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1. Introduction

Hydrothermal mineralization is one of the primary ore-
forming processes on Earth, existing widely not only in
extensional tectonic settings, for example, continental or
oceanic rifts, but also in compressional ones, such as sub-
duction zones and collisional orogenic belts [1]. Traditionally,
studies on fluid-rock interaction [2, 3], fluid inclusions [4–
6], element partitioning [7, 8], element or mineral solubility
[9–12], and aqueous metal speciation [13, 14] have pro-
vided abundant information on hydrothermal ore-forming
processes. As a result, many thermodynamic properties for
important metals in aqueous solutions under hydrothermal
conditions, as well as their geochemical behavior, have been
effectively determined through empirical and semiempirical
extrapolation methods [15, 16]. These studies have further
enriched our views on dissolution, speciation, migration,
and precipitation of metals during hydrothermal processes
and also improved our understanding of the formation of
important metal deposits.

2. Problems and Challenges

Knowledge of the dissolution, transport, and deposition of
ore-forming metals at elevated temperatures and pressures is
a requisite for an unambiguous understanding of hydrother-
mal mineralization processes and metal deposit formation.

As seen in Figure 1, it is usually considered that ore-forming
metals are extracted from the source into the fluids and
transported in the form of stable complexes to the deposit
site. During this process, the interaction between fluids and
wall rocks, as well as the changes in environmental conditions
such as temperature, pressure, oxygen fugacity, and pH,
can significantly influence the chemical states of the fluids
and metals. Though considerable efforts have been made
to enhance our understanding of this process [1, 16], a few
important problems remain to be solved as outlined below.

2.1. Properties of Ore-Forming Metal Complex. It is well
known that ore-forming metals in hydrothermal fluids
migrate mainly in the form of metal complexes [16]. Thus
the properties of ore-forming aqueous metal complexes play
a crucial role in controlling metal mobility and mineral
deposition.

Extraction of ore-forming metal ions from the source is
usually accompanied by metal speciation and complexation
(Figure 1).Theoretically, the dissolution and consequent com-
plexation of metal are achieved by the solvation, hydrolysis,
and nucleophilic substitution reactions [15, 17]. A general
solvation reaction for an ore-forming metal ion M can be
described as

M𝑍+ + 𝑛H2O⇐⇒ [M (H2O)𝑛]
𝑍+ (1)
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Figure 1: Sketch on the forming process of hydrothermal ore
deposit.

Because of high instability, the solvated metal complexes
easily hydrolyze into hydroxy ones by a proton loss, taking
the following form:

[M (H2O)𝑛]
𝑍+
⇐⇒ [M (OH)𝑛]

(𝑍−𝑛)
+ 𝑛H+ (2)

When a certain anion solvent X enters the fluids, more
complicated speciation will occur according to

[M (OH)𝑛]
(𝑍−𝑛)
+ (𝑛 − 1)X− ⇐⇒ [M (OH)X𝑛−1]

𝑍−𝑛
+ (𝑛 − 1)OH− (3)

This reaction can be considered as a nucleophilic substitution
of a hydroxyl OH− by the anion X−.

Because the natural hydrothermal fluids generally com-
prise enormous ion and anion and volatile components [18,
19], the above solvation, hydrolysis, and substitution reactions
become much more complicated and consequently cause the
formation of a variety of aqueous metal complexes [20].
Although Pearson’s acid-base classification system offers a
general rule on complexing among metals and ligands [21],
which species of aqueous metal complexes dominate the
metalmobility andwhich factors control the stability ofmetal
complexes under various hydrothermal conditions are still
not clear. Over the past two decades, a large number of exper-
imental studies on element or ore solubility [10–12] and in situ
spectroscopy or synchrotron radiation measurements [14,
22], as well as molecular dynamics simulations [23–25], have
remarkably enriched our knowledge of the nature and prop-
erties of the aqueous ore-forming metal complexes. A recent
review by Brugger et al. [19] summarized the progress on the
properties of ore-forming metal complexes in hydrothermal
fluids. On one hand, however, previous studies have been
mainly concerned about the metal complexes containing S,
Cl, carbon, or hydroxyl ligands and corresponding hard-acid
metals. Little attention was paid to those metal complexes
involving F, P, N, or organic ligands [19]. On the other hand,
due to the limitations of in situ experimental devices, such
as XANES, XAFS, and UV-Vis spectrophotometry, studies
of metal complexing and speciation are mostly subject to
low pressures (no more than several hundred bars) and
low temperatures (<400∘C). In addition, molecular dynamics
simulations prefer simple component systems.Hence the data

on the nature and property of metal complexes under con-
ditions analogous to natural hydrothermal fluids are indeed
extremely sparse. Therefore, gaining more comprehensive
data for the speciation and complexation of ore-forming
metals adequately and using them for exploring the natural
hydrothermal process will be a long-term task for the future.

Another challenge is to quantitatively evaluate the stabil-
ity of metal complexes, which is important for understand-
ing metal mobility and thus how many metals migrate in
hydrothermal fluids (Figure 2). Although mineral solubility
experiments have contributed a lot to the knowledge of
metal mobility in hydrothermal fluids, the solubility data tell
us more about the possible speciation and the maximum
metal contents that the sources can supply (Figure 1) and
much less about the stability of the metal complexes [26].
Given that the migration of ore-forming metal complexes
is accompanied by its formation and hydrolysis [17, 27],
the stability of metal complexes could be quantitatively
characterized by the formation and hydrolysis constants of
metal complexes, as shown in reactions (1) through (3). Also
because the hydrolysis of metal complex usually induces
the precipitation of metal [26], the hydrolysis behavior of
metal complexes dictates how many metals migrate stably
and for what distance (Figure 2). Although the hydrolysis of
metal ions in aqueous solution has been studied at or near
room temperature and atmospheric pressure for over 60 years
[28, 29], the hydrolysis data on metal ions and particularly
metal complexes at high temperature and high pressure are
still scarce. This hinders us from quantitatively studying the
mobility of metal complexes in hydrothermal fluids.

Besides, the hydrolysis of metal complexes in fluids
is apparently a reverse process compared to the mineral
dissolution. However, a few experimental studies between
mineral solubility and metal-complex hydrolysis contain
certain paradoxes. For example, rutile solubility in F-bearing
hydrothermal solutions generally rises with increasing tem-
perature [30, 31], promoting the formation of F-bearing
Ti complexes. Nevertheless, the hydrolysis of a Ti fluoride
complex in a hydrothermal solution, easily producing rutile
mesocrystals and/or macrocrystals, also becomes intensified
as the temperature increases [26].The reason for this paradox
is still obscure and awaits verification in the future.

2.2. Element and Isotope Fractionation during Fluid-Rock
Interaction. Reactions of ore-forming fluids with the wall
rock involve significant component exchanges and min-
eralogical and textural changes during the long flow or
infiltration of the fluids (Figure 1). This process can result in
not only the formation of broad alteration zones (i.e., greis-
enization and albitization) [1, 32], but also the variation of the
fluid’s composition and pH values (Figure 2) [33], sometimes
playing a decisive role on the formation of hydrothermal ore
deposits [3].

During the fluid-rock interaction, two major pressing
issues remain to be understood. The first one is element and
isotopic fractionation during the process of disequilibrated
fluid-flow reaction with the wall rock or the dissolution and
precipitation of hydrothermal ore minerals. In recent years,
nontraditional metal isotopes (i.e., Fe, Mg, Ca, Cu, Zn, Mo,
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Figure 2: Schematic diagram on the formation, migration, and precipitation of metal complexes.

Ti, and Hg) have provided new powerful tools for tracing
diverse geochemical processes. Because ore minerals are
usually enriched in these metal elements, their dissolution-
precipitation processes in hydrothermal fluids can exhibit a
significant influence on element and isotope fractionations
[34]. However, related studies, particularly on the isotopic
fractionation coefficients between ore mineral and fluids, are
apparently rare. The lack of knowledge on the isotopic frac-
tionations between metal-bearing phases and fluids prevents
the accurate application of tracing the formation ofmagmatic
or hydrothermal ore deposits.

The second issue concerns the vapor transport of ore-
forming metals during the fluid-rock interaction. The role of
vapor transport in the formation of hydrothermal-related ore
deposits has long been overlooked [16]. A few investigations
have demonstrated that water vapor is capable of dissolving
very high concentrations of ore-forming metals (i.e., Cu, Au,
Ag, and Sn) [35] and can even cause Cu isotope fraction-
ations [36]. Therefore, vapor-assisted metal transport and
the resultant element/isotope fractionation may play a more
important role during the compositional differentiation of
magmatic-hydrothermal fluids and formation of hydrother-
mal ore deposits than has been previously recognized.

2.3. Metal Precipitation and Growth of Ore Mineral. How
metal ore grows in hydrothermal fluids from a metal ion
or metallic compound to the macrocrystals making up the
ore is one of the most fundamental problems in mineralogy
and metallogeny. Previous studies focused mainly on the
factor controlling metal precipitation in hydrothermal fluids
(i.e., temperature, pH, and pressure) and the precipitation
mechanisms (i.e., decreasing temperature or pressure, fluid
mixing, fluid-water reaction, and decreasing oxygen fugacity)
[1, 16, 32]. Other efforts have been attempted to establish
the relationship between the form and morphology of the
ore crystal and the surrounding environmental conditions
[16].These advances have considerably helped to improve our
knowledge of the theory for hydrothermalmetallogeny.How-
ever, the nucleation process and the kinetics of ore crystal
growth in hydrothermal fluids are still less understood.

The growth of metal-bearing mineral in hydrothermal
fluids generally experiences different stages from the micro
to mesoscopic and finally to the macroscopic scale. Since
1990s, nanoscience and technology has highly promoted the

development of functional materials. As the representatives
of functional materials, the metal oxides and metal sulfides,
as well as their morphologies and their growth mechanism,
have been widely studied on the nanolevel [37, 38]. These
results do broaden our views and expand our knowledge
of the growth of metal-bearing minerals, such that a new
frontier interdisciplinary field is currently being developed,
which combines nanoscience and metallogeny investigating
the formation of hydrothermal ore deposits.

3. Contents of the Special Issue

Recent advances in high-temperature and high-pressure
technology, combined with the development of experimental
methods and pertinent analysis techniques, have consider-
ably helped improve our knowledge concerning the ore-
forming metals and fluids under hydrothermal conditions.
In particular, new studies have been made on synthesized
or natural fluid inclusions using in situ analysis via laser-
ablation inductively coupled plasma mass spectrometry.
Additional techniques have utilized the visual hydrothermal
cell, hydrothermal diamond-anvil cell, and fused silica cap-
illary reactors, in combination with UV-Vis spectrophotom-
etry, Raman spectroscopy, and synchrotron techniques. All
these methods demonstrate a broad research perspective on
hydrothermal processes.

The purpose of this special issue is to publish high-
quality research papers as well as review articles that seek
to address recent advances on hydrothermal processes and
metal mineral ore deposits. The 12 articles published here
were chosen from 20 submissions, and most of them under-
went two rounds of rigorous review. These contributions
show the latest studied results on a variety of hydrothermal
process and ore deposits.These include the Pacific Ocean, the
Bamble Sector, S. E.Norway and theMassif Central, France in
Europe, the Great Xing’an Range in the northeastern China,
the Wutai-Hengshan region in the central North China
Craton, the Nanling Mountains in South China, and finally
the Tibetan Plateau, as well as various new experimental
and analytical techniques, such as numerical simulations;
observing mineral chemical reactions in fused silica glass
tubes and the hydrothermal diamond-anvil cell with laser
Raman confocal microscopy; LA-ICPMS analysis of fluid
inclusions; and nontraditional stable isotopic methods. The
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contents of the published articles in this special issue can
be roughly categorized as the evolution of hydrothermal
fluids and their components (6 papers), the mineralogy and
formation of hydrothermal ores (4 papers), and Fe-Cu-Zn
isotopes of ores (2 papers).

3.1. Evolution of Hydrothermal Fluids and Their Components.
The paper by A. K. Engvik et al. presents new data on stable
isotopes from albite, scapolite, amphibole, quartz, and calcite
mineral separates from metasomatised rocks in the Bamble
lithotectonic domain, southeast Norway.These data increases
our knowledge on the fluid type, source, and evolution during
metamorphism. Their results support the interpretation that
the original magmatic rocks were metasomatised by seawater
solutions with possible involvement from magmatic fluids.
The whole rock geochemistry records fluid mobilization
and chemical transport, which supports a close relationship
between metasomatism and mineral deposition.

Q. Shu and Y. Lai have studied fluid inclusions in quartz
as well as the oxygen isotopic signature of the quartz from
samples associated with early potassic alteration, synminer-
alization sericite-chlorite alteration, and postmineralization
from the Haisugou porphyry Mo deposit, northern Xilamu-
lun district, northeastern China. They demonstrate that the
mixing ofmagmatic-hydrothermal fluidswithmeteoricwater
dominated the whole Mo mineralization process.

The paper by M. Harlaux et al. presents a complete
study of primary fluid inclusions hosted in quartz and topaz
from the Beauvoir rare-metal granite and the metasomatised
stockwork (Massif Central, France). Based on microther-
mometry, Raman spectrometry, and laser-ablation induc-
tively coupled plasma mass spectrometry of fluid inclusions,
they found that the primary fluid inclusions preserve a
pristine signature from the ore-forming fluids in both the
Beauvoir granite and the associated metasomatised stock-
work.

C. Konn et al. report the organic, gas, and element geo-
chemistry from hydrothermal fluids of the newly discovered
extensive hydrothermal area in theWallis and Futuna region,
SWPacific.Geochemical research and estimates of heat fluxes
suggest that back-arc hydrothermal activity contributes as
much as the mid-ocean ridge system, and possibly more,
which supports the idea that the hydrothermal contribution
of back-arc environments is of great interest for the global
ocean chemistry.

S. Li et al. report microthermometric data from fluid
inclusions in quartz and fluorite, as well as C-H-O-S iso-
tope studies of quartz, from the Bairendaba Ag-Zn-Pb
deposit, southern Great Xing’an Range, Northeast China.
They demonstrate that the change in temperature, water-
rock interaction, and fluid mixing caused metal precipitation
from the ore-forming fluids. Being a typical mesothermal
deposit, the Bairendaba deposit was formed in an extensional
environment related to Early Cretaceous subduction of the
Pacific Plate.

In a paper by T. Liu et al., fluid inclusion and C-O-S-Pb
isotopic data from the Zhijiadi Ag-Pb-Zn deposit, central
North China, are reported. They find that the ore-forming

fluids were derived from amagmatic system and strictly con-
trolled by fault zones and conclude that the Zhijiadi Ag-Pb-
Zn deposit is a volcanic or subvolcanic-related hydrothermal
deposit and not an epithermal one as previously predicted.

3.2. Mineralogy and Formation of Hydrothermal Ores. In the
paper by Y.Wan et al., in situ Raman spectroscopy, quenched
scanning electron microscopy, micro-X-ray diffraction, and
thermodynamic calculations were used to explore the inter-
play between dolomite and silica-rich fluids at relatively
low temperatures in fused silica glass tubes. The major
contributions of this study are as follows: (1) the mechanism
of talc mineralization in Mg-carbonate-hosted talc deposits
is confirmed, and it is shown that talc can form at lower
temperatures (≤200∘C) than previously documented; (2) the
presence of talc in carbonate reservoirs can indicate the pres-
ence of a silica-rich hydrothermal fluid; and (3) the reactivity
and solubility of silica require further consideration, when
a fused silica glass tube is used as the reactor in high P-T
experiments.

In the paper by J. Li and I.-M. Chou, in situ observations
are reported concerning the processes of total homogeniza-
tion of crystal-rich inclusions in spodumene from number
134 pegmatite dike, Jiajika deposit, China, using a new
type of hydrothermal diamond-anvil cell (HDAC). These
observations indicate that the minerals within the crystal-
rich inclusions were daughter minerals crystallized from
an entrapped carbonate- and silica-rich aqueous solution at
high temperature and, as such, provide useful information
regarding the evaluation of granitic pegmatite formation
models.

In the paper by X. Liu et al., finite element-based numer-
ical experiments are used to investigate the influence of a
hydraulic fracturing process on fluid flow and solubility of
CO2 and quartz and aim to establish a link between fluid flow
and wolframite mineralization.Their numerical experiments
provide insight into themechanisms precipitating wolframite
in tungsten deposits from the Nanling Mountains, South
China, and other metals whose solubility is strongly depen-
dent on pH.

K. Hu et al. use a combination of microscopic work
and electron probe microanalysis to characterize Au-hosting
minerals and the form that Au takes in ore minerals from the
Carlin-type Bojitian deposit, southwestern China. They find
that the dominant minerals that host Au are arsenian pyrite
and arsenopyrite, where Au occurs in the form of nanoscale
Au0 and solid solution Au+. Consequently, they propose a
new metallogenic model for the Bojitian Au deposit.

3.3. Fe-Cu-Zn Isotope of Ores. The paper by R. Mathur et al.
collected and compiled the Cu isotope data from chalcocite
according to three major sources, that is, supergene enrich-
ment, sedimentary/red bed, and high-temperature hypogene
mineralization. They find that chalcocites from these three
major sources show distinct variations in Cu isotopic values,
which are controlled by redox reactions at low-temperature
and by equilibrium-type reactions at high temperature. This
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study demonstrates that the Cu isotope of chalcocite can be
used to trace the genesis of the chalcocite.

In a paper by D. Wang et al., electron microprobe
analytical data and Fe-Zn isotopic data are presented from
sphalerite and carbonate samples from the Zhaxikang Sb-Pb-
Zn-Ag deposit, southern Tibet.They demonstrate that vapor-
liquid partitioning and mineral precipitation caused Fe-Zn
isotopic and other elemental variations. The genetic SEDEX
model, modified by hydrothermal fluids, is themost plausible
for this deposit.

Xing Ding
Daniel E. Harlov

Bin Chen
Weidong Sun
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