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ABSTRACT
The DisTrad (Disaggregation Procedure for Radiometric Surface
Temperature) model shows limited applicability for sub-pixel map-
ping of thermal remote-sensing images in densely vegetated areas
due to the phenomenon of normalized difference vegetation index
(NDVI) saturation. In this article, we compared the effect of NDVI and
enhanced vegetation index (EVI) in the DisTrad model for thermal
sub-pixel mapping in densely vegetated areas due to their different
sensitivity in densely vegetated areas. Taking Ganzhou in Southern
China as an example, we produced 250-m thermal remote-sensing
images from a 1000-m image using 250-m NDVI and EVI data. After
comparing with the synchronous 90-m thermal image from
advanced spaceborne thermal emission and reflection radiometer,
we found that the EVI can achieve a better result than NDVI in
densely vegetated areas.
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1. Introduction

Land surface temperature (LST) is a key variable in climate and environmental research. As an
important impact factor of resources and environment, LST is essential for studying global
agriculture, natural disasters, hydrology, ecology and the environment. In addition, LST offers
broad application value in various domains, such as energy andwater exchange amongglobal
crop assessment (Kogan 2001), coal fires (Deng, Wan, and Zhao 2001), earthquake forecasting
(Lv, Ding, and Cui 2000), monitoring soil moisture status (Sandholt, Rasmussen, and Andersen
2002; Sun et al. 2012), land use and cover change (Lambin and Ehrlich 1996; Zhang andWang
2006), aswell as forestfires (Penget al. 2007). Zakšek andOštir (2012) analysed thediurnal cycle
of urban heat island from LST images acquired from spinning enhanced visible and infrared
imager. The traditional method to acquire LST is to measure temperature directly using
instruments basedon a land surface or platform, such as ameteorological station. Thismethod
can obtain continuous monitoring data with high precision covering small areas near the
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station, but it is difficult to be used for temperature mapping in large-scale areas. The
appearance of remote-sensing techniques shows possibilities to measure and map LST in
large scales. However, until now, major obstacles still exist regarding mapping LST with both
high-frequency and high-spatial resolution (e.g. 10–100 m) using satellite remote-sensing.
Some remote-sensors have higher temporal resolutions but lower spatial ones, while some
have higher spatial resolutions but lower temporal ones. Table 1 lists some thermal remote-
sensors and their spatial and temporal resolutions. For example, moderate resolution imaging
spectroradiometer (MODIS) can provide four thermal infrared images (two in the day and two
in the night), but its spatial resolution is about 1000 m. Thermal image data of enhanced
thematic mapper plus reach as high as 60m, but its temporal resolution is only 16 days, which
is insufficient for some applications. In general, images with 250–500 m resolution can meet
the requirements of monitoring artificial land-use changes, and images with less than 500-m
resolution are acceptable formonitoring globe change. Currently, enhancing spatial resolution
remains themost efficientway to improve the applicability of thermal images. A simpleway of
improving the spatial resolution of thermal images is achieved through the UniTrad (uniform
procedure for radiometric surface temperature) method (Kustas et al. 2003), which is a re-
sampling method using algorithms, such as nearest neighbour interpolation, linear interpola-
tion and cubic convolution interpolation. However, the accuracy of this method is not good
due to its coarse algorithm. Kustas et al. (2003) proposed the DisTrad (disaggregation proce-
dure for radiometric surface temperature) model to improve the spatial resolution of thermal
images using the relationship between thermal infrared image data in a km scale and normal-
ized difference vegetation index (NDVI) images in a hm scale, which makes it possible to fuse
high-frequency LST data in a km scale and high-resolution LST data in a hm scale. The DisTrad
model is commonly used in thermal sub-pixelmapping. Themodelfirstfitted a linear statistical
relationship between LST and NDVI and then applied the relationship to NDVI image with
high-spatial resolution. The final LST image with similar spatial resolution was obtained.
However, NDVI is not always suitable for some regions with different coverage of vegetation.
Agam et al. (2007) proposed the TsHARP (technique for spatial sharpening thermal image)
algorithm by substituting NDVI in the original DisTradmodel with Fc, which fit the relationship
with LST. Using irrigated cropping area as study area, Merlin et al. (2010) modified the TsHARP
algorithmby agreen (photo-synthetically active) vegetation index (VI) that could disaggregate
kilometric MODIS product at 100-m resolution successfully. Essa et al. (2012) evaluated the
performance of a variety of indices in the DisTrad model, and they found that even if in urban
areas covered by dense vegetation, index I (percentage impervious) was still much more
effective than NDVI in the model. Zhan et al. (2013) divided the methods of disaggregation of
remotely sensed LST into two categories: thermal sharpening and temperature unmixing.
However, there is less research about the disaggregating LST in densely vegetated areas. The
densely vegetated areas are widely distributed on the earth, but the NDVI saturation at high

Table 1. Spatial and temporal resolutions of sensors in some remote-sensing satellites.
Sensor Satellite Spatial resolution Temporal resolution

TM Landsat 5 30 m (120-m thermal) 16 days
ETM+ Landsat 7 30 m (60-m thermal, 15-m panchromatic) 16 days
MODIS Terra and Aqua 250 m (2 bands), 500 m (5 bands), 1000 m (29 bands) 2 per day
AVHRR NOAA 1.1 km 4 per day
GOES Imager GOES 0.5–1 km (2–4 km thermal) 30 min
ASTER Terra 90 m 16 days
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biomass area limited its applicability for sub-pixel mapping of thermal remote-sensing images
in densely vegetated areas.

In this article, taking Ganzhou in Southern China as a case, we compared the effect of
NDVI and enhanced vegetation index (EVI) in the DisTrad model for thermal sub-pixel
mapping in densely vegetated areas due to their different sensitivity in densely vege-
tated areas, and validated the results with 90-m resolution synchronous advanced
spaceborne thermal emission and reflection radiometer (ASTER) data. The study dis-
cussed the applicability of NDVI and EVI in the DisTrad model in densely vegetated area,
aiming to provide reference to thermal sub-pixel mapping.

2. Method and data

2.1. DisTrad-NDVI and DisTrad-EVI method

The DisTrad model proposed by Kustas et al. (2003) improves the spatial resolution of LST
through a relationship between coarse NDVI and surface temperature (TR) (R stands for
‘radiometric’) by the least-squares fittingmethod, which is named the DisTrad-NDVI method
in this study. For solving the problem of over-saturation in densely vegetated areas, Agam
et al. (2007) proposed amethod replacing NDVI with the index of fractional vegetation cover
(Fc) in the DisTrad model, which is named the DisTrad-Fc model in this study.

NDVI is a ratio based on the spectral reflectance from vegetation. NDVI is from
combined operations between the red band and near infrared band, which is expressed
mathematically as:

NDVI ¼ RNIR � RVisð Þ= RNIR þ RVisð Þ (1)

where RNIR stands for the spectral reflectance in the near infrared band (700–1100 nm);
and RVis stands for the spectral reflectance of the visible band (400–700 nm). Calculations
of NDVI for a given pixel always result in a number that ranges fromminus one (−1) to plus
one (+1); however, no green leaves give a value close to zero. A zero means no vegetation,
and close to +1 (0.8–0.9) indicates the highest possible density of green leaves (NASA
2013). Fractional vegetation cover (Fc) is another integrated quantitative index for vegeta-
tion conditions, which is mathematically expressed as (Choudhury et al. 1994):

Fc ¼ 1� NDVImax � NDVI=NDVImax � NDVIminð Þ0:625 (2)

EVI is an ‘optimized’ index designed to enhance the vegetation signal with improved
sensitivity in high biomass regions and improve vegetation monitoring through a de-
coupling of the canopy background signal and a reduction in atmosphere influences. EVI
is computed as follows (Huete et al. 2002):

EVI ¼ G� RNIR � Rredð Þ= RNIR þ C1 � Rred � C2 � Rblue þ Lð Þð Þ (3)

where RNIR, Rred, Rblue are atmospherically corrected or partially atmosphere-cor-
rected (Rayleigh and ozone absorption) surface reflectance; L is the canopy back-
ground adjustment that addresses non-linear, differential NIR and red radiant
transfer through a canopy; and C1 and C2 are the coefficients of the aerosol
resistance term, which uses the blue band to correct for aerosol influences in the
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red band. The coefficients adopted in the MODIS-EVI algorithm are: L = 1; C1 = 6;
C2 = 7.5 and G (gain factor) = 2.5 (Huete et al. 2002).

2.1.1. DisTrad-NDVI model for MODIS data
Here, the DisTrad-NDVI model will be introduced by enhancing the spatial resolution of
MODIS thermal images from 1000 m to 250 m. First, a NDVI image with 250-m resolution
(NDVI250) is made coarser to one with 1000-m resolution by nearest neighbour method.
Using NDVI250, the coefficient of variation (CV, the standard deviation divided by the
mean) of each coarse pixel is computed. The NDVI1000 pixels are divided into three
groups: (1) 0<NDVI<0.2 (sparse canopy cover/bare land); (2) 0.2<NDVI<0.5 (partial
canopy cover) and (3) NDVI>0.5 (high/full canopy cover). Then, a part of the pixels
having the lowest CV is selected from each group because the relationship between
NDVI-TR in pure pixels at 1000-m resolution should be more closed to the relations at
higher resolution image. In addition, a subset image should be extracted covering as
many classes as possible to include higher dynamic ranges. Second, a least-squares
fitting is performed relating TR and NDVI1000 values. Kustas et al. (2003) and Agam et al.
(2007) pointed out that a linear equation between TR and VI may be more suitable when
TR pixel size >1000-m resolution, as shown:

T
0
R1000 NDVI1000ð Þ ¼ aþ b� NDVI1000 (4)

where the ‘superscript’ symbol of TR stands for an LST value linking the VIs regression
equation. Here, the value was derived from MOD11A1 image in this article.

Third, in principle, Equation (4) could be used to estimate 250-m TR, T
0
R, directly by

replacing NDVI1000 with NDVI250. However, the least-squares regression neglected the
effects of variations in soil moisture (Agam et al. 2007). So, Equations (5) and (6) are
suggested for correcting soil moisture:

ΔT 0R1000 ¼ TR1000 � T 0R1000 (5)

T 0R250 ið Þ ¼ T 0R1000 NDVI250 ið Þð Þ þ ΔT 0R1000 (6)

where TR1000 is real LST with 1000-m resolution that was coarsened from ASTER product

with 90-m resolution in this article, ΔT
0
R1000 is the difference between them,

T 0R1000 NDVI250 ið Þð Þ is a LST value predicted using the parameter a and b in Equation
(4), and T 0R 250 ið Þ stands for the final estimate LST value with 250-m resolution.

2.1.2. Modification of the DisTrad-NDVI model
One modification to the DisTrad-NDVI model is replacing NDVI with Fc. After replacing
NDVI with Fc, Agam et al. (2007) found that the precision of disaggregated pixels was
higher than the results by the DisTrad-NDVI model, even at Landsat/ASTER pixel
resolution. However, the actual precision of Agam’s method is very low. One reason
for this is that the study area of Agam et al. (2007) is different from that of Kustas
et al. (2003). Consequently, it is difficult to conclude that the higher precision of
Agam et al. (2007) is derived from the model modification or the land-cover changes
of the study areas.
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In this study, we also modified the DisTrad-NDVI model by replacing NDVI with EVI.
Compared to NDVI and Fc, EVI has greater sensitivity in densely vegetated areas. In
addition, EVI does not reach a saturated state easily. In addition, the step of canopy
cover classification can be skipped in the DisTrad-NDVI model. To achieve replacing
NDVI with EVI, we present the following calculated steps, and the meanings of para-
meters in Equations (7–10) are similar with Equations (4–6):

Step 1, a linear regression is performed relating EVI and TR at 1000-m resolution:

T
0
R1000 EVI1000ð Þ ¼ aþ b� EVI1000 (7)

In Equation (7), values a and b can be calculated through regressions. Then, we can use EVI
in each pixel (EVI1000) to derive T

0
R1000 EVI1000ð Þ and initially estimate values (T

0
R1000 EVI250ð Þ)

in thermal pixels with 250-m resolution through Equation (8):

T
0
R1000 EVI250ð Þ ¼ aþ b� EVI250 (8)

Step 2, considering the effects of soil moisture variation, Equation (9) is used for
correction:

ΔT 0R1000 ¼ TR1000 � T 0R1000 (9)

Step 3, the surface temperature values of each pixel at 250-m resolution are calculated
through Equation (10):

T 0R 250 ið Þ ¼ T 0R1000 EVI250 ið Þð Þ þ ΔT 0R1000 (10)

2.2. Data

The data in this article include synchronous data from two sensors of MODIS and ASTER
in satellite Terra on 14 November 2007. The data from MODIS include two parts: the
daily product MOD11A1 that contains LST with 1000 m (actually 926.625 m) resolution
(LST1000) and the 16-day composite product MOD13Q1 that contains VIs with 250 m
(actually 231.705 m) (NDVI250, EVI250). The ASTER data are ASTER level 2 surface
temperature product AST_08 with 90-m resolution that have been atmospherically
corrected (NASA 2001).

The study area is located in Ganzhou, Jiangxi Province, Southern China, which is a
transition area of three mountains of Nanling, Wuyi and Zhuguang (Figure 1). This area
belongs to the southern edge of a subtropical zone characterized by a wet monsoon
climate. Adequate light and heat, a long growing reason, as well as abundant but
unequal rainfall, makes it one of the commodity forest bases of Southern China.
Forest tree species in the study area exhibit small differences in horizontal distribution,
which makes it a typical densely vegetated area in Southern China.

The number of the area in VIs images with 250-m resolution is 86,832, in which the
one with dense vegetation is 66,877, accounts for 77%. Compared to land-cover type
product MCD12Q1 in 2007, on the basis of IGBP classification scheme, mixed forests is
the main land cove type, and woody savannahs is the second biggest type in the area
with NDVI >0.5 (Figure 2).
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In order to validate the results of the DisTrad-NDVI/EVI methods, ASTER high-resolution
data (90 m) were used. ASTER data with 90-m resolution were transformed into radiation
energy, registered with the final estimated image from MODIS (250 m). Then, a tempera-
ture image with the same resolution was calculated using the Planck formula. Finally, we
can spatially coarsen an LST image from ASTER high-resolution data corresponding to the
estimated LST image from MODIS data using the DisTrad-NDVI/EVI methods.

Figure 1. True colour image of the study area.

Figure 2. The land-cover type in densely vegetated areas of the study area.
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3. Results

3.1. DisTrad-NDVI/EVI results

Some suitable pixels that are classified by the above-mentioned steps are selected after
NDVI250 is resampled toNDVI1000with the same resolution as the LST image. A linear regression
was performed between NDVI1000 and LST, and the scatterplot was shown in Figure 3(a).
Similarly, the same procedure was performed between EVI1000 calculated from EVI250 and LST,
and the resultswere shown in Figure 3(b). Two linear equations, TR =−8.9636NDVI+29.686 and
TR = −13.853EVI+28.94, were derived from linear regressions. NDVI250, NDVI1000, EVI250 and
EVI1000 were used to calculate the surface temperature image, respectively.

We also calculated the difference (ΔT
0
R1000) between T

0
R1000 NDVI1000ð Þ and T

0
R1000 EVI1000ð Þ,

which is used for the correction of soil moisture. Finally, we calculated the LST image using
the above results and Equations (4–10), which are shown in Figure 4, including the original
thermal image in 1000-m resolution.

3.2. Validation

For validating the sub-pixel mapping results of thermal images of the DisTrad model, we
compared the results with the synchronous 90-m thermal image from ASTER. First, we
registered two images with some ground control points (GCPs) selected based on ground
surface features. The GCPs must be selected carefully because the number and distribu-
tion of GCPs will influence the precision of registration. The overall error of the registration
is approximately 0.623996, which is less than 1 pixel. The registered ASTER thermal image
can be directly compared with the calculated thermal image using the DisTrad model.

3.3. Statistical analysis

For quantitatively evaluating the effects of sub-pixel mapping of thermal images of
different methods, we conducted statistical analysis on one subset image. Figure 5
shows a comparison between an ASTER thermal image and MODIS thermal images
calculated using the DisTrad-NDVI/EVI models. In general, three images are similar on

Figure 3. Linear fitting maps of VI-TR: (a) Linear fitting between NDVI and TR; (b) Linear fitting
between EVI and TR.
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visual inspection. The thermal images calculated by the DisTrad-NDVI and DisTrad-EVI
models appear very similar to the ASTER thermal image. Scatterplots in Figure 6 and
three parameters in Table 2 show the DisTrad model is applicable for thermal sub-pixel
mapping in Southern China. Compared to Table 2 from Kustas et al. (2003), the root

Figure 4. Comparison of the original and the calculated thermal image using the DisTrad-NDVI and
DisTrad-EVI methods, respectively, in the study area: (a) Thermal image with 1000-m resolution; (b)
thermal image in 250-m resolution derived from the DisTrad-NDVI method; (c) thermal image in
250-m resolution derived from the DisTrad-EVI method.
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mean square errors (RMSE) and correlation coefficients (r) are both acceptable (Table 2).
And the mean difference of the DisTrad-EVI model is smaller than the one of DisTrad-
NDVI model. It seems that the DisTrad-EVI model is more effective than DisTrad-NDVI.
Here, a difference image between the registered ASTER thermal image and the two
images by the DisTrad-NDVI and DisTrad-EVI models was calculated (Figure 7).

Figure 5. Comparison between ASTER and DisTrad-NDVI/EVI thermal images in subsets: (a) ASTER;
(b) DisTrad-NDVI; (c) DisTrad-EVI.
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The difference images are calculated using LST values from the ASTER image subtracted by
the estimated LST values of the corresponding pixels, where yellow colour represents pixels
with 4K lower LST values than the estimated values, while red colour represents pixels with 4K
higher values than the estimated values. Generally, pixels with large differences are few, and
proportions in two images of Figure 7 are less than 5% (4.23% in Figures 7(a) and 4.16% in
Figure 7(b)). The distributions of pixels with large differences are similar in the two images,
including both higher and lower ones. Here, the pixelswith lower LST values aremostly in sub-
area 1, while those with higher LST values are in located in sub-areas 2, 3 and 4. After a
comparison with the high-resolution image, we found that the areas with large difference
pixels were mostly non-vegetation areas in Figure 7. Specifically, sub-area 1 is water and sub-
areas 2, 3 and 4 are build-up areas. This implies that the estimated LST values through NDVI or
EVI are close to the actual temperature in vegetation areas, while the errorsmostly appeared in
non-vegetation areas.

In order tomake amore clear comparison, a densely vegetated sub-area (shown by the red
square in Figure 5(a)) was selected for analysis, and the results were shown in Figure 8 and
Table 3. Compared to the ASTER thermal image, the DisTrad-EVI thermal image presentsmore
precise and detailed information than the DisTrad-NDVI one. The boundaries between hills
and bare lands are quite fuzzy in the DisTrad-NDVI image, and the internal area of vegetation
(the dark blue zone in Figure 8(b)) is difficult to discern. Moreover, the temperature range of
the DisTrad-NDVI image is from 21.1°C to 26.6°C with a difference of 5.5°C, which is much less
than that of the ASTER thermal image (9.1°C). However, the temperature range of the DisTrad-
EVI image varies from 19.6°C to 26.3°C with a difference of 6.7°C, which is broader than that of
the DisTrad-NDVI image (Table 3). Inspecting the detailed distribution of LST in the ASTER
image, the DisTrad-EVI image shows more detailed information of LST than the DisTrad-NDVI

Figure 6. Scatterplots between ASTER image and DisTrad-NDVI and DisTrad-EVI images.

Table 2. Three parameters assessing the levels of the DisTrad-NDVI and DisTrad-EVI models using
89,216 points with respect to ASTER LST.
Model RMSE r Mean difference

DisTrad-NDVI 1.581 0.676 0.047
DisTrad-EVI 1.549 0.680 0.043
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image. This is consistent with the results of Huete et al. (2002), in which the NDVI tends to
asymptotically saturate in densely vegetated regions, while the EVI remains sensitive to
canopy variations.

Generally, the results of thermal sub-pixel mapping using either the DisTrad-NDVI or
DisTrad-EVI model are not as good in non-vegetation areas. Regarding vegetation areas,
both the DisTrad-NDVI and DisTrad-EVI model show good results for thermal sub-pixel
mapping, which offers an important way for improving the spatial resolution of thermal
remote-sensing images. Especially in densely vegetated areas, the DisTrad-EVI model is
proven to be an effectiveway for thermal sub-pixelmapping, and promiseswider applications
than the DisTrad-NDVI one.

4. Conclusion and discussions

In this article, we compared the effect of NDVI and EVI in the DisTrad model for thermal
sub-pixel mapping in densely vegetated areas due to their different sensitivity in densely
vegetated areas. In an example area of Ganzhou, Southern China, a 250-m thermal

Figure 7. Comparison of images between the registered ASTER thermal image and two images by
the DisTrad-NDVI and DisTrad-EVI methods, in which yellow colour represents pixels with 4K lower
LST values than the estimated values, while red colour represents pixels with 4K higher values than
the estimated values: (a) ASTER-(DisTrad-NDVI); (b) ASTER-(DisTrad-EVI).
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Figure 8. Comparison of thermal sub-pixel mapping of ASTER image (a), DisTrad-NDVI method (b)
and DisTrad-EVI (c) in a high vegetation area.

Table 3. Temperature ranges of three temperature images in a high vegetation area.
Model Lowest temperature (°C) Highest temperature (°C) Range (°C)

ASTER 19.4 28.5 9.1
DisTrad-NDVI 21.1 26.6 5.5
DisTrad-EVI 19.6 26.3 6.7
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remote-sensing image from a 1000-m one was produced using 250-m EVI data. After
comparing with the synchronous 90-m thermal image from ASTER, we drew the follow-
ing conclusions:

(1) Because both NDVI and EVI are not sensitive to non-vegetation areas, the models
of both DisTrad-NDVI and DisTrad-EVI are not good for thermal sub-pixel mapping
in non-vegetation areas, such as water, bare soil and urban areas.

(2) Regarding middle-vegetation areas with sparse or partial canopies (e.g. NDVI<0.5),
the DisTrad model using NDVI or EVI show very similar results.

(3) By substituting NDVI using EVI, the DisTrad model overcomes limitations in
densely vegetated areas and exhibits wide applications in densely vegetated
areas, such as Southern China, Southeast Asia and South America.

(4) Meanwhile, the step of canopy cover classification can be skipped in the DisTrad-
EVI model. Therefore, the proposed DisTrad-EVI model is effective for thermal sub-
pixel mapping in both dense- and rare-vegetation areas.

LST images with high temporal and high spatial resolutions are critical to regional
and global research. This article proposed and validated the DisTrad-EVI model in
densely vegetated areas. However, in non-vegetation areas, the DisTrad-EVI model is
not recommended. Some indices that are sensitive to non-vegetation could be utilized
to improve the DisTrad model applications in non-vegetation areas. In addition, the
accumulation of errors will cause the uncertainty of temperature calculation when
registered, which should also be considered in the DisTrad-EVI model.
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