For
example, Hyland and Bancroft (1989) and Mycroft et al.
(1995) examined gold precipitation on powdered pyrite
using X-ray photoelectron spectroscopy and found that
the mineral surfaces can serve as Au reducing agent.
Mycroft et al. (1995) reported microphotographic evidence
of gold aggregation from nano-particles to micro-grains on
pyrite surface reacted in AuCl4

� solution. Recent data by Fu
et al. (2017) revealed adsorption of gold nanoparticles with
diameters of 16 or 39 nm on pyrite surface is affected by
pyrite oxidation. Whereas these findings support the view
that gold has strong affinity toward pyrite surface, a direct
link between surface chemistry of crystallographic faces of
pyrite and gold enrichment has not been established.

The reactivity of pyrite surfaces can be theoretically
interpreted from the corresponding surface electronic struc-
tures (Rosso, 2001; Murphy and Strongin, 2009). Hung
et al. (2002a, 2002b) revealed the surface geometry, energet-
ics, and electronic structure of pyrite (1 0 0), (1 1 0), (2 1 0),
and (1 1 1). Alfonso (2010) further investigated the surface
stability of pyrite in different sulfur environments.
Although these studies theoretically investigated the surface
properties of pyrite, little information concerning the rela-
tion of surface reactivity to surface electronic structures
was documented.

In this study, we present a comprehensive study, com-
bining density functional theory (DFT) calculations with
experiments, on the surface electronic structure and gold
uptake of pyrite. The purpose of this study is to examine
(1) the differences between surface electronic structure and
the corresponding reactivity on different pyrite faces, and
(2) the role of surface specific reactivity in understanding
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the pyrite morphology indicative of gold enrichment. Our
results provide strong evidence indicating that the high
affinity of pyrite’s {2 1 0} form to gold is closely related
to the high energy state of the corresponding surface molec-
ular orbitals and the resultant low Eh conditions. These
findings may have far-reaching significance beyond gold
mine prospecting because the concept of crystal-direction
specific molecular orbital structure is universal for anisotro-
pic materials and can be applied to any oriented mineral
surface reactions including non-classical crystal growth,
isotope fractionation during adsorption and mineralization,
as well as biogenic mineral formation.

2. MATERIALS AND METHODS

2.1. Theoretical calculations

Simulated scanning tunneling microscopy (STM) images
and electronic structures were calculated using DFT within
the generalized-gradient approximation (GGA). For each
surface, slab models with the lowest surface energy were
employed, with all atoms being relaxed without fixation.

All DFT calculations in this study were performed using
the Vienna ab initio simulation package (VASP) (Kresse
and Furthmuller, 1996) along with projector augmented
wave (PAW) method (Kresse and Joubert, 1999). Standard
PAW pseudopotentials (Fe: d7s1, S: s2p4, and Au: s1d10)
were used. PBE functions (Perdew et al., 1996) were utilized
for the description of the exchange-correlation interaction
among electrons. The electron-ion interactions were
included within a plane wave basis with an energy cutoff
of 350 eV, which gives good representation of physical
properties of pyrite (Zhang et al., 2012). The convergence
criteria for the total energy is 10�6. Hubbard U correction
(PBE + U) (Dudarev et al., 1998), which was verified to
be well suited for the description of pyrite (Zhang et al.,
2012; Krishnamoorthy et al., 2013; Zhang et al., 2015),
was employed to treat the Fe 3d electrons. A lattice con-
stant of 5.423 Å and an indirect band gap of 0.95 eV for
the bulk pyrite were obtained using a U-J parameter of
1.6 eV (Krishnamoorthy et al., 2013), which are in good
agreement with both the experimental data and previous
calculations.

The structure models of typical stable pyrite facets were
derived from the reported stability configuration in different
sulfur environment (Alfonso, 2010). We employed the most
stable slab models, i.e., the {1 0 0}-S, {1 1 1}-3S, and
{2 1 0}-2S0, to represent the surface electronic properties
of pyrite (Fig. S1 in the Supplementary Information). The
{1 0 0}-S is stoichiometric while the other two possess extra
S atoms. All these symmetrical slab models were cut from
the fully optimized bulk structure with unit cell and sepa-
rated by a �15 Å vacuum zone. Following the PBE + U

approach, the slab thicknesses was estimated to be approx-
imately 25–27 Å, which gives a surface energy (Fig. S2 in the
Supplementary Information) comparable to that from pre-
vious standard PBE results (Hung et al., 2002a, 2002b;
Alfonso, 2010) and hence a good representation of the elec-
tronic structure (Zhang and Yates, 2012). The k-point sam-
pling is generated by Monkhorst-Pack method (Monkhorst
and Pack, 1976) with a 6 � 6 � 1 mesh for {1 0 0}, 5 � 5 � 1
for {1 1 1}, and 6 � 3 � 1 for {2 1 0} in the Brillouin zone.

We used supercells of pyrite {1 0 0}, {2 1 0}, and {1 1 1}
faces to represent the reactivity of gold adsorption. (2 � 2),
(2 � 1), and (1 � p

3) slabs with 3 � 3 � 1, 3 � 3 � 1, and
4 � 2 � 1 k-point meshes were used for modeling {1 0 0},
{2 1 0}, and {1 1 1}, respectively. A series of tests were con-
ducted on {1 0 0} surface to get the parameters for the
adsorption modelling. The optimized energy cutoff is
400 eV and the slab thickness of {1 0 0} surface is 4 FeS2

structural layers. Using these parameters, the total energy
and adsorption energy of the gold-pyrite adsorption sys-
tems could converge to less than 0.001 eV and 0.03 eV,
respectively. The same energy cutoff and similar slab thick-
ness were employed for the gold adsorption on pyrite
{2 1 0} and {1 1 1} faces.

2.2. Gold deposition experiments

The pyrite single crystals used in this study are the same
as our previous study (Zhu et al., 2018). The {1 0 0} and
{1 1 1} pyrite single crystals originated from the Navajun,
La Rioja Province, Spain, while the {2 1 0} pyrite single
crystals originated from Hunan Province, China. The miller
index and micrographs of these pyrite faces, which can rep-
resent the crystallographic orientation dependent reactivity,
were characterized by electron back-scattered diffraction
(EBSD) and scanning electron micrographs (SEM) as
shown in the supplementary materials of our previous study
(Zhu et al., 2018).

To investigate the reactivity of single pyritic {1 0 0},
{1 1 1}, and {2 1 0} faces, the samples with the target sur-
faces were exposed to HAuCl4 solutions while the other sur-
faces were coated with paraffin wax. To further examine the
reactivity of distinguishable faces on complex forms, a sec-
tion along [0 k l] was cut from a cubic pyrite crystal, obtain-
ing a combination sample with both (1 0 0) and (0 k l) faces.
The cut section surface was lightly wet polished with 600,
1000, and 1400 mesh grit silicon carbide paper and well
washed with ultrapure water. Except for the surfaces of
interest, the other surfaces on the sample were also screened
with paraffin wax.

The HAuCl4 deposition on pyrite surfaces were carried
out in an anaerobic glove box made by MIKROUNA.
Prior to immersion in the reaction solution, the exposed pyr-
ite surfaces were washed by submerging the samples in an
acid solution mixture of 48% HF, 70% HNO3, and 99.99%
acetic acid with a volume ratio of 1:2:1 for 30 s. Then the
washed pyrite samples were immersed in 500 mg/L HAuCl4
solution (within 1.0 M Cl� and pH = 3.25). The reactions
were terminated by taking the samples out of the solutions
after 5, 15, 25, 35, and 45 min and these samples were then
characterized using X-ray photoelectron spectroscopy
(XPS).

2.3. Characterization

The scanning electron microscopy and energy dispersion
spectroscopy (SEM-EDS) were performed on a Hitachi
SU8010 cold field emission SEM instrument operated at
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20 kV. The samples were directly analyzed without any con-
ductive coating. For EDS analysis, the working distance
was set at 8.0 mm. XPS were performed on a Thermo
Scientific K-Alpha XPS instrument equipped with an Al
Ka source (1486.8 eV) operated at an emission current of
3 mA and a tube voltage of 12 kV. The vacuum in the ana-
lytical chamber was <1 � 10�8 mbar. To avoid the charged
surface affecting the analysis, the Electron Neutralizer
(flood gun) in the analysis chamber was enabled during
the analysis processes. The energy resolution is 0.5 eV.
XPS spectra were collected from three random selected area
on each pyrite surface to estimate the experimental error.
For the ion-milling experiments, a mild sputtering (1000 V
Ar+ ion energy at 10 mA electron emission current) was
performed for 5 to 30 seconds on the samples exposed to
HAuCl4 solution. The XPS spectra were calibrated on the
C 1s line of adventitious carbon contamination with a bind-
ing energy of 284.8 eV. The spectra were processed using
the Thermo Avantage analysis software with regard for
the smart background and the mixed Lorentz-Gaussian
shapes of the peaks.

3. RESULTS

3.1. Crystal face specific gold deposition on pyrite

The kinetics of Au3+ reductive precipitation from
HAuCl4 solutions onto individual crystal faces of natural
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area marked with a blue box. (d–f) are EDS mappings of Fe K, S K, and A
f) represent 5 lm. (For interpretation of the references to colour in this fig
pyrite single crystals were characterized using XPS and
SEM-EDS. All irrelevant surfaces on the samples were
sealed with paraffin wax to ensure the collected data only
derived from the targeted crystal faces. The results
unambiguously show that the highest precipitation rate
is associated with the {2 1 0} while the slowest precipita-
tion occurs on the {1 0 0} faces (Fig. 2a) and confirm
that gold can indeed precipitate on pyrite surfaces
(Fig. 2b–f).

The XPS spectra of Fe 2p3/2 and Au 4f core electrons for
pyritic faces contacting with the Au3+ chlorides solution are
illuatrated in Fig. 3. From the Fe 2p3/2 spectra (Fig. 3a–c),
the FeAO species, which indicates the oxidation of pyrite
coupled to the reduction of Au3+, could be observed except
for the bulk and two surface Fe states. From the Au 4f spec-
tra (Fig. 3d–f), two types of gold species can be identified.
One is assigned for the 4f7/2 at �84.20 eV while the other
is at �85.00 eV. The former arises from metallic gold and
the latter from Au+ (Tauson et al., 2017). To further esti-
mate the distribution of both Au species, we performed an
ion-milling experiment with Ar+-ion sputtering. The results
(Fig. S3 in the Supplementary Information) show that the
surface coverage of the Au+ species is much thinner than
that of the metallic gold, suggesting the Au+ species may
be bonded to surface S atoms on pyrite surfaces as a thin
film. The FeAO species in Fe 2p spectra (Fig. 3a–c), oxide
O species (Fig. S4a in the Supplementary Information)
and SO4

2� in S 2p spectra (Fig. S4b in the Supplementary
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Information) from pyrite {2 1 0} and {1 1 1} show much
higher relative content than those from the {1 0 0}, which
agrees with the surface structure dependent oxidation reac-
tivity (Zhu et al., 2018).

Reductive precipitation experiment of Au3+ chlorides on
both pyritic {1 0 0} and {0 k l} faces show that, relative to
that on the individual pyritic {1 0 0} and {0 k l} faces, the
amount of gold precipitated on individual pyrite crystals
enclosed by both the {1 0 0} and {0 k l} faces was about
1.5-times greater (Fig. 4).

3.2. Surface topography of typical pyrite faces

Air and ultra-high vacuum (UHV) STM images of pyr-
ite {1 0 0} have been carried out despite pyrite cleaves
poorly along the cubic planes (Eggleston and Hochella,
1990; Eggleston et al., 1996; Rosso et al., 1999; Rosso
et al., 2000). However, compared to pyrite {1 0 0}, less
work has been performed on other surfaces (Rosso,
2001). Using DFT calculations, we simulated the STM
images of pyrite {1 0 0}, {2 1 0}, and {1 1 1}. The results,
as shown in Fig. 5, illustrate 4-fold, 2-fold, and 3-fold sym-
metry for pyrite {1 0 0}, {2 1 0}, and {1 1 1}, which corre-
spondingly consist with the two-dimensional atomic
structures. Both Fe atoms and S-S bonds can be imaged
with different contrast on the three surfaces. Distinguish-
able ridges and valleys can be identified in our simulated
STM image, consisting with previous experimental STM
images of pyrite {1 0 0} carried out on a growth surface
which has been exposed to air for years (Eggleston and
Hochella, 1990). However, the simulated STM image for
pyrite {1 0 0} disagrees with those obtained in UHV
cleaved surfaces (Rosso, 2001), which only presents the
image of iron atoms. To elucidate the reason for this incon-
formity, we further simulated STM image for another



Fig. 5. Simulated STM images of pyrite {1 0 0}, {2 1 0}, and {1 1 1} surfaces using a bias of �0.5 eV. The tip distance is roughly 1.0 Å. The
scale bars represent 5 Å.
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metastable {1 0 0}-Fe surface without the outmost sulfur
layer. The results (Fig. S5 in the Supplementary Informa-
tion) display the same image with those obtained in UHV
cleaved surfaces (Eggleston and Hochella, 1990). Therefore,
we conclude that the models we used in this study can rep-
resent the most stable pyrite surfaces, and thereby interpret
its surface reactivity.

3.3. Surface electronic structure of typical pyrite faces

Based on surface band structure calculations, the three
pyrite faces show spin-dependent bands, with indirect band-
gaps of 0.56, 0.15, and 0.28 eV for {1 0 0}, {2 1 0}, and
{1 1 1}, respectively (Fig. 6). Two surface states in either
majority or minority spin, which locate around conduction
band (CB) and valence band (VB), respectively, can be
identified from the three pyrite faces. These surface states
locate at the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO).
The energy level of HOMO and HOMO-LUMO gaps are
in the same order of {2 1 0} > {1 1 1} > {1 0 0}, indicating
that electrons on {2 1 0} surface are more easily excited
than those on {1 1 1} and {1 0 0}.
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{1 0 0}, {2 1 0}, and {1 1 1} surfaces present that most of
the CB and VB are raised from Fe 3d orbital (Fig. 7). How-
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consist of the two surface states, vary from pyrite {1 0 0}
to {2 1 0} and {1 1 1} surfaces. The HOMO and LUMO
of {1 0 0} surface mainly arise from Fe 3d orbital while
those of the other two surfaces possess more contributions
from S 3p orbital, as indexed by the green arrows in Fig. 7.

The presented spin polarizations in both band structure
(Fig. 6) and DOSs (Fig. 7) are mainly around the first Fe
layer (Fe1), as shown in Fig. 8. Compared to the spin polar-
ization from Fe1, those from Fe2 to Fe3, and other bulk-
like Fe layers are negligible, which agrees with the magnetic
moment as labeled in Fig. 8 on the corresponding atoms.
Sulfur atoms of the outmost layer on both {2 1 0} and
{1 1 1} possess spin polarization in certain degree while
those on {1 0 0} does not have, which is consistent with pre-
vious calculations performed on {1 0 0} surface (Zhang
et al., 2012). These spin polarization of S atoms on
{2 1 0} and {1 1 1} could be the reason for the S 3p contri-
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pyrite {1 0 0}, {2 1 0}, and {1 1 1} are 1.97, 2.75, and 1.15
lB, respectively. Depth resolved magnetic moment
(Fig. 9), display that the magnetic moment change only
occurs in the limit depth of 2.8 Å, 3.6 Å, and 3.2 Å for
{1 0 0}, {2 1 0}, and {1 1 1}, respectively. Furthermore,
the magnetic moment changes of both Fe and S atoms on
{2 1 0} surface are the largest among the three faces, indi-
cating {2 1 0} face possesses the highest spin polarization
and the deepest surface effect.

To further investigate the surface effect on pyrite sur-
faces, depth-resolved electronic structures of pyrite surfaces
are presented through the Fe-3d PDOS spectra from
different surface Fe layers, which are displayed in Fig. 10.
Surface effect is limited in the top two (for {1 0 0} and
{1 1 1}) or five (for {2 1 0}) Fe atomic layers (�7 Å in total
thickness). Combining the surface effect of magnetic
moment (�3 Å) with that of the Fe-3d PDOS spectra (�7
Å), one can observe that the surface effect is limited in
about 7 Å while only atoms in half depth mainly contribute
to surface states.

The net charges of atoms from the {1 0 0}, {2 1 0}, and
{1 1 1} surfaces are deciphered by Bader charge-division
scheme (Bader, 1990; Henkelman et al., 2006), as shown
in Fig. 11. Compared to the bulk like atoms, surface Fe lose
�0.1 (for {1 0 0} and {1 1 1}) or 0.27 (for {2 1 0}) electrons
while surface S atoms can either gain or lose electrons in
certain degree. The surface S of {1 0 0} only lose 0.02–
0.07 electrons while those of {2 1 0} and {1 1 1} can either
gain or lose more than 0.1 electrons. These differences could
be assigned to the extra S atoms on {2 1 0} and {1 1 1}.

Work functions (u), ionization potential (I), and elec-
tron affinity (v) can be calculated based on the band struc-
ture and vacuum energy level of pyrite {1 0 0}, {2 1 0}, and
{1 1 1} surfaces (Fig. S6 in the Supplementary Informa-
tion). The results (Table 1) show that I for the three pyrite
faces is in the order of {2 1 0} < {1 0 0} < {1 1 1} while u
and v in the order of {1 0 0} < {2 1 0} < {1 1 1}. The band
energy level shows that the energy level of {1 1 1} is the
lowest among the three faces, indicating {1 1 1} face pos-
sesses the highest reducibility.

3.4. Adsorption energy and configurations of gold atom on

typical pyrite faces

To characterize the interaction of gold on pyrite sur-
faces, the adsorption energy of gold on pyrite {1 0 0},
{2 1 0}, and {1 1 1} surfaces were calculated. All the possi-
ble adsorption sites on pyrite surfaces were considered as
listed in Table 2. The most stable adsorption configurations
(Fig. 12) show that the coordination number of the
adsorbed gold atom for {1 0 0} is 1 while that for {2 1 0}
and {1 1 1} is 3. Although the gold atoms on both {2 1 0}
and {1 1 1} interact with three S atoms, the SAAu bond
length varies from one to another (Table 2). The SAAu
bond lengths for {2 1 0} vary from 2.32 to 2.64 Å while
those for {1 1 1} are almost the same (2.42 Å). The adsorp-
tion energies of the most stable configurations are in the
order of {2 1 0} (�3.25 eV) < {1 1 1} (�3.08 eV) < {1 0 0}
(�2.26 eV), indicating gold adsorption on the {2 1 0} sur-
face is the most stable one among the three surfaces.



Fig. 8. Isosurfaces of spin density of pyrite (a) {1 0 0}, (b) {2 1 0}, and (c) {1 1 1} surfaces. The magnetic moment (lB) values represent the
spin polarization on the corresponding atom. The white yellow and brown spheres represent sulfur and iron atoms, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. DISCUSSION

4.1. Surface electronic structure determined reactivity on

single-crystal face of pyrite

Based on the surface electronic structure difference, we
can discuss the reactivity of single-crystal faces of pyrite
on both thermodynamics and kinetics aspects. On thermo-
dynamics, the electronic structure-controlled surface poten-
tial (Fig. 13) can be employed to identify the direction of
certain redox reactions. When all the surface potentials
are integrated versus standard hydrogen electrode (SHE),
one can get the electrode potential of different pyrite sur-
faces, such that

py 100f g� oxidized-pyf100g þ e E0 ¼ þ0:55 V
� �

; ð1Þ
py 210f g� oxidized-pyf210g þ e E0 ¼ þ0:93 V

� �
; ð2Þ

py 111f g� oxidized-pyf111g þ e E0 ¼ þ1:36 V
� �

: ð3Þ
After the electrode potentials are obtained, one can
easily judge whether a reaction can occur spontaneously
or not. For instance, because all the electrode potentials
of the three faces are greater than zero, i.e., the SHE, H2

can reduce the pyrite surfaces.
Although thermodynamics can predict the occurrence of

certain reactions on certain thermodynamic conditions, the
reaction rate, r, could not be predicted directly. On the one
hand, using transition state model (TST), the rate of geo-
chemical reactions could be described through an r - DG
relationship (Lasaga, 1998). Based on the adsorption ener-
gies of gold on pyrite surfaces (Table 2), it can be inferred
that the adsorption rate of gold on pyrite {2 1 0} could be
the highest among the three faces. On the other hand, the
kinetics can be interpreted by the HOMO-LUMO gap.
Because the {2 1 0} faces possess the narrowest gap, the
electrons on the {2 1 0} surfaces are much easier excited
than those on the other surfaces, which can lead to higher
reaction rate. Therefore, the {2 1 0} face should possess



Fig. 10. Projected density of states (PDOS) for Fe-3d orbital in different layers of pyrite(a) {1 0 0}, (b) {2 1 0}, and (c) {1 1 1}. The labeled Fe
layer numbers are in line with those in Fig. 8. Bold black and thin red lines in the PDOS spectra denote states in the majority and minority spin
channels, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Table 1
Calculated work functions (u), ionization potential (I), and
electron affinity (v) of pyrite {1 0 0}, {2 1 0}, and {1 1 1} surfaces
(eV).

Surfaces {1 0 0} {2 1 0} {1 1 1}

I 5.26 5.22 5.92
u 4.95 5.33 5.76
v 4.70 5.07 5.66
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higher reactivity than the other faces when redox reactions
occurring on pyrite surfaces.

4.2. Surface potential difference induced reactivity shift on

complex crystal pyrite face

Most of natural pyrite crystals always contain complex
shapes instead of single-crystal forms (Murowchick and
Barnes, 1987). Because the electronic structure of pyrite
faces shows that these faces can be described as metal
({2 1 0}) or semiconductor ({1 1 1} and {1 0 0}) with cer-
tain band gap, we employ the band bending concept, which
was initially introduced to describe the metal and semicon-
ductor contact (Zhang and Yates, 2012), to describe the
electronic structure of complex pyrite crystals. When differ-
ent faces occur on a same pyrite crystal, the band bending
occurs as the Fermi levels of various faces shift to the same
level (Fig. 14). When {2 1 0} and {1 0 0} occur on one pyr-
ite crystal (Fig. 14a), the electrons will flow from {1 0 0} to
{2 1 0}. The electron transfer will continue until the Fermi
levels of {2 1 0} and {1 0 0} are aligned. Consequently,
{1 0 0} possess higher potential than {2 1 0}. Similar to
{2 1 0} + {1 0 0}, the couples of {2 1 0} + {1 1 1}
(Fig. 14b) and {1 0 0} + {1 1 1} (Fig. 14c) also possess
potential difference between the faces.

Once the potential difference forms between various
faces, the surface reactivity can be linked to the bulk
conduction model (Yanina and Rosso, 2008). Fig. 15a



Table 2
Comparison of coordination number, bond length, and adsorption energy of an adsorbed gold atom on pyrite {1 0 0}, {1 1 1}, and {2 1 0}
surfaces using DFT + U calculations.

Sites Coordination number S-Au/Fe-Au Bond length (Å) Adsorption Energy (eV)

{1 0 0}-Fe 1 2.50 (Fe-Au) �2.26

{1 0 0}-S 1 2.31 (S-Au) �1.54
{2 1 0}-S1 1 2.26 (S-Au) �2.91
{2 1 0}-S2 3 2.40; 2.32; 2.64 (S-Au) �3.25

{2 1 0}-Fe 1 2.44 (Fe-Au) �2.22
{1 1 1}-S1 1 2.32 (S-Au) �2.50
{1 1 1}-S2 3 2.41; 2.42; 2.42 (S-Au) �3.08

Fig. 12. The most stable relaxed configurations of gold interaction with pyrite {1 0 0}, {2 1 0}, and {1 1 1} surfaces. The white yellow, brown
and white brown spheres represent sulfur, iron and gold atoms, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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illustrates the possible conduction model in pyrite
crystals. Pyrite {1 0 0} possess higher potential than
{2 1 0} and {1 1 1}, when reactant occurs on pyrite sur-
faces, the reductant and oxidant may be separated on
different faces through the bulk crystal conduction. A
similar separation of redox reactions on anatase {0 0 1}
and {0 1 1} was observed by Ohno et al. (2002). There-
fore, beyond reactivity on single-crystal faces, the bulk
conduction model can enhance the reactivity among var-
ious pyrite faces. And this is the reason for the enhanced
reactivity of gold deposition onto combined surfaces, as
shown in the schematic diagram (Fig. 15b–d) illustrating
enhanced gold enrichment in pyrite crystals of complex
forms.

4.3. Linking gold enrichment to pyrite face specific reactivity

and shapes

Based on the electrode potential of gold species (Haynes,
2014):



Fig. 14. Energy band diagrams of surface dimer combination among pyrite {1 0 0}, {2 1 0}, and {1 1 1} surfaces. All the variables in the
diagrams are the same with those in Fig. 13.

Fig. 15. (a) Electron transfer routes between {1 0 0} and {0 k l} surfaces of pyrite with combination form. (b and c) Schematic diagram
summarizing the gold deposition behavior for individual {1 0 0}, {0kl}, and the combination surfaces.
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AuBr�4 þ 3e�Au þ 4Br� E0 ¼ þ0:854 V
� �

; ð4Þ
AuBr�2 þ e�Au þ 2Br� E0 ¼ þ0:959 V

� �
; ð5Þ

AuCl�4 þ 3e�Au þ 4Cl� E0 ¼ þ1:002 V
� �

; ð6Þ
Au3þ þ 3e�Au E0 ¼ þ1:498 V

� �
; ð7Þ

Auþ þ e�Au E0 ¼ þ1:692 V
� �

; ð8Þ
and the observed face dependent surface electrode potential
in this study, one can easily identify that gold complex spe-
cies can be reduced to metal gold on pyrite surfaces, which
was first experimentally confirmed by Hyland and Bancroft
(1989).

Both theoretical and experimental results reinforce the
viewpoint that the crystal face dependent reactivity of pyr-
ite is an intrinsic driving force of gold enrichment on pyrite
with specific crystal morphology. In gold-bearing liquids,
Fig. 16. Predicted pyrite shape evolution for the gold enrichme
ionic gold prefers to precipitate on pyritic {2 1 0} faces in
response to the high surface reactivity. On the one hand,
the precipitation of gold can lower the surface energy of
all pyrite faces to decrease the growth rate of pyrite faces,
suggesting that gold precipitation on pyrite surfaces may
lead to crystal sizes smaller than those grown without gold
precipitation. This may be one important reason for the
observed gold enrichment in fine pyrite crystals (Tauson
et al., 2014; Tauson et al., 2018) that has traditionally been
attributed to the occurrence of large specific surface area
On the other hand, the precipitation of gold can improve
the stability of the {2 1 0} faces, compared with those of
the {1 0 0} and {1 1 1}, as the adsorption energy of a gold
atom on pyrite {2 1 0} is the lowest among the habitual
crystal faces of pyrite as described above. This means that
gold on the {2 1 0} faces can decrease the growth rate of
the {2 1 0} faces, ultimately resulting in a correlation
nt through its surface electronic structure and reactivity.
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between gold content in the ore rock and the occurrence of
pyritohedral {2 1 0} and complex forms of pyrite crystals.
Furthermore, the intrinsic reactivity of pyrite faces is prac-
ticable not only to gold but also to all other components of
a system as well periodically changing their composition
through geological times, which may be the fundamental
for understanding some crystallographic orientation related
geological phenomenon.

Based on the facts that (1) pyrite complex forms possess
higher reactivity than single-crystals and (2) the redox reac-
tivity of pyrite faces is in order of {2 1 0} > {1 1 1} >
{1 0 0}, the reactivity of gold adsorption/reduction on pyr-
ite should approximately be in the order of {1 0 0} < {1 1 1}
< {2 1 0} < {1 0 0} + {1 1 1} < {1 0 0} + {2 1 0} < {1 1 1}
+ {2 1 0} < {1 0 0} + {1 1 1} + {2 1 0}. This order is in line
with the statistic law for the gold enrichment in complex
pyrite forms (Chen et al., 1987; Shen et al., 2013). Thus,
it infers that the gold enrichment, as illustrated in Fig. 16,
is indeed linked to the surface gold reductive deposition
and the corresponding shapes.

4.4. Implications for the crystal face specific geochemistry

Anisotropy is a fundamental property of crystalline
materials and in many cases a determinant physical trait
for crystal application (e.g. birefringence and piezoelectric-
ity). Extensive studies over the past two decades in the reac-
tivities of solid-fluid interfaces (Brown, 2001; Yanina and
Rosso, 2008) further documented that the anisotropy can
manifest as crystallographic direction-specific chemical
reactions. Such reactions include preferential incorporation
of elements in different crystal facets and the development
of intersectoral zoning (Paquette and Reeder, 1990;
Paquette and Reeder, 1995), face-specific surface energetics
(Hong and Teng, 2014), oriented surface binding of organic
molecules (Teng et al., 2006), and oriented nanocluster
aggregation (Banfield et al., 2000). To date, such advances
already find application in various fields such as catalysis
(Pan et al., 2011), biomineralization (Killian et al., 2009)
and medical research (Olszta et al., 2007). Pyrite face speci-
fic gold deposition presented in this study and the crystal
face specific pyrite oxidation from our previous study
(Zhu et al., 2018) showcase the practical importance of
crystal face-specific reactivity in economic geology. Pyrite-
water interactions are also hypothesized to have played
an important role in the origin of life. For example, the
‘‘iron-sulfur world” (ISW) scenario (Wächtershäuser,
1992) is an interesting proposal for prebiotic chemical reac-
tions (Boehme and Marx, 2003) as study found pyrite
{1 0 0} surfaces were able to act as catalysts in the processes
of peptide synthesis (Schreiner et al., 2008).

A conspicuous knowledge gap appears to exist concern-
ing the effect of crystal anisotropy on isotope geochemistry
as the orientation effects were found to be of importance for
isotope measurements (Huberty et al., 2010). It has been
long recognized that surface reactivity of minerals influ-
ences the isotope fractionation during mineral-water inter-
actions (Cole et al., 1983). On the one hand, this is
because isotopic equilibrium fractionation between mineral
and fluid is controlled by the surface ion exchange and dif-
fusion (Guilbaud et al., 2011). On the other hand, it is
shown that precipitation and adsorption reactions at
mineral-water interface can also affect the isotopic fraction-
ation (Beard et al., 2010; Guilbaud et al., 2010). However,
many proposed reactions that cause isotopic fractionation
at mineral-water interfaces ignore the anisotropic surface
reactivity of minerals. This oversight may lead to misunder-
standing of the isotopic fractionations, especially those
resulting from kinetic effects, at mineral-water interfaces.
Based on the observations of anisotropic gold deposition
on pyrite crystal faces presented in this study, we suspect
that distinct fractionation may occur for S and Fe when
pyrite mineralizes in different environment and expresses
different crystal habits. We further speculate that such mor-
phological dependence of fractionation may be universal
for any minerals with strong anisotropic reactivities.

5. CONCLUDING REMARKS

The crystal face dependent surface electronic structure
of pyrite {1 0 0}, {2 1 0}, and {1 1 1} was investigated using
DFT calculations. Surface states, which narrow the surface
band gap, were observed on all the considered pyrite faces.
The HOMO-LUMO gaps of pyrite {1 0 0}, {1 1 1}, and
{2 1 0} faces are 0.56, 0.28, and 0.15 eV, respectively. While
the bulk pyrite is nonmagnetic, the topmost Fe layers of
pyrite {1 0 0}, {1 1 1}, and {2 1 0} faces are spin polarized,
with magnetic moments of 1.97, 1.15, and 2.75 per Fe atom.
The surface effect affects the top 7 Å of these pyrite surfaces
while only the topmost �3 Å mainly contribute to the sur-
face states. The electrode potentials of the pyrite {1 0 0},
{1 1 1}, and {2 1 0} faces are 0.55, 0.93, and 1.36 V (vs.
SHE), respectively.

Furthermore, based on the electronic structure of these
pyrite surfaces, the reactivity of pyrite single-crystal and
complex crystal faces was analyzed. Electrons on individual
{2 1 0} surface are easier to be excited than those on the
other surfaces. The surface potential difference of complex
crystal faces can enhance the reactivity through the bulk
conduction model proposed by Yanina and Rosso (2008).
These theoretical predictions are confirmed by kinetic mea-
surements of gold reductive deposition on pyrite surfaces.

Finally, combined theoretical with experimental results,
the reactivity of gold adsorption/reduction on pyrite crystal
faces was observed in the order of {1 0 0} < {1 1 1} <
{2 1 0} < {1 0 0} + {1 1 1} < {1 0 0} + {2 1 0} < {1 1 1}
+ {2 1 0} < {1 0 0} + {1 1 1} + {2 1 0}, which agrees well
with the statistic law for the gold enrichment in pyrite com-
plex crystals. Thus, the shape of gold-bearing pyrite is
linked to the gold enrichment; and the predicted shape evo-
lution from low to high gold accumulation is in order of
cube, octahedron, pyritohedron, and other complex polyhe-
dron with {2 1 0} faces, such as cubi-pyritohedron.

These results afforded evidence supporting the view that
the intrinsic surface chemistry of pyrite is an important fun-
damental factor controlling the occurrence of specific pyrite
shapes, exemplifying the significance of crystal face specific-
reactivity in understanding ore mineral formation. The crys-
tal face dependent reactivity of pyrite not only exposes the
underlining physicochemical principles of gold enrichment
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in pyrite but emphasizes the critical role of highly reactive
crystal faces in controlling geochemical processes. The con-
certed enhancing effect by band bending and galvanic cell on
surface reactivity may be a widely occurring phenomenon in
semiconductor minerals and photoelectric minerals. Mean-
while, the difference in molecular orbitals in different crystal
faces may be used to explore any oriented mineral surface
reactions such as biomineralization and adsorption/crystal-
lization related isotope geochemistry.
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