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Abstract Cratons are generally observed to retain thick (>180 km) conductive keels for billions of years.
However, some cratons have undergone keel removal, with well-documented examples being the eastern
North China Craton (NCC) and the Wyoming Craton (WC). These keelless subregions appear to have kept a
lithospheric bottom at ~80–100-km depths. This is also the depth range where modern cratons, including the
remaining portions of the NCC and the WC, have seismically visible midlithospheric discontinuity layers
(MLDLs). MLDLs are proposed to be regions of preferential accumulation of metasomatic minerals and/or
anomalously wet (>1,000 ppm) peridotites, both of which would lead to a relatively weak rheology. We
propose that the cratonic keels of the eastern NCC (ENCC) and the western WC (WWC) utilized this weak
MLDL layer to delaminate from overlying lithosphere. We first explore this hypothesis with a
lubrication-theory-based analytical model. This model suggests a close relationship between a cratonic keel’s
long-term stability and the strength of the MLDL’s edge. We further test this prediction with less idealized
2-D numerical experiments which reveal that (a) dense lower keels beneath MLDL-bearing cratons can persist
for billions of years as long as the MLDL’s edges abut relatively cold and strong lithosphere; (b) MLDL
edge failure can induce rapid intramantle lower keel delamination; and (c) the predicted rates of keel
delamination along a ~10-km-thick MLDL with a hydrous olivine or metasomatic mineral-dominated
rheology are consistent with observations for the removal speeds of the WWC and the ENCC.

1. Introduction

Cratons are extremely long-lived and extremely stable continental regions. Their tectonic quiescence has
been attributed to their 150–220-km-thick lithosphere that contains a compositionally highly viscous and
buoyant cratonic mantle keel (Jordan, 1988; Lenardic & Moresi, 1999; Menzies et al., 2007; Sleep, 2003).
However, cratonic keel-removal events have been well documented for the Eastern North China Craton
(ENCC; Griffin et al., 1998; Menzies et al., 1993; Xu, 2001; Xu et al., 2009; Zhu et al., 2012) and the Western
Wyoming Craton (WWC; Eggler & Furlong, 1991; Wu et al., 2014). Both events appear to be associated with
subsequent large-scale crustal deformation (Feeley et al., 2002; Zhu et al., 2012) and magmatic flare-ups
within 20 Myr (see Figure 1). Other more speculative examples of known keel removal events may include
the Dharwar Craton and the Brazilian Craton (cf. Griffin, Kobussen, et al., 2009; Read et al., 2004; Wu et al.,
2014). After keel removal events, former cratonic regions appear to retain relic lithospheric mantle to depths
of ~80–100 km (see Figures 1 and 2b; cf. Hansen et al., 2015; Hopper et al., 2014; Wu et al., 2014; Zhang et al.,
2008; Zheng et al., 2001; Zhu et al., 2012). This is directly documented by the presence of shallow (< approxi-
mately 80 km), but not deep (> approximately 80 km), Archaean mantle xenoliths in later magmatism
(Menzies et al., 1993; Xu, 2001; Zheng et al., 2001).

During the long-term evolution of a craton, its overall mantle keel buoyancy can be affected by mantle
refertilization processes (Gao et al., 2002; Griffin et al., 1998, 2004; O’Reilly & Griffin, 2013; Tang et al.,
2013). As refertilized keel bases (cf. Griffin, O’Reilly, et al., 2009) or relatively young Proterozoic keel bases
(ca. 1.8 Ga; Djomani et al., 2001; Gao et al., 2002) contain compositionally denser peridotites, they can
sometimes have a 0.5–1.9% average compositional density decrease compared to the primitive mantle
(Artemieva & Vinnik, 2016; Kaban et al., 2003, 2016; Lee, 2003; Lee et al., 2011; Mooney & Kaban, 2010).
For cratons containing a fertile/refertilized keel base, the negative thermal buoyancy associated with a
thick mantle keel can be larger than that of the positive floating tendency due to the keel’s average
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Figure 1. Geological and geophysical maps of the ENCC and the Western Wyoming Craton. (a) Eastern North China Craton (ENCC): Lithospheric thickness contours
(in km) are from Zhu et al. (2012). Abbreviations: Western Northern China Carton (WNCC). Magmatism: (1) Tongshi (Lan et al., 2012),
(2) Southern Hanjialing (Wu et al., 2005), (3) Xinglonggou (Yang & Li, 2008), (4) Tiaojishan (Davis et al., 2001), (5) Heigou (Wu et al., 2005), (6) Nandaling (Y. Zhao et al.,
2006), (7) Lanqi (Yang & Li, 2008), (8) Xinyang (Zheng et al., 2008), (9) Jiaodong (Yang et al., 2012). (b) Western Wyoming Craton: Postkeel-removal magmatism is
located on the Paleoproterozoic Selway terrane in its west (Foster et al., 2006). Because this terrane is known to contain Archean basement and diamond mines, the
western limit to the proto-Wyoming Craton is thought to include this terrane (Foster et al., 2006). Lithospheric thicknesses are converted from temperature
contours at ~82-km depth (Hansen et al., 2015), under the assumption that the local geotherm is steady state (see supporting information S1). Abbreviation:
C.-E. - Cretaceous to Eocene times. Labeled Magmatism (numbers in inset figure): (1) Atlanta (Gaschnig et al., 2010), (2) Bitterroot (Gaschnig et al., 2010), (3) Pioneer
(Foster et al., 2012), (4) Boulder (Lund et al., 2002), (5) Tobacco (Mueller et al., 1996), (6) Crazy Mountain (Dudás, 1991), (7) Challis (Norman & Mertzman, 1991),
(8) Lowland Creek (Dudás et al., 2010), (9) Absaroka (Feeley & Cosca, 2003).
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depletion being greater than that of the asthenosphere (see the numerical experiments in section 5.2;
Kaban et al., 2003). In this case, the factors that resist the tendency of the denser keel to sink will be
the overall buoyancy of its overlying continental crust and the strong mechanical strength of the
lithosphere. If crust-mantle or intramantle coupling is disturbed, then cratons could experience keel-removal
event(s) through lithospheric delamination (Bird, 1979; Kay & Kay, 1993). Continental delamination was
originally proposed, with crust-mantle delamination, for the recent uplift of the Colorado Plateau (Bird,
1979). Its geochemical implications were first explored systematically by R. W. Kay and Kay (1993), who
further emphasized the possibility that a lower crustal transformation to denser eclogite could be the
driving force for delamination. However, as noted, above, there is strong observation evidence that
shallow lithospheric mantle relics persist after cratonic keel removal events.

We propose that potential intracratonic decoupling occurs along a seismologically revealed intracratonic layer
named the midlithospheric discontinuity (MLD) that is seen at ~80–100 km (Abt et al., 2010; Aulbach et al.,
2017; Chen et al., 2014; Hopper et al., 2014; Nita et al., 2016; Selway et al., 2015; Sodoudi et al., 2013). The
MLD is a common but not ubiquitous seismic feature in cratonic regions. Here we suggest that the MLD is
better viewed as a thin layer instead of a discontinuity, for example, an MLD layer (MLDL). Since the MLD
was identified, its potential origins have been widely discussed. Proposed mechanisms of formation include

1. A transition to grain boundary sliding due to the upper mantle under this region being richer in water (up
to 1,000 ppm; Karato et al., 2015). Such high chemically bound water contents can also weaken its
strength in dislocation and diffusion creep (Hirth & Kohlstedt, 2004; Korenaga & Karato, 2008). As potential
evidence supporting this mechanism, the Cretaceous (~120 Ma) ENCC mantle has been identified to
locally contain >1,000-ppm water (Xia et al., 2013).

Figure 2. (a) Cross-section locations for the seismic structure in (b); the red dots mark the region of the Wyoming Craton beneath which the MLDL appears to be
absent; the black-dashed line marks the contour of the estimated ~95-km-thick lithosphere in Figure 1. (b) Seismic structure of the northwestern United States
(Hopper et al., 2014) along the profile shown in (a). The proposed lithosphere-asthenosphere boundary (LAB) is marked with a white-dashed line, while the MLDL is
marked with white dots. The MLDL appears to be absent beneath the part of the Wyoming Craton where the region of significant lithospheric thinning
terminates; (c) interpretation of (b). The present-day LAB beneath Selway Terrane and the Western Wyoming Craton (see Figure 1) shares a similar depth with the
present-day MLDL in the un-thinned eastern Wyoming Craton. MLDL = midlithospheric discontinuity layer.
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2. Tectonic stacking. This can lead to an MLD if cratonic layers have sharp enough compositional differences
(Abt et al., 2010). In this scenario, the interface between stacked layers would be rich in volatile-rich melts
(Griffin et al., 2004) whose rheology could be similar to that of metasomatized mantle.

3. Metasomatic layers (Selway et al., 2015) deposited during multiple episodes of metasomatism (O’Reilly
& Griffin, 2013). MLDLs appear to exist at a similar depth (80–100 km) to that proposed for enhanced
metasomatism of cratonic lithosphere (cf. Griffin et al., 2003; Sodoudi et al., 2013). Metasomatic miner-
als, for example, mica and/amphibole, are found in mantle xenoliths in the ENCC, the WWC, Tanzanian
Craton and South African craton (Dawson & Smith, 1988; Downes et al., 2004; Dudás, 1991; Gao et al.,
2002; Griffin et al., 2004; Lu et al., 1991; Tang et al., 2013). These xenoliths are named MARID xenoliths,
composed of Mica (>50 vol.%), Amphibole (~25 vol.%), Rutile, Ilmenite, and Diopside (Dawson &
Smith, 1977). At 80–100-km depths, amphibole (Getsinger & Hirth, 2014) and mica (Kirby & Kronenberg,
1987) appear to be weaker than wet olivine (Hirth & Kohlstedt, 2004).

In summary, MLDLs, if due to any of the above mechanisms, are likely to have a relatively weak rheology in
comparison to their overlying and underlying lithospheric mantle. We currently favor the third (metasomatic
layer) hypothesis.

We propose that dense cratonic lower keels can delaminate along a weak intramantle MLDL and sink into
deeper mantle (see Figures 2c and 3). Note that the exact thickness needed for a weak MLDL to have a sig-
nificant dynamic impact is tightly linked to the viscosity reduction within this layer. Lubrication theory (see
Section 3 below) indicates that the effective viscous strength of the layer will be proportional to its viscosity
but inversely proportional to the cube of its thickness, for example, doubling the thickness of theMLDLwould
have the same effect as reducing its viscosity by a factor of 8. Top-side seismic reflection techniques suggest
the topside wavespeed reduction in this layer is associated with a relatively sharp (<5 km thick) depth

Figure 3. Intramantle keel tearing and delamination model. (a) Onset stage. Configuration at the onset of tearing after
potential mechanisms discussed in section 6 has modified the craton’s margin so that the MLDL is now close to margin’s
edge. (b) Initial tearing stage. The keel is denser than its adjacent asthenosphere. Now materials adjacent to the MLDL’s
edge are soft enough so that the denser keel can start to sag away from the MLDL. The keel’s sagging induces a low-
pressure zone within the MLDL (see Figures 4, 5 and 7), which acts to suck material within and along the MLDL toward the
tip of the growing keel tear. This region of inward flow is marked by a red-dashed circle. Induced inward flow can further
weaken inflowing material due to enhanced power-law creep. This effect will accelerate the keel’s tearing along the MLDL.
(c) Mature keel tearing stage. Once there is a good flow connection between the MLDL and its adjacent asthenosphere
then relatively ductile asthenosphere can readily compensate the void left by keel tearing. This is the stage of most rapid
keel delamination. MLDL = midlithospheric discontinuity layer.
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interval and a total layer thickness of ~10–25 km (Karen Fischer, personal communication, to JM, November
30, 2017). Receiver function and SS-precursor-inferred layer thicknesses are consistent with a ~10-km-thick
MLDL but have much cruder vertical resolution. For example, Sp receiver functions are consistent with
inferred MLDL thickness in the western United States of 15–30 km (Lekić & Fischer, 2014), while SS-precursor
measurements only constrain the reflector to be a “sharp discontinuity with an average velocity contrast of
5 ± 1.5% occurring over <14 km” (Tharimena et al., 2017). In what follows, we will usually assume that the
main weak region of the MLDL is 10 km thick.

A consequence of this hypothesis is that the lithosphere-asthenosphere boundary (LAB) in regions that have
undergone a keel delamination event should have a depth similar to that of the MLD in preserved cratonic
keels, as is seen in the western United States (Figures 1 and 2b; Hopper et al., 2014). A similar depth relation-
ship appears to also exist between the LAB in the keelless ENCC and the remaining MLDL beneath the
unthinned western NCC (Chen et al., 2014).

Here we will further explore the dynamics of cratonic keel delamination along an ~80–100-km-deep MLDL
(see Figure 3). We first review previous models for cratonic keel removal, which appear to have limitations
in explaining some observations on the ENCC and WCC. Second, we discuss a lubrication-theory-based ana-
lytical analysis that provides insights into the mechanics of this keel delamination process. Third, we examine
these predictions using less idealized 2-D numerical experiments.

2. Review of Previous Scenarios for Keel Removal

After it was recognized that the NCC had lost its cratonic keel (Menzies et al., 1993), many conceptual and
numerical models were proposed to thin a keel. Most are related to convective erosion. However, these pre-
vious models appear to have limitations to explain some observations on the ENCC and the WCC.

2.1. Convective Erosion Models

Many scenarios propose that cratonic lithosphere can thin by convective erosion (Xu, 2001) driven by a
Rayleigh-Taylor-type gravity instability (cf. Conrad & Molnar, 1997). These models share the assumption that
the keel has lost its high strength before removal begins. Specific keel weakening mechanisms include

1. Keel heating and/or yielding during orogenic events (Conrad & Molnar, 1997; Gorczyk et al., 2012;
Houseman et al., 1981);

2. Long-term (>1 Gyr) keel refertilization (Foley, 2008; O’Reilly & Griffin, 2013; Tang et al., 2013); and
3. Relatively rapid (<200 Myr) weakening due to the incorporation of volatiles from nearby subducting slabs

(L. J. He, 2014; Niu, 2005; Wang et al., 2016; Wenker & Beaumont, 2017; D. P. Zhao, 2004).

These hypotheses all appear to conflict with some observations. Keel thinning driven by orogeny appears
inconsistent with keel-removal events recorded in cratonic interiors (see Figure 1). Keel weakening due to
long-lived keel refertilization appears inconsistent with the presence of sudden craton-wide magmatic
flare-ups (see Figure 1). If keel thinning by long-term convective erosion was a general process, somemodern
cratons would be expected to exist in an intermediate state between stable and keelless, for example, to have
a blob-like lithospheric base like that described inmodels of the growth of a Rayleigh-Taylor gravity instability
(Conrad & Molnar, 1997; Houseman et al., 1981). This does not appear to be the case.

Given that both the ENCC and the WWC appear to have been adjacent to long-term active subduction zones
(cf. Engebretson et al., 1985; Xu et al., 2009), a further puzzle exists in scenarios for slab-volatilization-induced
weakening to remove cratonic keels: Why did on-cratonic magmatism (see Figure 1a) occur in the ENCC inter-
ior almost contemporaneously with the proposed initiation of subduction of the Pacific Plate (cf. 185 Ma;
Maruyama et al., 1997; Wu et al., 2011), while WWC delamination occurred at least ~70 Myr after the initiation
of subduction of Farallon Plate at approximately 150 Ma (Engebretson et al., 1985)? Why would not similar
weakening mechanisms proceed along similar time scales?

2.2. Flat Subduction

Magmatic flare-ups have previously been described as a frequent by-product of flat subduction. This concept
was developed to explain the Laramide Orogenic event in western North America (cf. English & Johnston,
2004; Snyder et al., 1976). In this scenario, spatially and temporally continuous magmatism would indicate
transient slab positions during an episode of flat subduction.
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However, the time-space patterns of on-craton Laramide magmatism appear inconsistent with predic-
tions from simple scenarios for flat subduction. For example, Challis and Lowland Creek Volcanism (see
magmatism 7 and 8 in Figure 1b) occurred later than the earliest events in the Absaroka Volcanism to
the east (Feeley & Cosca, 2003) but earlier than the latest Absaroka events (see magmatism 9;
Figure 1b). This pattern cannot be easily explained by eastward migrating flat subduction followed
by westward slab rollback (Dudás, 1991). Furthermore, the temporal contiguity of the earliest magma-
tism on the northern subregion of the ENCC (see Figure 1a) would indicate a southward flat subduc-
tion migration. This also conflicts with the proposition that contemporary paleo-Pacific subduction
initialized at ~190–180 Ma and was >800 km away from the sites of magmatism (cf. Maruyama et al.,
1997; Wu et al., 2011).

Second, unlike subduction beneath thinner (e.g., 100 km) lithosphere, slab subduction beneath cratons
(~200 km) is expected to be influenced by the thick keel (cf. Manea et al., 2012; Sigloch et al., 2008).
Beneath a ~200-km-thick keel, a cold and volatile-stripped slab would not further dewater to generate
large-scale on-craton magmatism (Dudás, 1991). Indeed, the current flat subduction beneath South
America is associated with an absence of magmatism, not enhanced magmatism (Kay & Coira, 2009).
Furthermore, if early on-craton mafic magmatism can document the transient lithospheric thickness dur-
ing magmatism to be less than ~100 km (Dudás, 1991; Xu, 2001), then should not these magmas have
preferentially sourced more volatile-rich slab components, instead of the magma-composition-inferred
enriched lithospheric mantle source (Dudás, 1991; Feeley & Cosca, 2003; Menzies et al., 1993; Norman
& Mertzman, 1991; Wu et al., 2005; Xu, 2001)? While flat subduction may be mechanically linked to epi-
sodes of cratonic keel thinning, thinning typically does not rapidly happen when a flat slab lies directly
beneath a cratonic keel.

2.3. Lithospheric Delamination Along a Weakened Moho

As noted above, lithospheric mantle delamination has frequently been proposed to be the primary
mechanism for the destruction and recycling of continental lithosphere (cf. Bird, 1979; Gao et al., 2002,
2009; Kay & Kay, 1993). Based on this conceptual model, many authors have described and studied sce-
narios in which a dense lithospheric root rapidly peels along the weak and/or deepened Moho (Bao et al.,
2014; Bird, 1979; Gray & Pysklywec, 2012; Krystopowicz & Currie, 2013; Z. H. Li et al., 2016; Morency &
Doin, 2004). Most of these studies highlight that the negative buoyancy of the lithospheric mantle is what
triggers delamination, with possible additional contributions from an eclogitized lower crust. Some experi-
ments (Morency & Doin, 2004) demonstrate that lower crustal eclogitization is not needed as long as the
Moho is weak enough.

However, cratonic keel delamination from the Moho appears to conflict with several key observations on the
ENCC and the WWC:

1. Relics of the ancient lithospheric mantle typically remain after a keel thinning event, as revealed by
basalt-bearing xenoliths (cf. Dudás, 1991; Tang et al., 2013; Zhang et al., 2008; Zheng et al., 2001).
This would be a geometric impossibility if delamination occurred along/above the Moho. Instead,
this clearly suggests that at least a layer of former cratonic mantle survives after a keel delamina-
tion event. Similarly, a layer of relic shallow lithospheric mantle appears to survive after noncratonic
delamination events such as that proposed to have recently happened beneath the Canadian
Cordillera (Bao et al., 2014). After keel delamination there, ~1 Ga “old lithospheric mantle” xenoliths
were exhumed, carried in postdelamination asthenosphere-sourced magmas (Francis et al., 2010;
Peslier et al., 2000).

2. Regional keel thinning appears to be independent of lower crustal eclogitization. Until late Cretaceous
times, ancient lower crust still existed beneath the ENCC (cf. Zhu et al., 2012), while contemporaneous
large-scale mantle melting suggests that the craton had already been thinned to ~80 km (Xu et al., 2009).

In contrast to these previous models, keel delamination along an intracratonic MLDL (see Figure 3) appears to
be able to simultaneously explain (1) the flare-up of magmatism on craton (see Figure 1); (2) the presence of
relic ancient crust and shallowmantle in postdestruction lithosphere; and (3) the similar depth distribution of
the postdelamination LAB and predelamination MLDLs (see Figure 3). To progress further in assessing this
hypothesis, we explore this conceptual model with semianalytical and numerical modeling approaches.
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3. Theoretical Analysis
3.1. Lubrication-Theory-Based Model

The feasibility and factors influencing the proposed scenario here for cratonic keel delamination can be
explored using a simple lubrication-theory-based analytical model. As illustrated in Figure 4, the lower keel’s
decoupling from its overlying lithosphere is simplified to be a process of downward bending of denser keel
root, with compensating material flowing into the delaminating region. This simplified model shares a
lubrication-theory formulation with Bird’s (1979) original delamination model. It primarily differs from
Bird’s model in that Bird imagined the weak channel to be hot, ductile, lower crust, while we propose that
it takes place along a deeper weak MLDL. We also propose that the rate limiting factor is the ability of material
to flow into the growing intralithospheric delamination channel. In contrast, Bird envisioned there was limit-
less easy supply of weak material by upwelling of asthenosphere through a vertical conduit within the litho-
sphere. Here the delaminating lower keel is assumed to be (a) overlain by a viscous conduit-like MLDL
channel (see the yellow area in Figure 4) into which the material inflows allow keel separation; (b) embedded
at its distal end (the left end in Figure 4), for example, where the MLDL disappears laterally; (c) subjected to a
uniform body load (F) due to the average net density difference between the denser lower keel and its adja-
cent asthenosphere (see equation (1)).

The body load F that drives delamination is given by

F xð Þ ¼ ΔρgK xð Þ; (1)

where K (x) is the lower keel thickness as a function of lateral distance x, Δρ is the average density difference
between the lower keel and adjacent asthenosphere, and g is the gravitational acceleration.

As the lower keel flexes and delaminates (the lower keel is the black-dashed line in Figure 4), the vertical
deflection of the plate ω from its initial position is given by equation (2) (Turcotte & Schubert, 2014), where
the flexural rigidity D = Eh3/12(1 � v2) and L are the lateral distance over which delamination has occurred:

ω1 ¼ Fx2

D
x2

24
þ Lx

6
þ L2

4

� �
: (2)

For an increment δL of propagation of the delaminating region (the plate is the blue-dashed line in Figure 4),
the new ω would be

ω2 ¼ F x þ δLð Þ2
D

x þ δLð Þ2
24

þ Lþ δLð Þ x þ δLð Þ
6

þ Lþ δLð Þ2
4

 !
: (3)

With terms containing δL2 and higher orders neglected, the incremental deflection δω for an increment δL of
delamination is given by

δω ¼ ω2 � ω1 ¼ δL
F
D

� �
x3

3
þ x2Lþ xL2

2

� �
: (4)

This increment of keel bending would leave a material void (see Figure 4), to be filled by lateral flow within
the weak MLDL channel. The area (e.g., volume per unit cross section) of this material hole ΔS is given by

ΔS ¼ ∫x0δω xð Þ dx ¼ δL
F
D

� �
x4

12
þ x3L

3
þ x2L2

4

� �
: (5)

In order for the lower keel to sag further, material must flow into the MLDL to compensate the void space ΔS.
This flow Q is

Q xð Þ ¼ v
F
D

� �
x4

12
þ x3L

3
þ x2L2

4

� �
; (6)

where the speed of delamination v = δL/δt.
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In the lubrication theory approximation (cf. Batchelor, 2000; Bird, 1979; Parmentier & Forsyth, 1985), the pres-
sure gradient dP/dx is related to flow Q (x) by

dP
dx

¼ � 12μ xð ÞQ xð Þ
h xð Þ3 ; (7)

where μ (x) is the MLDL channel viscosity at distance x. (This expression neglects buoyancy effects because
the flow is assumed to be horizontal.)

In this case, the pressure reduction ΔP at a distance x is

ΔP xð Þ ¼ �12∫Lx
μ xð ÞQ xð Þ
h xð Þ3 dx: (8)

The negative sign implies a pressure drop toward the tip of the laterally migrating region of delamination. If
we assume that the total pressure drop dynamically balances the weight of the lower keel (F), then by equat-
ing equation (8) with equation (1), the growth rate of the delaminating region can be estimated from

∫L0ΔP xð Þ dx ¼ FL: (9)

As the left-hand side of the equation (9) is difficult to integrate analytically, we numerically evaluate it in
MATLAB, with a discrete sampling interval Δx = 100 m. If the MLDL viscosity μ(x) is assumed to be piecewise

constant, ∫L0ΔP xð Þ dx can be approximated by equation (10).

∫L0ΔP xð Þdx≈ ∑
n

k¼1
ΔP xkð Þ�Vx; (10)

whereΔP xkð Þ ¼ ΔP xk�1ð Þ þ ΔP xkð Þð Þ=2, n = L/Δx, xk is the coordinate of the kth grid point, and xk�1 is that of
the previous grid point (for k = 1, xk�1 = xk).

3.2. Analytical Model Results

Once the conduit flow velocity (v) is calculated, the tearing speed of keel delamination can be determined.
This speed is a function of the channel’s thickness (H0), length (L), viscosity (μ(x)), and of the negative buoy-
ancy of the lower keel (F).

The effects of varying H0, F, and μ(x) are illustrated in Figure 5. Here we consider two scenarios: (1) the con-
duit viscosity is a constant; (2) the outermost 100 km of the conduit is stronger than the rest of the channel,
which resembles a scenario where the layer and its underlying lower keel are strongly coupled with stronger
surrounding mantle (see Figure 4). Here the stronger mantle should be treated as part of the tearing-linked
conduit. In each plot, we only vary two variables while keeping the others constant.

Figure 4. Lubrication-theory based analytical model. If the net density (compositional + thermal) of the lower keel is higher
than that of the adjacent asthenosphere (F > 0), the lower keel will tend to sag downward along the weak MLDL. Sagging
of the lower keel cannot occur unless the material void (ΔS) is filled. If weak enoughmaterial can flow to fill this space, then
rapid keel delamination can develop. Otherwise, the lower keel will not delaminate. X = horizontal distance; F = body
force favoring keel sinking; H0 = initial thickness of the weak MLDL; L = Length of keel tearing along the MLDL. ∂L = new
increment of MLDL tearing; V(x) = speed of lateral flow into and within the MLDL; w(x) = additional opening of the
MLDL as keel tearing develops; Lith. = lithosphere; MLDL = midlithospheric discontinuity layer.
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In scenario 1 (see Figure 5a), the pressure (ΔP) within the conduit decays gradually in the first 250–300 km
close to the outside (right) edge, where is also the range that the pressure gradient exists. In scenario 2 with
a sharper outer edge (see Figure 5b), a significant pressure gradient only exists within the 100 km outermost
edge of the conduit. In this scenario, conduit flow only occurs when the outermost region can deform
enough to supply material into the weaker central portion of the MLDL’s low viscosity channel.

Figure 5. Effects of MLDL viscosity and keel density on mean conduit flow velocity (=speed of keel delamination). In
(a)–(b), the pressure drop induced by keel sagging is plotted along the conduit (1,000 km marks the right end, see
Figure 4). (c)–(d) the effects of MLDL viscosity on mean conduit flow velocity. (e)–(f) the effects of keel density on mean
conduit flow velocity. μMLDL = MLDL viscosity. Δρ = average net density difference between the keel and its neigh-
boring asthenosphere. Note that the units (km/Myr) for the right axis of (c) differ from those (m/Myr) used for (d)–(f).
MLDL = midlithospheric discontinuity layer.

10.1029/2017JB015372Journal of Geophysical Research: Solid Earth

LIU ET AL. 10,048



The speed at which the delamination tear migrates along the MLDL is controlled by the MLDL’s viscosity in
scenario 1. In scenario 2, it is controlled by the viscosity of the stronger asthenosphere and lithosphere that
must also deform to supply material for the tear to propagate (see Figure 5d). Faster conduit flow and tearing
happen when the density difference Δρ between the lower keel and adjacent asthenosphere is larger (see
Figures 5e and 5f) or when the conduit is thicker (see Figures 5c–5f).

3.3. Implications

Based on the above analysis, two end-member situations for keel evolution will naturally arise.

If a MLDL channel ends within strong (~1023 Pa·s) surrounding mantle, then delamination will not happen.
For these parameters, the tearing speed is estimated to be <6 km/Gyr, for example, be essentially stable
(see Figures 5d and 5f).

On the other hand, if the edges of an ~10-km-thick weakMLDL are reactivated to have an ~1019-Pa·s viscosity
(e.g., see Figure 10f), and this layer is underlain by a lower keel possessing a large enough net density differ-
ence (e.g., ~20 kg/m3, e.g., see the density panel in Figure 7a), the tearing speed is predicted to be>30 km/Myr
(see Figure 5c). In this scenario, a >400-km regional keel-removal event would happen within 15 Myr.

The change in delamination speed due to variations in layer thickness can be crudely estimated from
the results in Figure 5c, which indicate that a 2 times thicker/thinner layer can lead to ~3.2 times
faster/slower delamination speeds. Finally, although this model is only 2-D, the basic mechanics are also
only 2-D, for example, flow along a weak intracratonic channel fed from the edge of the channel.
Therefore, 3-D analysis is not needed to understand the basic speed and stresses/relief associated with
this mode of intracratonic keel delamination.

4. 2-D Numerical Experiments

To further explore this scenario under less idealized conditions, we have also analyzed 2-D numerical experi-
ments of this process.

4.1. Methods

The numerical experiments performed here use a modified version of 2-D incompressible elastoviscoplastic
thermomechanical Lagrangian finite element code with diffusion and dislocation creep, “m2tri_trunk”
(Hasenclever, 2010; Hasenclever et al., 2011). This version includes a free surface boundary condition
(Andrés-Martínez et al., 2015). Melting is also included. Tracer particles are added for tracking different mate-
rial properties. The 2-D experimental domain is subdivided using an adaptive triangle mesh generator that
keeps high resolution across material boundaries and interfaces, for example, slabs and keels (see
Appendix B). More details on the numerical approach are given in Appendices and in Andrés-Martínez
et al. (2015), Hasenclever (2010), and Hasenclever et al. (2011). Table 1 shows the parameters used in
numerical experiments.

4.2. Initial Density and Viscosity Structure and Boundary Conditions

We assume that mantle metasomatism (cf. O’Reilly et al., 2001; Tang et al., 2013) have increased the
compositional keel density below the weak MLDL. This metasomatism would transform the keel from
highly refractory peridotite (3,310 kg/m3 compositional density) to a compositional density of
3,340 kg/m3, a value still less dense than fertile asthenosphere (3,360 kg/m3; cf. Djomani et al., 2001;
Griffin et al., 1999). These density parameters are crudely consistent with studies of kimberlite-borne
mantle xenoliths (cf. Djomani et al., 2001; Griffin et al., 1999) and with craton gravity anomalies
(Kaban et al., 2003). Intralithospheric MLDL material is prescribed to be even more buoyant, for example,
set to the 3,320 kg/m3 compositional density found in amphibole-bearing mantle xenoliths (Dawson &
Smith, 1988).

The side and lower boundaries of the box are set to be free-slip (see Figure 6a). In runs 2–7, stresses from a
developing subduction slab are generated by imposing plate subduction geometry and velocities on the far
edge beyond where the craton abuts a newly formed marginal rift basin (see Figure 6a). In run 1 (the case
with a stable craton), the 200–350-km depth range of the right boundary segment is prescribed with a
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~3 cm/year downward velocity for 10 Ma every other 100 Ma to simulate the effects of episodic
subduction initialization.

As noted in section 1, because poor seismic resolution may lead to overestimates of MLDL thicknesses, in
each experiment, the weak layer is assumed to be 10 km thick. Keel delamination rate is found to depend
on the density contrast of the lower keel, MLDL rheology, and MLDL thickness (see Figure 5). Here we usually
choose to fix the MLDL thickness to be 10 km in order to focus on exploring the effects of its rheology. The
change in delamination speed due to differences in MLDL layer thickness can be crudely estimated from the
results in Figure 5c, which indicate that a 2 times thicker/thinner layer can lead to ~3.2 times faster/slower
delamination speeds.

4.3. Goals of the Numerical Experiments

Run 1 (see Table 2) is designed to test the first implication in section 3.3 that a dense lower keel beneath
a weak MLDL can remain stable for >1 Ga, as long as the lithosphere adjacent to the weak layer remains
strong. In this experiment, the lithosphere near the MLDL is 140 km thick, in which case its cooler
geotherm implies that the lithosphere adjacent to the MLDL has >1022-Pa·s viscosity (see Figure 7b). A

Table 1
Parameters for Numerical Experiments

A.M. D.M. L. Keel S.M. Slab Crust MLDL

Flow law parametersa–g

Adis (Pa
�n·s�1) 10–15.05 4.85·10�17 3.0·10�22 1.4·10–21.2 10–15.4

ndis 3.5 4.2 3
Edis (kJ/mol) 480 535 540 445 356
Vdis (cm

3/mol) 8
Adif (Pa

�n·s�1) 10–8.65 10–13.3 10–13.3

ndif 1
Edif (kJ/mol) 335 375 170 170
Vdif (cm

3/mol) 4
r rdif = 1.93, rdis = 1.95 - -

Thermal parametersh,k

G (GPa) 74 40 74
k (Wm/K) 3.3 2.5 3.3
Hr (μW/m3) 0.033 0.25 0.33
cp (J/(kg· K) 1,200

Tm0 (°C)
1,081 1,136 - 1,081

(∂Tm/∂f)p 132 - 132
(∂Tm/∂P)f 250 - 250
QL (kJ/kg) 400 - 400

Density parametersi,j

ρ0 (g/cm
3) 3.36 3.31 3.34 3.31 3.31 2.80 3.32

a1 (10
�4) 0.2697 0.27165 0.27165 0.27014 0.27768 0.27014 0.2697

a2 (10
�8 K�1) 1.0192 1.04971 1.04971 1.05945 0.95451 1.05945 1.0192

a3 (K
2) �0.1282 �0.15031 �0.15031 �0.1243 �0.12404 �0.1243 �0.1282

K (Gpa�1) 134 129 129 130 128 63 134

Note. Rheology parameters for the MLDL are varied in different experiments (see section 5 and Table 2). Parameters in this table are for a wet anorthite rheology
(reference 5), the parameters for wet olivine and mica rheologies are from references 1, 7, and 6 below. Dislocation and diffusion viscosities are calculated using
η ¼ 1=2A�1=nC�r=n

OH ε1=n�1
II exp E þ P�Vð Þ=nRTð Þ, where η is viscosity, ε is the second invariant of strain rate, A is a preexponential constant, E is the activation energy,

COH is water content in ppmH/Si (for olivine Fo90: 1 ppm (wt) H2O = 16.35H/106Si;), r describes the exponential dependence of viscosity on water content, R is the
universal gas constant, T is temperature, P is pressure, and V is activation volume. Subscript dis refers to parameters for dislocation creep, while dif refers to diffu-
sion creep.
G = shear modulus; k = thermal conductivity; Hr = radioactive heat production; cp = heat capacity; Tm0 = the solidus at room temperature and pressure; (∂Tm/∂f)
p = the solidus’s dependence on degree of melting; (∂Tm/∂P)f = the solidus’s dependence on pressure; QL = Latent heat; ρ0 = the reference density at room tem-
perature (20 °C) and pressure (0.1 MPa); K = bulk modulus.
A.M. = asthenosphere, D.M. = cratonic lithospheric mantle above the MLDL, L. Keel = lower keel, cratonic lithospheric mantle below the MLDL, S.M. = noncratonic
continental lithospheric mantle; MLDL = midlithospheric discontinuity layer.
aHirth and Kohlstedt (2004). bHirth and Kohlstedt (1995). cKarato and Wu (1993). dWilks and Carter (1990). eRybacki and Dresen (2004). fKirby and
Kronenberg (1987). gKorenaga and Karato (2008). hBrune et al. (2014). iDjomani et al. (2001). jSchutt and Lesher (2006). kMorgan (2001).
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gradual lithospheric thickness change close to cratonic edges is consistent with seismic observations (cf.
Begg et al., 2009).

Because the rheology for the MLDL is quite uncertain, the experiments explore the implications for a wide
range of MLDL rheologies that include a MARID-like mineral assemblage (Run 2), wet olivine (runs 4 and
4*), and the rheology of the mixture of MARID and wet olivine (runs 1, 3, 5, 6, 7, and 7*).

To crudely study the effects of nearby subduction process, runs 4 and 4 * and runs 7 and 7* are compared to
study scenarios with/without the subduction stress field.

Table 2
The Numerical Experiments Discussed in This Study

Sub. F. N.L.T. MLDL rheology Water on melting

Run 1 Yes 140 km 80% Wet Ol (214) + 20% Wet An No
Run 2 Yes 100 km Wet An No
Run 3 Yes 100 km 33.3% Wet An + 66.6% Mica No
Run 4 Yes 100 km Wet Ol (214) No
Run 4* No 100 km Wet Ol (214) No
Run 5 Yes 100 km 90% Wet Ol (214) + 10% Wet An No
Run 6 Yes 100 km 80% Wet Ol (214) + 20% Wet An No
Run 7 Yes 100 km 80% Wet Ol (214) + 20% Wet An Yes
Run 7* No 100 km 80% Wet Ol (214) + 20% Wet An Yes

Note. Effect of water on melting: in experiments where the MLDL is assumed to be mainly composed of wet peridotite
(1,000-ppmwater), water’s extra effect onmantlemelting is treated using equation (A15). The (214)marks the water con-
tent in ppm (by weight) used for calculating the rheology of olivine (see captions below Table 1). The 33.3% refers to the
lithology’s volume proportion used in equation (11). Sub. = subduction stress field, N.L.T. = noncratonic lithospheric
thickness, Ol. = olivine, An. = anorthite; MLDL = midlithospheric discontinuity layer.

Figure 6. (a) The computational domain for runs 2–7. The region is 3,900 kmwide× 1,500 kmdeep. For runs 1, 4*, and 7*, it is
1,900 km wide × 800 km deep. Mesh resolution for the midlithospheric discontinuity layer phase boundaries is ~450 m.
Mesh resolution close to other phase boundaries (~4.5 km) is about 10 times finer than that (~45 km) in regions far away
from these boundaries. Mesh resolutions within transitional distance range (~210 km) are linearly interpolated between
these end-member values. To simulate the far-field effects of subduction in runs 2–7, a leftward 2 × 10�9 m/s (~6 cm/year)
velocity is applied to represent the incoming plate. A <10-km-thick weak zone (1019 Pa·s) is added between the oceanic
plate and the continental plate to promote decoupling. Material types: (1) Asthenosphere, (2) oceanic plate, (3) cratonic keel,
(4) depleted cratonic mantle, (5) noncratonic mantle, (6) crust, and (7) the midlithospheric discontinuity layer metasome.
(b) Initial density structures with data from the profile marked by the purple dashed line in (a). M. = mantle;
LAB = lithosphere-asthenosphere boundary.
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5. 2-D Numerical Results

The 2-D numerical experiments focus on exploring: (1) What parameters lead to the general typical situation
of a stable long-lived keel; (2) What MLDL rheology is needed in order for a rapid delamination event to occur;
(3) Which parameters lead to the best simulating numerical results when compared to the observations for
partial keel delamination beneath the ENCC and the WWC; and (4) How do lateral variations in the MLDL
and variations in far-field subduction potentially influence keel delamination?

The detailed keel delamination process will only be described for run 2. Other experiments with delamination
evolve in similar patterns with varying speeds of keel tearing and delamination. Before discussing delamina-
tion experiments, we first examine the most common case in which a cratonic keel remains stable and does
not delaminate over billions of years.

5.1. A Cratonic Keel Will Be Stable as Long as the MLDL’s Edge Remains Stable

Cratonic keel removal is a rare geological phenomenon. Any keel delamination mechanism that can explain
how keel removal happened in the ENCC and the WWC must first be able to explain the longevity of
stable cratons.

The previous analysis suggests that stable cratonic keels should have margins where MLDLs abut rela-
tively thick and strong surrounding lithosphere. If this geometry persists, the analytical analysis and
numerical experiments both predict that a dense cratonic keel can stably exist over billions of years
(see section 3.3). In the numerical example shown in run 1, the craton-edge lithospheric thickness (see
Figure 7) is set to be 140 km, 40 km thicker than in the following experiments in which delamination
happens. Other parameters and boundary conditions are similar to run 6 (see Table 2 and section 5.2),
where the experiment has an ENCC-like keel delamination duration. After 1 Gyr of model time, the
shape of the keel margin has become smoother. But the MLDL’s shape change is hardly distinguishable
(see Figure 7b), and the keel has remained stable.

To better understand when keels are stable/unable to delaminate, in Figure 7, the pressure variations in
runs 1 and 4 (see section 5.2) are compared. Even though the keel delamination process in run 4 is the
slowest shown here (see Figure 9), the theoretically predicted low pressure zone (see Figure 5a) can still
be seen within the unreactivated portion of the MLDL (see pressure panel in Figure 7a), suggesting that
the channel-flow mode of keel tearing is taking place. Over time, the power law creep associated with
channel flow (see viscosity panel in Figure 7a) further weakens the surrounding mantle, which then more
easily fills the void along the MLDL and accelerates keel tearing (see more details in section 5.2). In con-
trast, in run 1, because the MLDL edge is coupled to a stronger surrounding lithosphere, channel flow and
its induced pressure drop do not appear within the MLDL (Figure 7b). Therefore, MLDL edge failure by
tearing and delamination also does not occur. The cratonic keel can remain stable for billions of years,
even with a prominent MLDL within it, as long as the MLDL-containing portions abut against strong sur-
rounding lithospheric mantle.

5.2. Keel Delamination Experiments

In the following numerical experiments, we assume that a MLDL has developed to extend close to the edge
of a cratonic keel. This scenario may have existed, for the ENCC andWWC, just after the cratons amalgamated
with a recently formed oceanic plate, for example, the north-eastern China blocks (Wu et al., 2011) or accreted
oceanic terranes to the west of the Salmon River suture zone (Foster et al., 2006).

5.2.1. Delamination Along a MLDL Linked to Mantle Metasomatism
In run 2, the MLDL is assumed to be related to persistent metasomatism events (see section 1). Although the
rheology of mica has not been studied under mantle conditions, limited experiments suggest that it has a
weaker rheology than amphibole, which in turn resembles that of wet anorthite (Getsinger & Hirth, 2014).
We therefore use a wet anorthite rheology as the upper-limit strength for the rheology of a spatially discon-
tinuous MARID-like MLDL.

Since horizontal temperature perturbations exist close to the keel, small-scale convection before delami-
nation only occurs within the asthenosphere. The convection can further weaken the asthenosphere
due to its power-law viscosity. But a weak asthenosphere alone does not affect keel stability unless
the asthenosphere can break a mechanical connection to the MLDL. Because the keel margin is
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denser than the asthenosphere to its side (see density panel in Figure 8a), according to the analytical
analysis in section 3, the lower keel should tend to sag downward as long as material can flow laterally
into the weak MLDL. When the surrounding lithosphere mantle is both thin (100 km) and weak, then
this mode of deformation can occur. As the keel margin sags downward, intrachannel material
connecting the MLDL to the asthenosphere is pulled toward the MLDL (see material panel in
Figure 8a and also Figures 10b–10d). The MLDL will have a direct horizontal connection with the
asthenosphere once this stronger nonasthenospheric material is removed. When the direct
connection forms, the rate of keel tearing increases (see Figure 8b). As it tears away and
delaminates, the lower keel itself tends to break into ~300-km-wide blocks (see Figures 8b and 8c),
with keel fragmentation events associated with temporary pauses in keel tearing. The denser keel
relics sink, with overall asthenosphere cooling around the descending keel fragments (see material
panel in Figure 8b). Some weak MLDL material is entrained into the deeper mantle during descent
of delaminated keel fragments (see phase panel in Figure 8d). Due to its compositional buoyancy
and weak rheology, most MLDL material either remains beneath the overlying relic lithosphere or is
mixed into the asthenosphere (see material panel Figure 8c). Note that small-scale convection and

Figure 7. The low-pressure zone induced by partial keel tearing. (a) (lhs) Viscosity panel: viscosity plot during run 4.
Pressure panel: pressure variations (Pvar) within the dashed box shown in the viscosity panel. Pressure variations are
shown in percent, where Pvar = (P � Pref)/Pref. The reference pressure profile Pref is along the cyan-dashed line in the
viscosity panel. (rhs) Density panel: density profiles along the vertical purple- and cyan-dashed lines shown in the same
color in the viscosity panel. (b) Results after 1 Ga of evolution in run 1. No keel tearing is observed. The same plot con-
ventions are used as in (a).
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deformation of the now-exposed lithosphere above the MLDL following a delamination event (Liu et al.,
2016; see material panel; Figure 8c) will be the focus of a companion paper (Liu et al., 2018, which we will
hereafter refer to as paper 2). Keel delamination stops in places where the intracratonic MLDL does not
exist. In this scenario, the observed locally discontinuous nature of MLDLs (Chen et al., 2014; Hopper et al.,
2014) is what limits the spatial scale of each regional keel delamination event. Note that intercratonic
orogenesis and melting can also lead to melt-extraction-related removal of MLDL material.

Run 3 is a similar experiment to run 2. In this case, a mica plus amphibole rheology is considered as the weak-
limit estimate to the strength of the MLDL. The MLDL’s effective viscosity (μMLDL) is calculated assuming the
bulk rheology given in equation (11), where x1 is the volume proportion of amphibole.

Figure 8. Numerical realization of the keel delamination process (results of run 2). (a) Keel starts to decouple from the
MLDL. Material panel inset: material distribution within the white rectangle in (a). Density panel: density profiles along
corresponding vertical-dashed lines with the same orange and brown colors in (a). Short white lines with arrow mark the
direction of local convection. (b) The delaminating keel triggers vigorous convection. (c) The last keel fragment separates.
Post keel-delamination evolution, for example, thermo-mechanical erosion, starts to develop in hotter relic regions. (d) Keel
delamination stops where the MLDL terminates. Plot conventions are the same as in Figure 6. A. M. = asthenosphere;
MLDL = midlithospheric discontinuity layer; LAB = lithosphere-asthenosphere boundary. Materials: 1-asthenosphere, 2-
oceanic plate, 3-cratonic keel, 4-depleted cratonic mantle, 5 non-cratonic mantle, 6-crust, 7-the MLDL metasome.
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μMLDL ¼
1� x1

μamphibole
þ x1
μMARID

 !�1

: (11)

With a weaker MLDL rheology, delamination happens faster and finishes within ~3 Ma (see Figure 9).
In both experiments, the strength of the MARID layer (10 km thick, with an ~1018.5 viscosity) is the
factor controlling the speed of keel tearing during the delamination event is, not the viscosity of the
surrounding mantle. This behavior is consistent with the analytical model. The implied duration for a
1,000-km-wide regional keel delamination event would be shorter than 10 Myr. These implied tearing
rates (>100 km/Myr) are faster than the magmatism-indicated keel removal rates for the ENCC
(~17 Myr for ~1,000 km) or the WWC (~11 Myr for ~400 km; see Figure 1). Assuming the thickness of
the MLDL layer is appropriate, then the MLDL should have a composition with a rheology stronger than
that of a pure MARID component.
5.2.2. Delamination Along a MLDL Due to Chemically Bound Water
AMLDL has also been interpreted as a water-rich intracratonic layer (origin 1 in the section 1), with a rheology
dominated by wet olivine. At 80–100-km depths within a 200-km craton (i.e., ~700–800 °C, ~3 GPa), the che-
mically bound water content has been proposed to be>1,000 ppm (Karato et al., 2015). If the MLDL contains
60% olivine, 12% clinopyroxene, and 28% orthopyroxene (cf. Hirschmann et al., 2009), the water content in
olivine is estimated >214 ppm (see water partition coefficients in the Table 1). With 1.93 exponent factor
(Korenaga & Karato, 2008) for the effect of water on diffusion creep, the MLDL is predicted to be >11 times
weaker than a wet olivine (61 ppm) rheology.

In run 4, the MLDL is assumed to have a wet (214 ppm) olivine rheology. In this case, lower keel delamination
starts ~11 Myr after the onset of the experiment (see Figure 9). A 1,000-km-wide regional keel delamination
event ends at ~36 Myr, the delamination process taking ~25 Myr. This predicted delamination rate
(~40 km/Myr) is consistent with evolution on the WWC but somewhat slower than that (~60 km/Myr) of
the ENCC (see Figure 1).
5.2.3. Keel Delamination Along a MLDL With a Rheology Shaped by Both Metasomatism and
Chemically Bound Water
Geochemical observations on the ENCC can be interpreted to hint that both MARID-like metasomatic
components and water-rich peridotites coexisted within the MLDL before the ENCC keel’s destruction
(Menzies et al., 1993; Xia et al., 2013; Xu, 2001; Xu et al., 2009; Zhu et al., 2012). What if some MLDLs
are rheologically weak because of both effects, for example, they consist of a wet peridotite layer that
contains discrete interbedded MARID lamellae, with a composite rheology governed by an analog
to equation (11)?

In runs 5 and 6, we assumed that the MLDL is composed of (a) 10% (volume percentage) MARID + 90% wet
peridotite or (b) 20% MARID + 80% wet peridotite. In both runs, the MLDL’s effective viscosity (μMLDL) is cal-
culated assuming the bulk rheology given in equation (11), where x1 is the volume proportion of the first
component. Because the MLDL in run 5 contains a lower proportion (10%) of the MARID component, its effec-
tive viscosity is higher. In this case, the keel delamination takes ~18.3 Myr, ~1.3 Myr longer than that of the
run 6 (see Figure 9). In run 6, the keel delamination starts at ~8 Myr after the onset of the far-field subduction,
and 1,000-km-wide regional keel delamination takes ~17.1 Myr. Both of these appear to be consistent with
geological observations for the ENCC.

5.3. Other Factors Affecting Keel Delamination
5.3.1. Effects of MLDL Melting
If theMLDL ismainly due to chemically boundwater (Karato et al., 2015), the high-water content will also lower
the solidus of the layer (see equation (A15); cf. Katz et al., 2003). During partial melting, water in peridotite is
thought to partition into melt roughly like Ce, with a ~0.009 peridotite/melt partition coefficient (Aubaud
et al., 2004). In this case, the dehydration effect of potential melting process will tend to harden the residual
MLDL. We have studied possible effects of MLDL melting on keel delamination with run 7. This run is similar
to the conditions in run 6, except that it includes the effect of water (1,000 ppm) on MLDL melting.

In this run (Figure 10), MLDL melting happens near the beginning of the experiment and is focused within a
small and relatively hot region close to the craton’s margin. During subsequent keel tearing and delamination

10.1029/2017JB015372Journal of Geophysical Research: Solid Earth

LIU ET AL. 10,055



Figure 9. The progress of keel tearing and delamination during runs 2–7. The remaining fraction of the lower keel is calcu-
lated by LR/LI, where LI is the initial horizontal keel extent (1,000 km) beneath themidlithospheric discontinuity layer, and LR
is the remaining horizontal keel extent beneath the midlithospheric discontinuity layer.

Figure 10. Melting effects on keel delamination. (a)–(d) show results from run 7. White contours mark regions where melt-
ing happens (with melting degree f> 0); red contours mark regions with melting degree>2%. Short while lines with arrow
mark the direction of local convection. (e) Temperature profiles along the corresponding vertical-dashed lines of the same
color in (c) and (d). The mantle solidus (brown dashed line) is plotted along the dashed line in (d) (see method in Appendix
A). Note that: the MLDL remains its low temperature and does not melt during the delamination of the lower keel. (f)
Viscosity profiles along the corresponding vertical dashed lines of the same color in (c) and (d). MLDL = midlithospheric
discontinuity layer.
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(Figures 10b–10d), the melting region does not expand. This happens because flow within the MLDL is
horizontal flow of cool MLDL material (see Figure 10e). Limited melting can dehydrate a small fraction of
the MLDL, thereby transforming it into a drier and stronger residue (see Figures 10b–10d). This process is
equivalent to supplying a mechanically different component at the end of the conduit (see Figure 4). Since
the dehydrated material is stronger, the keel’s tearing rate slows. In this run, keel delamination starts at
~13 Ma, ~ 8 Ma later than that of run 6 (see Figure 9). However, because pervasive melting of MLDL does
not happen during keel delamination, the evolution in this run is quite similar to run 6 (see Figure 9). This
is also the reason that we do not view MLDL melting as a major factor when delamination happens. The
paper 2 studies the melting processes that follow keel delamination.
5.3.2. Effects of Far-Field Subduction
Because the ENCC and the WWC keel-removal events may be related to subduction-craton interactions (cf.
English & Johnston, 2004; Snyder et al., 1976; Zhu et al., 2012), we have also explored experiments that study
the potential effects of subduction on the tearing mode of keel delamination.

The far-field subduction condition is removed in runs 4* and 7*, which are otherwise similar to runs 4 and 7.
Without nearby regional subduction (see Figure 11), the onset of keel delamination is slower. This occurs
because far-field subduction induces more vigorous flow in the asthenosphere near the keel’s edge that
weakens its power-law-creep-dependent viscosity (see Figures 11a and 11b). We see that strain rates in runs
4 and 7 are generally higher than those of runs 4* and 7* (see Figure 11c), so that mantle material close to the
MLDL in runs 4 and 7 is weaker than that in runs 4* and 7*. This weaker surrounding mantle can more easily
flow into the MLDL to fill the void left by keel tearing and delamination (see Figure 5c).

6. What Controls the Depth of the MLDL?

As noted above, the cause of the MLDL remains uncertain. Long-lived mantle metasomatism has been
proposed to be the cause of the MARID layer observed in kimberlite xenoliths. The usual

Figure 11. Effects of far-field subduction on keel delamination. (a) and (b) are plots of second invariant of strain rate during
runs 7 and 7*. (c) The second invariant of strain rate along the corresponding vertical-dashed lines of the same color in
(a) and (b). (d) The keel tearing and delamination progress during runs 4, 7 (with subduction) and runs 4*, 7* (without
subduction). Plot conventions are the same as in Fig. 9.
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thermodynamic rationale for its location at ~80–100-km depths is that these are the p-T conditions at
which MARID minerals exsolve and form in reactions between mantle and ascending volatile-rich CO2-
rich hydrous magmas (Eggler, 1978; Dalton & Presnall, 1998). The melts that periodically infiltrate the
lithosphere would be created by deeper upwellings at the craton base that generate fluid-rich hydrous
magmas (kimberlites in crude sense; cf. Choukroun et al., 2005; O’Reilly & Griffin, 2013). Episodic reheat-
ing of the base of a craton could induce partial melting associated with repeated upward migrations of
these magmas to MLDL depths of reaction/exsolution (see also Griffin et al., 2014; Malkovets et al.,
2007). Sleep (personal communication, March 20, 2018) has suggested the alternative mechanism that
there may be a rheological control that leads to preferential ponding of CO2-rich hydrous magmas at
the MLDL depth that they pond at the base of the lithosphere’s brittle-ductile transition in its strength
Christmas tree (Sleep, 2009). Finally, lithospheric stacking during subduction has also been proposed as
the origin for a craton and its MLDL, with the MLD reflecting the interval between the two lithospheric
slices (Lee et al., 2011).

Once formed within a craton, a MLDL can stably remain until the craton’s edge is destroyed. For example, epi-
sodic and rapid back-arc extension during the evolution of subduction (cf. Faccenna et al., 2001) could induce
lithospheric extension close to the edge of the craton’s MLDL (e.g., at ca. 180 Ma; Maruyama et al., 1997) and
so create a geometry like the initial geometry assumed in Figure 6.

7. Similarities and Differences Between Analytical and Numerical Results

In many respects, the numerical experiments replicate basic aspects of the analytical lubrication-theory-
based solutions. Keel delamination does not occur over an Archaean craton’s lifetime when a tens of
kilometers wide region at the edge of the MLDL has viscosities of order 1023 Pa·s. Geologically, rapid
delamination happens when a MLDL is exposed to nearby low-viscosity (<1021 Pa·s) asthenosphere. Other
behavior is different. In numerical experiments, the delaminating keel breaks into ~200–300-km-wide
fragments as delamination progresses. While geologically rapid, the delamination process itself occurs in jerks,
with pulses of rapid delamination ending as a keel fragment breaks away. This jerkiness in delamination is
linked to lateral flow within the MLDL, with lateral flow allowing the MLDL to preferentially thicken in regions
undergoing slow delamination (see Figure 12b) while also increasing lateral pressure gradients in regions
adjacent to the delamination front. Tearing jerks are also linked to fragmentary keel breakoff, with breakoff
associated with simultaneous local uplift (Figure 12) and a reduction in the net negative buoyancy of the
keel—the driving force for delamination.

7.1. Postdelamination Uplift

The 2-D numerical experiments indicate potential postdelamination uplift, which not apparent in 1-D experi-
ments. After keel delamination, the surface expression is ~600–900-m uplift (see Figure 12 and supporting
information Movies S4), significantly less than the uplift of order ~3 km predicated in previous studies
(Krystopowicz & Currie, 2013). (Total uplift will be related to the net density contrast between removed keel
and infilled asthenosphere.) This suggests that delamination may not be associated with the creation of a
high plateau that reverses the source direction of local sediment transport. Therefore, the scenario here does
not appear to contradict sedimentary records which suggest that during the Mesozoic (ca. 180–150 Ma) por-
tions of the North China remained relatively low in elevation and still accepted sediments from its surround-
ing continental blocks (H.-Y. Li et al., 2013). Delamination is also likely to be associated with postdelamination
extension that can create local depocenters.

8. Implications for Global Rates of Craton Destruction

Even with generous estimates for keel destruction beneath the ENCC and WWC, the implied recent rate of
craton destruction is relatively small. For the ENCC, the surface area above the destroyed keel is estimated
to be 5.7 × 105 km2 (D. He et al., 2015). For the WWC, the most conservative estimate for the surface area
above the destroyed keel is the area to the west of 110-km-thickness contour on the WCC (Figure 1b), which
is ~3.8 × 104 km2 (38% of the total area; Chamberlain et al., 2003). If these two keel fragments were the only
sites of keel delamination within the past 200 Myr, the implied destruction rate would be 6.1 × 105 km2/
200 Ma = 3.1 × 106 km2/Gyr. The remaining cratonic fraction of continents is estimated to have a surface
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area of 3.7 × 107 km2 (Artemieva, 2012), which would imply that modern rates of craton destruction would
destroy 14% of the original craton area over 2 Gyr or 25% of the original craton area over 4 Gyr. Even
assuming that paleo-destruction rates were likely to be faster during the Archean, modern rates of keel
destruction are consistent with continents still retaining a large surviving craton area.

9. Lateral Variability in Cratonic Keel Removal

Although regional cratonic keel removal has been reported in the ENCC, the WWC, and possibly beneath
parts of the Dharwar and the Brazilian Cratons, neighboring parts of these cratons still maintain their appar-
ently stable thick cratonic state. This suggests that keel delamination is both rare and piecewise. In our pre-
ferred scenario, this happens because

1. MLDLs are laterally discontinuous and variable (see Figure 2b; Chen et al., 2014; Hopper et al., 2014). In this
case, cratonic parts without well-developed MLDLs survive due to their internal integrity (see Figure 8d).
Discontinuous MLDLs can be created by spatial and/or temporal variations during their formation. For
example, intracratonic compositional layering in the Kalahari Craton may be linked to multiple kimberlite
intrusion episodes in different epochs (O’Reilly & Griffin, 2013). MLDL continuity can also be disturbed by
episodic reheating and MLDL melting near cratonic edges, or where internal intracratonic boundaries are
reheated by mantle plume-related processes (Griffin et al., 2014). Sharp vertical changes in adjacent MLDL
depths could be created by strongly varying lateral temperature conditions at the time of metasomatism
of each section of the discontinuous MLDL, for example, due to the existence of thicker crust beneath
ancient block boundaries (Kinck et al., 1993; Youssof et al., 2013). This too would tend to increase the resis-
tance of the craton to pervasive keel delamination.

2. The cratonic keel’s fertility and compositional density may also be laterally inhomogeneous, which can be
directly linked with heterogeneity in the MLDL (i.e., if both are due to metasomatic processes; Artemieva &
Vinnik, 2016; Griffin et al., 2003; Kaban et al., 2003, 2016; Mooney & Kaban, 2010). Less fertile and more
compositionally buoyant keel regions may better resist delamination (see Figure 5). A more fertile keel
state should naturally tend to appear at a craton’s margin, due to the enhanced tendency for plume
and/or asthenosphere melting beneath the thinner keel edges. The spatial scales for keel refertilization
events can be limited, for example, if some plume-related events have led to the keel refertilization in
southwestern Kalahari Craton (Griffin et al., 2003), keel refertilization may have been limited to the sizes
of the plume tails (~100 km in diameter) or the lateral extent of drainage associated with lateral plume
flow (Yamamoto et al., 2007).

Figure 12. The evolution of surface relief and MLDL thickness. Four snapshots of relative relief, MLDL thickness, and mate-
rial phase are plotted for run 7* (see Table 2 and Figure 9). Relative relief (R. Relief) is calculated by subtracting the surface
relief from the first time step (a). Because the effects of erosion and sedimentation are not considered in the numerical
experiments, relative relief can only crudely delimit delamination-induced variations in relief. See the Movies S1–S10 for
more insight into these time-dependent phenomena. MLDL = midlithospheric discontinuity layer.

10.1029/2017JB015372Journal of Geophysical Research: Solid Earth

LIU ET AL. 10,059



10. Conclusions

1. We propose an intracratonic keel delamination model inspired by observations of geologically recent
delamination events beneath the ENCC andWWC. This scenario is summarized in Figure 3. The weak intra-
lithospheric MLDL at ~80–100-km depths is the preferred site for keel tearing and delamination from
overlying crust and lithosphere. Keel tearing can occur in situations when lateral flowwithin the MLDL tear
can connect to inflow from nearby weak asthenosphere. Delamination can be slightly sped up by ongoing
far-field subduction or any mechanism that reduces the viscosity of the mantle at the craton’s edge.

2. Keel delamination along a water-rich or MARID-bearing MLDL can explain the geologically implied keel
removal speeds observed on the WWC in North America and the ENC in China. However, if the craton’s
surrounding lithosphere stays thick, for example, >140 km, and therefore relatively strong (e.g.,
>1023 Pa·s), a fertile and negatively buoyant cratonic keel overlain by a weak MLDL will remain stable over
billions of years.

3. Cratonic keel delamination appears to be independent of the weak intracratonic layer’s density; delami-
nation still occurs when the MLDL’s net density is lower than that of keel and asthenosphere. Lateral var-
iations in the distribution of the MLDL and/or in the fertility of its underlying keel are more important
factors to lead to cratonic keel destruction.

Appendix A: Details of the Numerical Implementation for Thermomechanical
Deformation and Melting

This appendix describes the algorithms that are used in this study. Amodified version of 2-D Lagrangian finite
element code, “m2tri_trunk” (Hasenclever, 2010) based on the approaches used in “MILAMIN” (Dabrowski
et al., 2008), is used. This thermomechanical code solves for heat transport and elastoviscoplastic deforma-
tion in crust and mantle rocks. The supplement shows a benchmark of this code against a recent subduction
benchmark study (Schmeling et al., 2008; see supporting information S1).

A1. Temperature

For computational simplicity, temperature is treated as a potential temperature. The thermal calculation
includes the effects of thermal diffusion, thermal convection, radioactive heating, and shear heating (viscous
dissipation; equation (A1)).

Temperature is determined from an equation governing energy conservation:

ρCp
∂T
∂t

¼ ∂
∂x

K
∂T
∂x

� �
þ ∂
∂z

K
∂T
∂z

� �
þ H; (A1)

where ρ is density, Cp is heat capacity, t is time, K is thermal conductivity, and H is the volumetric heat produc-
tion rate (including both radioactive heating and viscous dissipation).

A2. Elastoviscoplastic Deformation

The different materials used in the model are treated as incompressible materials with use of the Boussinesq
approximation (Turcotte & Schubert, 2014). Tracer particles are used to track seven different compositional
materials (e.g., upper crust and asthenosphere). See Figure 6 for the definitions of each possible material type.
Eachmaterial type is associated with a specific rheology that is potentially p, T, strain rate, accumulated strain,
and plastic yield-stress dependent. Table 1 gives the values assumed for the experiment. The number of tra-
cer particles within each element ranges between 7 and 25. Viscosity is calculated at every integration point
using thematerial phase determined by the nearest tracer particle within the element. Density is also uniform
within each element with a value determined by the average of the density of each of the tracer particles
within the element.

For each tracer particle, density is temperature and pressure dependent (equations (A7) and (A8); Djomani
et al., 2001; Schutt & Lesher, 2006). Each material rheology can include elastic, viscous, and plastic effects.
Yielding and plastic flow behavior are calculated using the method described in Moresi et al. (2003).

Elastoviscoplastic deformation is described using the equations for force equilibrium ((A2) and (A3)) andmass
conservation (A4):
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∂u
∂x

þ ∂v
∂z

¼ � P
κ
: (A4)

In these equations, u and v refer to horizontal and vertical velocity components, respectively, P is the dynamic
pressure, g is the acceleration of gravity, and κ is the penalty term used for ensuring incompressibility with κ

being 106 times the maximum effective viscosity (ηVEP; Hasenclever, 2010). F
e;t
i is the internal elastic stress

(Moresi et al., 2003) that can be advected by material flow. This behavior is described as

Fe;ti ¼ � ηEVP=GΔtð Þ ∂τoldii J=∂xi þ ∂τoldii J=∂xj
� �

; (A5)

where G is elastic shear modulus, Δt is time step, and τoldii J is the Jaumann-rotated stress of the previous time
(Kaus et al., 2010), given by

τoldij J ¼ τoldij � ωold
ik τoldki þ τoldik ωold

ki ; (A6)

where τoldij is the deviatoric stress from the previous time step, and ωij = 1/2(∂ui/∂xj � ∂uj/∂xi).

The equation of state for density is

ρ ¼ ρ0 exp �∫TFT0α P ¼ P0; Tð ÞdT þ ∫PFP0
dP
k

� �
; (A7)

α ¼ α0 þ α1T þ α2T�2; (A8)

where ρ0 is the reference density, α is the temperature dependent thermal expansion coefficient at T0 = 20 °C,
P0 is atmospheric pressure, k is the bulk modulus (assumed to be constant), and TF and PF are the temperature
(in Kelvin) and pressure, respectively.

A temperature-dependent accumulated strain weakening effect is also included. This effect appears when
large strains accumulate within a rock, inducing crystal lattice reorientation and recrystallization. Lattice reor-
ientation can reduce the viscosity in dislocation creep (Tommasi et al., 2009) as weaker slip systems become
the preferred slip systems. Recrystallization can lead to a reduction in crystal grain size. In turn, the mean
grain size d is thought to affect viscosity during diffusion creep by its dominant effect on grain boundary dif-
fusion (Hirth & Kohlstedt, 1995). This yields a power law dependence of approximately �3 (Dimanov et al.,
2003; Hirth & Kohlstedt, 2004; Xiao et al., 2002), for example, the preexponent A is given by

A dð Þ ¼ A0d
�3; (A9)

where A0 is a constant, and d is grain size.

These combined effects are commonly called strain weakening.

Strain weakening is temperature dependent since temperature shapes the equilibrium grain size in a
dynamically recrystallizing system. At “high-enough” temperatures, crystals can more rapidly
grow/recover to reach their preferred state of dynamic equilibrium. In this case, the preferred crystal size
is relatively large, and strain weakening effects for diffusion creep are less significant. At “lower” tempera-
tures, Arrhenius-law-governed crystal growth rates are much slower. The resulting reduced grain-size in
dynamic equilibrium can lead to pronounced strain weakening during diffusion creep. The threshold tem-
perature where this effect becomes significant is approximately 800 °C (Précigout et al., 2007) for natural
subcontinental peridotites.
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We parameterize temperature-dependent accumulated strain weakening
as a function of the second invariant of finite strain and the material-
dependent temperature where viscous creep dominates plastic yielding
effects (see equations (A10)–(A12)). Different maximum accumulated
strain weakening coefficients are used for diffusion creep and dislocation
creep (see Table A1).

S ¼ Smax�min 1; γ=γ0ð Þ; T < T lower; (A10)

S ¼ Smax� exp A
T � Tupper
Tupper

� �
�min 1; γ=γ0ð Þ; T lower≤T≤Tupper; (A11)

S ¼ 1; T > Tupper: (A12)

In equations (A10)–(A12), S is the weakening factor, γ is the second invariant of finite strain (EKL, see
equation (A13)), γ0 = 1.5 is the critical value for γ, A is given in Table A1, and Tlower and Tupper are
the lower and upper temperatures of the temperature range where accumulated strain weakening
can relax due to a larger grain size at dynamic equilibrium, respectively. Finite strain is calculated using
the form of Green-Lagrangian strain tensor (see equation (A13); cf. the method discussed in Chapter 4
of Malvern, 1969).

EKL ¼ 1
2

∂xi
∂XK

∂xi
∂XL

� δKL

� �
; (A13)

where EKL is the finite strain tensor, δKL is the Kronecker delta. The displacement gradient ∂xi
∂XK

is described as

∂xi
∂XK

¼ ∂xi
∂XK old

þ dt
∂μi

∂xi
∂xi
∂XK old

þ ∂μi

∂xj
∂xj
∂XK old

� �
; (A14)

where ui is velocity vector, and
∂xi
∂XKold

is the displacement gradient of the previous time step.

A3. Melting

Material melting is found using methods described in Hasenclever (2010) and Morgan (2001) with the
mantle solidus Tm given by equation (A15) (see Figure A1). We have also considered the effects of melting
degree f and water content XH2O on the solidus (Katz et al., 2003; Morgan, 2001). For each time step, the
melting process is modeled using the following recipe that is an extension of the approach developed in
Morgan (2001):

1. Heat-induced melting. If the temperature Ta (transformed from the potential temperature Twith a 0.33 K/
km adiabatic gradient) lies above the solidus dT = Ta� Tm> 0, then a heat-induced melting degree incre-
ment dfheat will occur. The amount is calculated with equation (A16). The temperature after melting is set
to the solidus determined from the updated degree of melting and water content.

2. Pressure release melting. If upwelling leads to a pressure decrease dP, and the material is at its soli-
dus, melting will also occur. In this case, the degree of melting and new solidus is updated accord-
ing to the new pressure (Morgan, 2001). The pressure-release-induced melting degree increment df
is calculated using equation (A17) (see equation 11 in Morgan, 2001). The temperature of the melt-
ing parcel is then updated to the new depletion-dependent solidus. For increased stability, the melt-
ing increment is calculated iteratively, if dfheat > δf (e.g., δf = 0.01) in the first or dP>δP (e.g.,
δP = 0.001 GPa) in the second.

Tm ¼ Tm0 þ ∂Tm

∂P

� �
f

P þ ∂Tm

∂f

� �
P

f � 43�X0:75
H2O ; (A15)

df
dT

� �
heat

¼ 1=
∂Tm

∂f

� �
p

þ QL

cp

 !
; (A16)

Table A1
Parameters for Temperature-Dependent Strain Weakening Recovery

Mantle Crust

Tlower 1,073.15 K 473.15 K
Tupper 1,573.15 K 973.15 K
Adiffusion �14.4892 �7.6140
Adislocation �7.2446 �3.1324
Smax dislocation 10 5
Smax diffusion 100 50
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¼ ∂Tm

∂P
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f
� αT
ρcp

� �
=

QL

cp
þ ∂Tm

∂f

� �
P

� �
; (A17)

whereTm0 is the solidus at room temperature and pressure, α is thermal expansion coefficient,QL is latent heat
during melting, (∂Tm/∂f)p describes the solidus’s dependence on degree of melting, and (∂Tm/∂P)f describes
the solidus’s dependence on pressure. Table 1 shows the parameters used in the numerical experiments.

Appendix B: Meshing and Remeshing

The computational domain is a mesh of triangular elements that is built using an adaptive mesh genera-
tion algorithm that makes element sizes be relatively small (~4.5 km) when near internal boundaries
between different materials (see equations (B2)–(B4)). Element sizes are made to be 10 times larger than
this (~40 km) in regions far from internal material interfaces, while at transitional distances, element size is
linearly interpolated between these two end-member values. This approach guarantees relatively high
resolution along material interfaces and within thin material layers during a calculation. We find that
material interfaces remain well tracked even when high velocities occur due to the effects of slab subduc-
tion and keel tearing and sinking (see Figures 8 and S3). Because we use a Lagrangian approach in which
straight-sided element vertices advect with material flow, some elements can become heavily distorted in
regions of strong shear. A new equant-element mesh is regenerated by remeshing whenever elements
are deemed to be too distorted (this is defined to be when any interior angle of an element is larger than
170° or smaller than 7°, or any mesh quality factor Q is smaller than 0.2, see equation (B1)). In run 1, the
Lagrangian approach is only used for the portion with temperature > 1,150 °C; a semi-Lagrangian
approach (Hasenclever, 2010) is used for the remaining deeper portion (the more ductile asthenosphere)
in order to minimize computational time. Equations (B2)–(B4) are used to define the preferred element
size R as a function of distance r from an internal boundary interface.

Q ¼ L2 þ L3 � L1ð Þ L1 þ L3 � L2ð Þ L1 þ L2 � L3ð Þ= L1L2L3ð Þ; (B1)

where L1, L2, and L3 are the side lengths of the triangular element.

L0 ¼ R2 when r > 4:75�R2; (B2)

Figure A1. The solidus for different bulk water contents of asthenosphere/midlithospheric discontinuity layer material
(left) and lithospheric mantle (right). Following Katz et al. (2003), the dissolved water’s effect on solidus is taken to be lin-
ear and bounded by the saturation of water in the melt. “0.05 bulk wt. %, etc.” are labels for the water content used to
determine the corresponding solidus.
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L0 ¼ r
3:75�R2 R2 � R1ð Þ þ R1 when R1 < r≤4:75�R2; (B3)

L0 ¼ R1 when r <¼ R1; (B4)

where L0 is the characteristic element size used for a certain set of coordinates, r is distance between center of
spring bar connecting element vertexes (Persson & Strang, 2004) to its closest reference point (RP) sampled
along an interphase boundary. R1 is the smallest element size (here 4.45 km), and R2 is the largest size
(44.32 km). The adaptive algorithm to determine the preferred element sizes over the computational domain
is shown in Figure B1. It first samples RPs on the interfaces between different material types using the
MATLAB function “tricontour.” It then determines how far the center of each spring bar is from its nearest
RP and assigns a preferred length size R to the center of each spring bar. This mesh-size information is used
to generate a new relatively equant mesh of triangles using a finite-element-reformulated version of the
DISTMESH algorithm (Persson & Strang, 2004) done by Taramón et al. (2017). The last step is to interpolate
the current variable fields onto the new mesh.
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unstructured triangular mesh. The sampling distance for RPs is determined by the number of tracer particles in nearby
elements, which ranges from 7–25 per element.
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