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Urban centers have turned to be theprovincial store for resource consumptions and source releases of different types of
semi-volatile organic compounds (SVOCs) including polycyclic aromatic hydrocarbons (PAHs), bringing about bound-
less environmental pollutions, among different issues. Human prosperity inside urban communities is unambiguously
dependent on the status of urban soils and house dusts. However, environmental occurrence and sources of release of
these SVOCs are challenging in Nepalese cities, as exceptionally very limited data are accessible. This motivated us to
explore the environmental fate, their source/sink susceptibilities and health risk associated with PAHs. In this study,
we investigated the contamination level, environmental fate and sources/sink of 16 EPA's priority pollutants in surface
soil and house dusts from fourmajor cities of Nepal. Additionally, the toxicological effect of individual PAHwas studied
to assess the health risk of PAHs. Generally, the concentrations of∑16PAHs in surface soil were 1.5 times higher than
house dust, and ranged 767–6770 ng/g dry weight (dw) (median 1810 ng/g dw), and 747–4910 dw (median
1320 ng/g dw), respectively. Highmolecular weight-PAHs both in soil and dust weremore abundant than lowmolec-
ular weight-PAHs, suggesting the dominance of pyrogenic source. Moderate to weak correlation of TOC and BC with
PAHs in soil and dust suggested little or no role of soil organic carbon in sorption of PAHs. Source diagnostic ratio
and principal component analysis indicated fossil fuel combustion, traffic/vehicular emissions and combustion of bio-
mass are the principal sources of PAHs contamination in Nepalese urban environment. The high average TEQ value
of PAHs in soil than dust suggested high risk of soil carcinogenicity compared to dust.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are semi-volatile organic
compounds (SVOC). They are a class of persistent organic pollutants
(POPs), and are omnipresent ecological contaminants. Some of them
have been recognized as a cancer-causing and mutagenic substance
(De La Torre Roche et al., 2009; IARC, 2010; Wang et al., 2011; Blokker
et al., 2013; Shen et al., 2013; Lemieux et al., 2015). Likewise, they are
an endocrine disrupting chemicals (EDCs) and can cause potential
health hazards, including abnormalities in reproductive function, hor-
monal imbalance, testicular damages, development of cancer, neurolog-
ical disorders, pre-mature birth, skin allergies, asthma, and several
neuro developmental disorders (Bostrom et al., 2002; Deziel et al.,
2013; Kim et al., 2013; Yang et al., 2015). Realizing the severe health
risks and environmental threat concerned with PAHs, USEPA has cate-
gorized 16 different PAHs as priority pollutants that need further mon-
itoring in different environmental matrices. These 16 EPA's priority
pollutants are naphthalene (NAP), acenaphthene (ACE), acenaphthyl-
ene (ACY), fluorene (FLU), phenanthrene (PHE), anthracene (ANT),
fluoranthene (FULA), pyrene (PYR), benzo[а]anthracene (BaA), chrys-
ene (CHR), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene(BkF),
benzo[a]pyrene (BaP), dibenz[а,h]anthracene (DahA), indeno[1,2,3-
cd]pyrene (IcdP), and benzo[g,h,i]perylene (BghiP) (Kwon and Choi,
2014). Besides, the International Agency for Research on Cancer
(IARC) has also recommended eight PAHs (BaP, BaA, BbF, BkF, CHR,
IcdP, DahA, and NAP) as category-II pollutants in light of their cancer
causing characteristics and mutagenic potential (IARC, 1987).

Despite PAHs enter into the environment by both natural processes
(forest fires and volcanic activities), and the anthropogenic sources
(traffic, fossil fuel combustion, and industrial processes)(Aydin et al.,
2014; Wang et al., 2015), notwithstanding, the most widely recognized
source of PAHs are anthropogenic origin. It results from partial combus-
tion or pyrolysis of fossil fuels and biomass, together with the spillage of
petroleum (Bamford and Baker, 2003; Dong and Lee, 2009; Wang et al.,
2011). Anthropogenic sources of PAHs can be separated into two
groups, i.e. petrogenic and pyrogenic. Burning of biomass generates py-
rogenic PAHs, while petrogenic PAHs originates from oil-based com-
modities, including kerosene, gasoline, diesel fuel, lubricating oil, and
asphalt (Baek et al., 1991; Yunker et al., 2002).

Atmospheric PAHs can also enter surface soil by wet and dry deposi-
tion (Kaya et al., 2012), and are promptly adsorbed by soil particles and
soil organic matter (SOM). Following changes in environmental condi-
tions, soil may re-emit the previously adsorbed PAHs into the air (Tao
et al., 2008). A crop being the primary food source, an uptake of PAHs
from polluted soil and their subsequent consumption leads to bio-
accumulation of PAHs in human by means of food chain (Li et al.,
2008). Therefore, profound understanding of the concentrations and
dispersion of PAHs in soilmay boost pollution control, reduce crop dam-
age, and minimizes the human exposure. Soil contaminated with PAHs
is a significant environmental problem worldwide. It is viewed as a
steady indicator of the level of environmental pollution (Wild and
Jones, 1995; Liu et al., 2001; Mueller et al., 2006; Wang et al., 2012)
and has attracted considerable attention worldwide (Bourotte et al.,
2005; Callen et al., 2011). On the other side, PAHs in indoor environ-
ments are released from different activities, for example, utilization of
electric or gas stove for heating and cooking, coal and candle burning,
smoking and parquet flooring (Huynh et al., 1991; Turner et al., 1992;
Chao et al., 1997; Heudorf and Angerer, 2001; Huali et al., 2002; Guo
et al., 2003; Ohura et al., 2004; Chen et al., 2005; He et al., 2005; Li
et al., 2005). Incense burning is another essential source of PAHs in
many South Asian countries. Moreover, the penetration of air and soil
loaded with PAHs inside indoor environment from outdoor may also
marginally influence indoor concentration (Chuang et al., 1995;
Sanderson and Farant, 2004). Organic pollutants are known to build
up in indoor environment due to the limited ventilation and lack of di-
rect sunlight (Butte and Heinzow, 2002; Santillo et al., 2003). The house
dust in such indoor environmentmay archive, hence, the analyses of or-
ganic pollutants in house dust can give a reliable indication of the extent
of indoor contaminations (Butte and Heinzow, 2002).

Past investigation have discovered that high level of PAHs in surface
soil and house dusts not only influence the physicochemical character-
istics of soil, but also equally impact the environment and the human
population living there (Blake et al., 2007; Haugland et al., 2008; Jiao
et al., 2009;Mostert et al., 2012). Thus, knowledge about the dissemina-
tion of PAHs in surface soil and house dusts together with their likely
sources of release are basic to limit the ecological dangers. Evidence sug-
gests that anthropogenic activities identifiedwith industrializations and
urbanization intensely impact pollution levels in urban areas (Liu et al.,
2010; Pataki et al., 2011; Luo et al., 2012; Vane et al., 2014; Gu et al.,
2016a; Jiang et al., 2016; Marquez-Bravo et al., 2016). Urban centers
have turned to be provincial store for asset utilization and sources of
chemical emissions, bringing about boundless environmental pollutions
among different issues (Chung et al., 2007; Cachada et al., 2016; Gu
et al., 2016a). Human health inside urban communities is unequivocally
reliant on the status of urban soils and house dusts (Imperato et al.,
2003; Gu et al., 2016b). Therefore, understanding the behavior of organ-
ic pollutants, determining their spatial assortment and source/sink sus-
ceptibilities will help to shape an extremely conclusive approach in
urban areas to avert contamination.Moreover, the knowledge about or-
ganic pollutants in soil will additionally help to evaluate health risks, to
drive their environmental fate and to improve the air quality. The assur-
ance of the levels and the spatial conveyance of these SVOCs are chal-
lenging in Nepalese cities, as exceptionally restricted data are
accessible. Detailed about PAHs concentrations and environmental
fate in the urban soil and dust of Nepal have not been studied so far.
This absence of information poses troubles for pollution control and
management. In this manner, this study investigates the environmental
concentrations, spatial distribution pattern, and emission sources of
PAHs in soil and house dusts from four major urban region of Nepal.
The database generated from this investigationwill be significantly use-
ful in characterizing urban soil and dust with respect to PAHs emissions
in Nepal. Knowledge about PAHs source comprehends the regional and
global dynamics of their movement through various environmental
compartments. Additionally, this studywould be able to assess the qual-
ity of soil on regional scale which will be useful for making decision in
land use planning for urban region.
2. Materials and methods

Detailed descriptions of the materials and methods are described in
supporting information.
2.1. Soil and dust sampling

Details about study area, sampling locations and pretreatment
methods are well discussed in our previous studies (Yadav et al., 2016,
2017a, 2017b). Briefly, four major cities of Nepal were selected for the
collection of surface soil and house dusts. Both the surface soil and
house dusts were collected during October 2014 using stainless
steel shovel at depth of 0–15 cm (vegetation removed). Altogether
72 surface soil samples were acquired and mixed to make 24 repre-
sentative samples. Hence, each sample was a combination of at
least 3 sub samples obtained in different direction at distance of
5 m. Likewise, 24 house dusts were gathered from 24 different
households in in all four cities (6 each) considering domestic, educa-
tional, residential, commercial, public places and office premises.
Both the surface soil and dust samples were wrapped in aluminum
foil and packed in zipper bag, and transported by air-mail to Organic
Geochemistry Laboratory of Guangzhou Institute of Geochemistry,
Guangzhou, China keeping in ice-box.



Table 1
Statistical summary of∑16PAHs,∑8Car-PAHs and individual PAH in soil and dust (ng/g).

Compounds Surface soil House dust

Min Max Median Std. Dev. Min Max Median Std.
Dev.

NAP 35.3 187 125 37.2 49.2 305 103 55.1
ACY 26.8 79.8 29.5 11.0 18.3 58.1 31.2 7.25
ACE 8.57 130 22.4 37.6 5.33 117 17.9 27.3
FLU 34.4 62.8 50.9 8.79 35.2 70.6 48.3 8.90
PHE 75.0 468 216 126 71.8 417 173 85.5
ANT 49.2 470 84.1 129 45.1 121 61.7 18.8
∑LMW-PAHs 229 1400 527 349 225 1090 434 203
FLUA 65.8 318 89.4 65.2 66.4 506 128 105
PYR 42.3 327 66.9 71.8 41.4 554 107 114
CHR 70.9 2950 713 919 125 298 157 44.5
BaA 31.6 254 51.9 80.8 31.3 497 78.4 106
BbF 9.64 276 16.4 93.9 9.67 490 18.4 122
BkF 38.0 321 47.7 92.9 38.2 446 74.8 100
BaP 61.5 344 77.5 87.7 61.2 419 93.7 93.6
IcdP 42.9 182 47.7 33.1 43.4 170 115 21.9
DahA 112 140 113 7.23 43.4 156 46.2 31.5
BghiP 62.9 253 63.8 42.3 62.9 282 68.1 48.5
∑HMW-PAHs 538 5370 1290 1490 523 3820 886 788
∑Car-PAHs 430 4730 1130 1360 415 2760 651 569
∑16PAHs 767 6770 1810 1840 747 4910 1320 991
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2.2. Determination of total organic carbon (TOC) and black carbon (BC)

The total organic carbon (TOC) in soil and dust were determined as
per method detailed by Ramu et al. (2010). Briefly, about 2–3 g of
dried, sieved and homogenized soil/dust was mixed with 3 mL of HCl
(10%) to eliminate inorganic carbon, rinsed thrice with Milli-Q water
and dried overnight in oven at 45 °C. A portion of the soil/dust samples
were taken to determine TOC. The TOC analysis was performed with El-
emental Carbon-Hydrogen-Nitrogen (CHN) Analyzer (Elementar
VARIO EL III). The analysis of BC in soil/dust was done following
chemo-thermal oxidation (CTO-375) technique described elsewhere
(Gustafsson et al., 2001; Elmquist et al., 2008). Briefly, 2–3 g of dried,
sieved andhomogenized soil/dustwas burnt in amuffle furnace to ther-
mal oxidation (375 °C, 18 h) under constant air flow. The samples were
thenmixedwith 1 NHCl to remove inorganic carbon. Later, the remain-
ing carbon content was determined by CHN Analyzer as BC.

2.3. Sample extraction and analysis

Both surface soil and house dust were spikedwith 5 μL (200 μg/L) of
the deuterated PAHs recovery standard (naphthalene-d8,
phenanthrene-d10, acenaphthene-d10, perylene-d12, and chrysene-
d12). Small chips of copper granules were added in extracting flask to
remove the elemental Sulphur. The samples were then soxhlet extract-
ed with dichloromethane (DCM) for 24 h. The extractant was then re-
duced to 0.5 mL volume by rotary evaporator (Heildolph 4000,
Germany) and were solvent exchanged to hexane. Later, the aliquant
was purified following alumina/silica column (8mm i.d) closely packed
with neutral alumina (3 cm, 3% deactivated), neutral silica gel (3 cm, 3%
deactivated) and anhydrous sodium sulphate (1 cm). Final cleaned frac-
tion was eluted with 15 mL mixture of DCM and hexane (1:1 by vol.)
and eluted fraction was concentrated to 25 μL under gentle nitrogen
stream. Before GC–MS analysis, 5 μL (200 μg/L) of hexamethylbenzene
(Aldrich Chemical, Gillingham, Dorset, USA) was used as internal stan-
dard. Details about chemical extractions and GC–MS analysis are
discussed in our previous work (Devi et al., 2016). Totally, 16PAHs
were detected using GC–MS Agilent (6890 N/5975 MSD), attached
with a 30 m × 0.25 mm i.d × 0.25 μm film thickness DB-5 capillary col-
umn coupledwithHP-5972mass selective detector operated in EImode
(70ev).The injector temperature was 270 °C, while detector tempera-
ture was fixed to 280 °C during analysis. The oven temperature was
kept at 60 °C for 5 min and increased to 290 °C at a rate of 3 °C min−1.
Helium was used as carrier gas at consistent flow of 1.5 mL min−1.

2.4. Quality assurance and quality control (QA/QC)

Strict QA and QC protocol were followed both during sampling and
experimental analysis. The performance of GC–MS was tested daily by
injecting 6 sets of PAHs calibration standards. The instrument deviation
was less than±10%. A total of 6 laboratory blanks were analyzed in the
similar way as original samples. NAP was the only chemical regularly
detected in blank samples. Method detection limits (MDLs) were calcu-
lated as the mean plus 3 times the standard deviations of all the blank
samples. When the PAHs were not detected in blank samples, the
MDLs were calculated as 3 times signal-to-noise ratio obtained from
lowest spiked calibration standard. The MDL ranged from 20 to
200 pg/g for PAHs. The average recovery of deuterated-PAHs both in
soil and dust were 79% ± 11% for acenapthene-d10, 82% ± 14% for
phenanthrene-d10, 80% ± 10% for Chrysene-d12, and 89% ± 12% for
perylene-d12. PAH concentrations in soil/dust were expressed on dry
weight (dw) basis and were corrected for blank but not for recovery.

2.5. Statistical analysis

Statistical analysis of GC–MS quantified data such as descriptive sta-
tistics, and graphical presentation such as box andwhisker plots, profile
and relative abundanceweremadewithMS excel 2010/IBM SPSS statis-
tics (v-21). Observed data with non-detection limit (nd) was changed
to zero for statistical calculation. The spatial distribution map of PAHs
was made using ESRI-Arc GIS geospatial (version 10.3) software.

3. Results and discussion

3.1. Overall comments on PAHs

The concentration of ∑16PAHs, ∑8Car-PAHs, together with indi-
vidual PAH measured in soil and dust in this study has been presented
in Table 1. All the 16 EPA's priority pollutants were detected at each
site with 100% detection frequency (DF). Generally, the concentration
of ∑16PAHs were measured 1.5 times higher in soil than dust, and
ranged 767–6770 ng/g dw (median 1810 ng/g dw), and 747–
4910 ng/g dw (median 1320 ng/g dw), respectively. This suggests the
soil in Nepalese urban region have been more influenced by deposition
of PAHs from vehicular emission and industrial release. Contrary to this,
the dust in indoor environment is relatively protected from vehicular
pollution and industrial release. Eight carcinogenic PAHs (CHR, BaA,
BbF, BkF, BaP, IcdP, DahA and BghiP) were also detected high in soil
than dust. The concentration of ∑8Car-PAHs in soil and dust ranged
from 430 to 4730 ng/g dw (median 1130 ng/g dw) and 415–
2760 ng/g dw (median 651 ng/g dw), respectively (Table 1). The con-
centration of well-known carcinogen, BaP in the soil and dust ranged
from61.5–344 ng/g (median 77.5 ng/g dw) and 61.2–419 ng/g dw (me-
dian 93.7 ng/g dw), respectively. The sum of the concentrations of 8Car-
PAHs was approximately N50% of the ∑16PAH analyzed in soil and
dust.

High molecular weight PAHs (HMW-PAHs) were more abundant
(70–75%) both in soil and dust than low molecular weight PAHs
(LMW-PAHs) (24–30%). The concentration of HMW-PAHs ranged
from 538 to 5370 ng/g dw (1290 ng/g dw) and 523–3820 ng/g dw (me-
dian 886 ng/g dw) in soil and dust, respectively. The high level of HMW-
PAHs both in soil and dust indicates dominance of pyrogenic source
over petrogenic source (Zakaria et al., 2002; Vinas et al., 2009). The ele-
vated level of HMW-PAHs in soil could be because of higher persistency
and tendency of HMW-PAHs to accumulate in soil (Chung et al., 2007).
The concentrations of LMW-PAHs were measured low, and accounted
for only 24–30% of∑16PAHs, whichmight be because of their degrada-
tion (by photolysis) and volatilization from soil (Morillo et al., 2007;
Marquez-Bravo et al., 2016). Nepal being tropical region (annual
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average temperature ranged from 10 to 40 °C), degradation by photoly-
sis seems true. Chemical structure and molecular weight of PAHs com-
pounds equally influence photolysis reactions (Korfmacher et al.,
1980; Behymer andHites, 1988; Finlayson-Pitts and Pitts, 1997). For ex-
ample, linear 2-ring PAHs and some clustered PAHs can rapidly degrade
under direct sunlight. Further, LMW-PAHs are more susceptible to pho-
tolysis, in light of the fact that these compounds are more bioavailable
and will have longer exposure times to sunlight (Korfmacher et al.,
1980). LMW-PAHs can also easily subject to weathering compared to
HMW-PAHs (Giger and Blumer, 1974; Lee et al., 1977). Weathering
mainly results from evaporation and dissolution which impact more
volatile and soluble LMW-PAHs (Hostettler et al., 2007). The level of
evaporation depends on the kind of petroleum included involved.
Light products containing light PAHs evaporate readily,whereas heavier
ones lose as little as 5–10%of their aggregate volume (Philp, 2007). Like-
wise, dissolution depends basically on the structure of the PAHs and de-
clines with increase in ring number and alkylation level of the PAHs
(Stout et al., 2001). The CHR was identified as the most abundant PAH
measured in soil, and accounted for 39% of ∑16PAHs, while PHE
exceeded in dust, accounting for 13% of ∑16PAHs. The PAH congeners
follow the order from high to low: CHR N PHE N NAP N DahA N FLUA
N ANT N BaP N BghiP N PYR N Flu N IcdP N BkF N BaA N ACY N ACE N BbF
in soil, and PHE N CHR N FLUA ≫ DahA N PYR N NAP N BaP N BkF N BaA
N ANT N BghiP N FLU N IcdP N ACY N ACE N BbF in dust.

3.2. Concentration, profile and spatial distribution of PAHs in surface soil

In soil, PAHs results from both natural process as well as anthropo-
genic release (mainly released from fossil fuel combustions, vehicle pol-
lutions, biomass combustions, industrial process and leakage of oils)
(Peng et al., 2011). Results of the ∑16PAHs along with individual PAH
measured in soil in this study are given in Table S1. Relatively high con-
centrations of ∑16PAHs were measured in Birgunj and Kathmandu
than those in Pokhara and Biratnagar. The concentration of ∑16PAHs
ranged from 925 to 4840 ng/g dw (median 2460 ng/g dw), 880–
6600 ng/g dw (median 1720 ng/g dw), 791–5350 ng/g dw (median
2630 ng/g dw) and 961–4070 ng/g dw (median 1940 ng/g dw) in
Kathmandu, Pokhara, Birgunj, and Biratnagar, respectively (Fig. S1).
Urban areas are more prone to PAH contaminations due to high density
of automobiles and industrial activities (Stanković et al., 2008).Majority
of PAHs received in such areas are believed to accumulate in surface soil
(Agarwal et al., 2009). Kathmandu (part of Bagmati zone with popula-
tion about 1.4 millions), the capital city of the country marginally has
the largest numbers of registered vehicles (with 1,042,856 registered
vehicles as on 2013), while Birgunj is the gateway of Nepal as most of
its trade with India through open border (CBS/NPCS, 2011; DoTM
Nepal, 2017). Birgunj (part of Narayani zone with population over 0.2
millions) holds the second largest number of registered vehicles (with
625,089 registered vehicles as on 2013) after Kathmandu, which direct-
ly corresponds to elevated level of PAHs in soil (CBS/NPCS, 2011; DoTM
Nepal, 2017). Brick manufacturing is another important industry in
Kathmandu, which utilizes large amounts of coal imported from India
(FAO, 1993). It is estimated that N100 brick kilns are located on the out-
skirt of Kathmandu city alonewhich indiscriminately usages lowquality
coal (CBS, 2006; ICIMOD, 2007; Kishida et al., 2009). Additionally, Nepal
encounters intense power deficiency throughout the year with daily
power cut for 10–18 h. This has prompted utilization of about 250,000
diesel-based small generators in Kathmandu city alone (Chen et al.,
2015).

The concentration of ∑16PAHs measured in soil in this study was
compared with neighboring countries and other urban regions of the
world and are given in Table S2. When compared with neighboring
countries, the concentrations of ∑16PAHs in this study were in the
same range as compared to those reported in Delhi (India)
(1910 ng/g), Shanghai (China) (1800 ng/g) (Wang et al., 2013) and Bei-
jing (China) (1640 ng/g) (Li et al., 2006), however these concentrations
were relatively higher as compared to Yellow River Delta basin in China
(118 ng/g) (Yuan et al., 2014) and hilly region in India (458) (Devi et al.,
2016). Masih and Taneja (2006) reported 4–5 times high level of
∑PAHs (9370 ng/g) than this study in surface soil of Agra, India. The
level of ∑16PAHs in soil in this study was 3–4 times greater than
those reported in urban soil from Torino in Italy (704 ng/g) (Cachada
et al., 2009), Ljubljana in Slovenia (791 ng/g) (Cachada et al., 2009),
Ulsan in South Korea (960 ng/g) (Kwon and Choi, 2014) and Terragona
in Spain (438 ng/g) (Nadal et al., 2007). The sources of these PAHswere
linked with road traffic pollutions. Besides, the level of∑16PAHs in soil
in this study was also comparable with study reported in urban soil of
Bergen in Norway (1470 ng/g) (Haugland et al., 2008). However, the
∑16PAHs level measured in soil in this study was 2–3 times lower
than those reported in urban soil from New York in USA (5400 ng/g)
(Marquez-Bravo et al., 2016) and Glasgow in Scotland (8337 ng/g)
(Cachada et al., 2009). Moreover, much higher level of ∑16PAHs than
this study was also reported in urban soil from Greater London in UK
(18,000 ng/g) (Vane et al., 2014). This showed declining level of soil
∑PAHs in European countries and some developed countries in last
decades. On contrary, the levels of ∑16PAHs in soil in Nepal are still
comparable to those of India and China indicating more use of fossil
fuels and petroleum product in urban region in Nepal.

In order to classify the contamination level of PAHs in soil, the levels
of ∑16PAHs measured in this study were compared with contamina-
tion classification proposed by Maliszewska-Kordy-bach (1996) who
categorized four different class of contamination level;
uncontaminated-(∑16PAH b 200 ng/g), weakly contaminated-
(∑16PAH = 200–600 ng/g), contaminated-(∑16PAH = 600–
1000 ng/g), and heavily contaminated soil (∑16PAH N 1000 ng/g).
Based on this classification, we found the surface soil in Nepal is heavily
contaminated with PAHs.

The composition profile of PAHs as depicted in Fig. 1 and Fig. S2
showed that 4-ring PAHs were most dominant followed by 3-ring and
5-ring PAHs, and accounted for 53%, 20% and 17% of ∑16PAHs, respec-
tively. This finding is consistent with previous studies of ring-PAHs in
urban soil from Guangzhou (Ke et al., 2017) and Shanxi (Jiao et al.,
2017) in China. HMW-PAHs (4–6 rings) are representative of pyrogenic
source, while LMW-PAHs (with 2–3 rings) indicate petrogenic emis-
sions (Ke et al., 2017). In this study, 4–6 ring PAHs contributed 76% of
∑16PAHs, strongly implying dominance of pyrogenic sources (Vinas
et al., 2009).

The profile of the individual PAH in soil is shown in Fig. 2 and Fig. S3.
It is evident from Fig. 2 that the∑16PAHs level in soil in this study was
mostly dominated by CHR, followed by PHE, NAP, DahA and FLUA, and
accounted for 22–50%, 6–18%, 5–7%, 4–7% and 4–5% of ∑16PAHs, re-
spectively. CHR is an important indicator of biomass/coal combustions
(Wang et al., 2013; Yang et al., 2013). This is true for many developing
nation especially in case of Nepal where biomass burning or coal com-
bustion is the principal and economically viable source of energy in
many Nepalese houses for cooking and heating (Pokhrel et al., 2015).
This finding is consistent with previous study by Wang et al. (2015),
who also found high proportion of CHR (11.2%) in urban soil from
Shanghai in China. Next to CHR, PHE was the second most abundant
PAH detected in Kathmandu (386 ng/g dw), followed by Pokhara
(317 ng/g dw), Birgunj (156ng/g dw) andBiratnagar (141 ng/g dw), re-
spectively. Similar pattern of individual PAH has been reported previ-
ously in urban soil around the world (Lors et al., 2012; Radzi et al.,
2016; Liu et al., 2017). This suggests that those selected PAHs (CHR
and PHE) may be relatively stable, thereby resulting abundance in soil.
The concentration of BaP was less detected in soil, and accounted for
3–5% of ∑16PAHs.

The spatial distributions map showing the distribution patterns of
∑HMW-PAHs and ∑LMW-PAHs in four Nepalese cities are shown
in Fig. 3. It is evident from Fig. 3 that HMW-PAHs were more prevalent
than LMW-PAHs at all sites. LMW-PAHs are relativelymore volatile, and
can more readily desorb from soil becoming more susceptible to



Fig. 1.Box andwhisker-plots showing concentrations of ring-PAHs in soil (top) and dust (bottom) of Nepalese cities. The central box represents the concentration from25 to 75percentile.
The middle bold line represents the median value. The asterisk/stars are extreme outlier that are N3-times beyond interquartile range. This graph showed the abundance of 4-ring PAHs
both in soil and dust.

227I.C. Yadav et al. / Science of the Total Environment 616–617 (2018) 223–235
degradation (Pannu et al., 2003), while HMW-PAHs are persistent in the
environment and are recalcitrant to degradation due to dense clouds of
pi-electron surrounding the aromatic rings (Johnson et al., 2005). How-
ever, exceptionally high levels of PHE measured in soil in this study
were due to fact that PHE is thermodynamically the most stable com-
pound among 3-ring parent PAHs (Vane et al., 2014). Substantially
high level of ∑16PAHs was observed at BRS-6 (4880 ng/g dw) and
BRS-1(3980 ng/g dw) in Birgunj, KTS-4 (4290 ng/g dw) in
Kathmandu, and PKS-2 (3970 ng/g dw) in Pokhara (Fig. S4). Both sites
BRS-6 and BRS-1 are located in suburban-residential area. As a result,
emission from biomass combustion used for cooking and heating in res-
idential houseswould lead to high concentration of PAHs in surface soil.
Further, a number of small andmedium scale industries are located very
close to site BRS-6, which could also impact level of PAHs in soil
(Odabasi et al., 2016; Cetin et al., 2017). KTS-4 is urban commercial
area, while PKS-2 is urban-residential area with close proximity to air-
port. High level of ∑16PAHs was also measured at KTS-3(3520 ng/g
dw) in Kathmandu, PKS-5 (3530 ng/g dw) in Pokhara, and BTS-5
(3770 ng/g dw) in Biratnagar. Likewise, relatively low level of
∑16PAHs was detected at BRS-3(922 ng/g dw) in Birgunj and BTS-2
(1010 ng/g dw) in Biratnagar. Both KTS-3 and PKS-5 are located in in-
dustrial area, surrounded by small andmedium scale industries. As a re-
sult, the industrial emission would lead to high level of PAH at KTS-3
and PKS-5. This finding is consistent with previous study by Radzi
et al. (2016), who also measured high level of PAHs near industrial
area in urban soil of Malaysia.

3.3. Concentration, profile and spatial distribution of PAHs in house dust

The concentrations of ∑16PAHs together with individual PAH ana-
lyzed in house dusts in this study are given in Table S3. Similar to soil
samples, higher levels of ∑16PAHs were also measured in Kathmandu
and Birgunj than Pokhara and Biratnagar (Table S3). The concentration
of∑16PAH ranged from 1010 to 4540 ng/g dw (median 1498 ng/g dw),
1060–2480 ng/g dw (median 1360ng/g dw), 763–2570ng/g dw(medi-
an 1410 ng/g dw) and 948–3310 ng/g dw (median 1260 ng/g dw) in
Kathmandu, Birgunj, Pokhara and Biratnagar, respectively. The levels
of∑16PAHsmeasured in dust in this study were compared with previ-
ous studies around the globe and are stated in Table S4. The levels of
∑16PAHs observed in this study were 3–40 times higher than those re-
ported in house dust from Brno in Czech Republic (39.1 ng/g)
(Melymuk et al., 2016), Berlin in Germany (300 ng/g) (Fromme et al.,
2004) and California in USA (990 ng/g) (Whitehead et al., 2013), but
comparable with those from Kuwait (1675 ng/g) (Ali et al., 2016), Brit-
tany in France (1029 ng/g) (Raffy et al., 2017), Jeddah in Saudi Arabia
(2650 ng/g) (Ali et al., 2016), and Kocaeli in Turkey (2489 ng/g)
(Civan and Kara, 2016). However, the ∑16PAHs level in dust in this
study was 3–10 times lower than those reported in Guizhou in China



Fig. 2. Profile of individual PAH showing % contribution to∑16PAHs in soil (top) and dust
(bottom).The stacked plot showing dominance of CHR and PHE in soil and dust,
respectively.
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(6780 ng/g) (Yang et al., 2015), Ottawa in Canada (9530 ng/g)
(Maertens et al., 2008), Texas in USA (28,800 ng/g) (Mahler et al.,
2010), and several other Chinese cities (10,300 ng/g) (Qi et al., 2014).

The concentration of well-known carcinogenic BaP ranged from 61
to 180 ng/g dw (median 97 ng/g), 80–419 ng/g dw (median 114 ng/g
dw), 62–183 ng/g dw (median 111 ng/g dw) and 76–302 ng/g dw (me-
dian 87 ng/g dw) in Kathmandu, Pokhara, Birgunj, and Biratnagar, re-
spectively. The concentration of BaP in dust in this study was
compared with German indoor air quality guideline for PAHs in house
dust recommended by German Federal Environmental Agency
(Heudorf and Angerer, 2001). According to this guideline, the concen-
tration of BaP in dust shouldn't exceed 10,000 ng/g limits to cause ad-
verse health effect. In this study, the measured BaP in all four cities
were 1–2 orders of magnitude lower than prescribed limit, suggesting
no adverse health effect.

Like soil, 4-ring PAHswere alsomost dominant PAHs in dust, follow-
ed by 5-ring PAHs and 3-ring PAHs and accounted for 36%, 26% and 22%
of ∑16PAHs, respectively (Fig. 1 and Fig. S2). Moreover, the 2–3 ring
PAHs which are relatively more volatile, measured low. The LMW-
PAHs are more liable to degradation and are usually less toxic, while
HMW-PAHs are persistent andmore toxic in the environment. This sug-
gests ubiquitous pollution of HMW-PAHs and higher risk of PAHs expo-
sure in Nepalese houses. High proportion of 4–6 ring PAHs was also
reported previously in indoor dust from China (Qi et al., 2014). The pro-
files of the individual PAHmeasured in dust are illustrated in Fig. 3. It is
clear from Fig. 3 that PHE was the most recognized PAH, followed by
CHR, FLUA, DahA and PYR, and accounted for 10–13%, 11–12%, 8–11%,
8–9% and 6–10% of ∑16PAHs, respectively. Similar patterns of PAHs
have been reported previously in house dust from Kuwait (Gevao
et al., 2007). The spatial distribution map showing the distributions of
HMW-PAHs and LMW-PAHs in dust of Nepalese cities are shown in
Fig. 4. It is evident from Fig. 4 that the HMW-PAHs were also dominant
in dust, and accounted for 64–79% of ∑16PAHs. Substantially higher
levels of HMW-PAHs in house dust than LMW-PAHshave been reported
earlier in China (Qi et al., 2014), Saudi Arabia and Kuwait (Ali et al.,
2016). HMW-PAHs mainly originate from high-temperature combus-
tion source, for instance, vehicular emission, while LMW-PAH mainly
derived from moderate temperature combustion process, for instance,
coal burning and petroleum source (Han et al., 2011; Yang et al.,
2015). Under standard temperature of 25 °C in most houses, the
HMW-PAHs get associated with dust, whereas LMW-PAHs still remain
in vapor phase. Elevated level of ∑16PAHs was observed at KTD-5
(4410 ng/g dw) in Kathmandu and BID-1 in Biratnagar (3220 ng/g
dw). KTD-5 is urban-commercial area, while BID-1 is suburban residen-
tial area. Higher concentrations of∑16PAHswere also observed at BRD-
5 (2200 ng/g dw) and BRD-4(1970 ng/g dw) in Birgunj, PKD-
3(2040 ng/g dw) and PKD-5(1960 ng/g dw) in Pokhara, KTD-1
(1840 ng/g dw) and KTD-4 (1740 ng/g dw) in Kathmandu, and BID-3
in Biratnagar, respectively. Both BRD4 and BRD 5 are suburban residen-
tial areas; PKD-3 is urban areawith intense trafficwhile PKD-5 is related
to urban residential area. Likewise, KTD-1 and KTD-4 are closed to
heavy traffic emission area, while BID-3 is close to airport. Relatively
low level of ∑16PAHs was measured at BRD-6 in Birgunj which is
urban residential area.

3.4. Spearman's rank correlation analysis

TOC and BC content in soils are known to influence the contamina-
tion level of PAHs in urban soil and dusts (Bucheli and Gustafsson,
2000; Agarwal and Bucheli, 2011; Duan et al., 2015; Cachada et al.,
2016). In this study, both the TOC and BC contents were measured
higher in house dust than surface soil. The % TOC contents in soil and
dusts ranged from 0.51–10.6% (median 4.0%) and 0.10–2.47% (median
0.88%), respectively. BC in soil was quantified in the range of 0.07–
1.86% (median 0.32%) and 0.03–0.58% (median 0.10%) for dust and
soil, respectively. BC/TOC ratio in soil ranged from 0.02–0.67% (median
0.16%)which ismuch lower than those reported in urban soil from India
(6–22%) (Agarwal and Bucheli, 2011), Germany (18–70%) (Lorenz et al.,
2006), and UK (12–33%) (Rawlins et al., 2008), but comparable to back-
ground soil from UK and Norway (b1) (Nam et al., 2008).

A spearman's rank correlation coefficient analysis was performed to
investigate the influence of TOC and BC in dissemination of PAHs in soil/
dust (Table S5 and S6). Correlation analysis result showed that the indi-
vidual PAH was weakly-moderately correlated with TOC, indicating
non-equilibrium condition for adsorption between PAHs and TOC. PHE
was the lonely PAH in soil which moderately linked with TOC (r =
0.542, p b 0.05).Weak correlations between PAHwith TOC are common
in soils and have beenwidely reported (Bucheli et al., 2004;Wang et al.,
2013; Vane et al., 2014; Bi et al., 2016). Slightly weaker correlation of
PAHs with TOC suggests constant and continuous input of fresh PAHs
in Nepalese soils until equilibrium reached between TOC and PAHs
(Wang et al., 2010).

Although BC is considered as better adsorbent for PAHs than TOC in
soil/dust due to co-emission of BC and PAHs in soil, the sorption ability
of BC significantly depends on molecular weight and study area (urban
or remote) of the PAH (Agarwal and Bucheli, 2011; Wang et al., 2017).
In this study, BC was weakly-moderately related with LMW-PAHs, but
lack with HMW-PAHs (Table S5). The lack of correlation between BC
andHMW-PAHs could be due to either, i) BC determination is less accu-
rate than PAHs determination, ii) the fact that CTO-375method doesn't
detect all types of BC (Hammes et al., 2007), iii) the low BC/TOC might
inhibit sorption to BC because of natural attenuation (Cornelissen
et al., 2005). This finding is contrasting to previous study reported in
Delhi which showed significant correlation of BC in soil with individual



Fig. 3. Spatial map showing distribution of HMW- and LMW-PAHs in soil from Nepal. The concentrations of HMW-PAHs were more prevalent than LMW-PAHs.
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PAH, except NAP (Agarwal and Bucheli, 2011). However, slightly differ-
ent than this, BC in Swiss soil showed significant correlationwith LMW-
PAHs only (Brandli et al., 2008). Hence, our finding is more or less con-
sistent with data presented by Brandli et al. (2008). PAHs in the atmo-
sphere get associated with BC after their release from source
materials. Consequently, the LMW-PAHs get partition more rapidly
from BC to vapor phase, while HMW-PAHs tend to remain sorbed to
particulate phase (Bucheli et al., 2004). After deposition to soil, the
vapor phase LMW-PAHs is free to partition and equilibratemore readily
with TOC than HMW-PAHs. This indicates diffusive source of PAHs pol-
lutions (Bucheli et al., 2004). In this study, the HMW-PAHs such as BbF
(r=−0.614, p b 0.05) and BkF(r=−0.531, p b 0.05) was significantly
and negatively correlated with BC in dust. This finding is in contrast to
the earlier study reported in Swedish soil, where BC was not correlated
with HMW- PAHs (Brandli et al., 2008).

Additionally, Spearman's rank correlation analysis was also applied
on individual PAH data to investigate the interrelationship. Strong and
positive relation was observed among individual PAH both in soil and
dusts (Table S5 and S6). Comparatively, HMW-PAHsweremore strong-
ly and positively inter-correlated than LMW-PAHs, suggesting dissimi-
lar source. Additionally, strongly significant correlation among FLUA,
BaA, BkF, BaP, PYR, ANT, and PHE (r=0.9, p b 0.05) suggests their sim-
ilar sources of origin.

3.5. Source apportionment study

Source categorization of environmental pollutants plays a significant
role in the assessment of health risk and environmental management,
particularly in case of complex environment, for instance, urban areas
where many point source and diffuse source are predominant rather
than solitary sources. Therefore, multivariate approach or simple com-
pound profile and isomeric ratios are regularly utilized for source char-
acterization study (Cachada et al., 2009). In this study, isomeric ratio
(also known as diagnostic ratio; DR) and principal component analysis
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(PCA)were applied to investigate the possible source of PAHs in soil and
dust and are discussed below.
3.5.1. Diagnostic ratio (DR)
Knowledge about the sources of PAHs in the multi-environmental

matrices is an important step for comprehending the fate and transport
process. DR of different PAHs compounds are used to differentiate their
similar or dissimilar source (Devi et al., 2016). For instance, the DR of
ANT/(ANT + PHE), BaA/(BaA + CHR), FLUA/(FLUA + PYR) and IcdP/
(IcdP + BghiP) are used to distinguish petrogenic source from and py-
rolytic one (Jamhari et al., 2014). The DR ratio of ANT/(ANT + PHE)
b0.1 indicates petroleum emissions, whereas DR ratio N 0.1 reflects bio-
mass combustion (Kanzari et al., 2014). Likewise, FLUA/(FLUA + PYR)
ratio smaller than 0.4 specifies petroleum emissions, between 0.4 and
0.5 suggests combustion of natural gas, while DR ratio N 0.5 is represen-
tative of biomass and coal combustions (Saha et al., 2009). DR ratio of
IcdP/(IcdP + BghiP) and BaA/(BaA+ CHR) smaller than 0.2 are indica-
tors of petrogenic emission, while DR ratio of BaA/(BaA + CHR) be-
tween 0.2 and 0.35 and IcdP/(IcdP + BghiP) ratio between 0.2 and
0.5, point toward mixed sources from fossil fuel combustion, crude oil,
and vehicular emissions. DR ratio of IcdP/(IcdP + BghiP) and BaA/
(BaA + CHR) N0.5, suggests contributions from biomass and coal com-
bustion (Hien et al., 2007).
Fig. 4. Spatial map showing distribution of HMW- and LMW-PAHs in dust from Ne
In this study, theDR cross plots of PAHs in soil are illustrated in Fig. 5.
Considering the ratio of IcdP/(IcdP + BghiP), the DR value ranged be-
tween 0.2 and 0.5 except two sites in Kathmandu, strongly indicating
input of PAHs derived from fossil fuel combustions (Yunker et al.,
2002; Devi et al., 2016). The cross plots of IcdP/(IcdP + BghiP) and
BaA/(BaA + CHR) represent the mixed sources of PAHs mostly from
petrogenic emissions (Yin et al., 2008). For ANT/(ANT + PHE), the DR
ratios at all study sites were N0.1, indicating dominance of fossil fuel
combustion and biomass combustion. The cross plots between FLUA/
(FLUA + PYR) and ANT/(ANT + PHE) suggest combustion of biomass
as the major sources of PAHs in soil. BaP/BghiP ratio ranged from
0.89–4.90, well above 0.6, strongly indicating PAHs contributionmainly
from traffic emissions (Katsoyiannis et al., 2007) (see Fig. 5).

The estimated DR ratios of different PAHs in dusts also showed sim-
ilar sources of PAHs emission except BaA/(BaA+CHR) (Fig. 6). TheBaA/
(BaA + CHR) ratio in dust ranged from 0.14–0.69, which strongly indi-
cates combustion of biomass, wood and coal. This finding is true in case
of Nepal, as large amounts of solid biomass fuel such aswood, cow dung
flakes, crop residues, coal lignite and charcoal are utilized as primary
fuel for cooking and heating in Nepalese houses (Pokhrel et al., 2015).
These biomass fuels are inexpensive and are more commonly available,
making them attractive alternatives against cooking gas (Bonjour et al.,
2013; Pokhrel et al., 2015). Thisfinding is consistentwith previous stud-
ies by Qi et al. (2014) and Bhargava et al. (2004), who also reported
pal. The concentrations of HMW-PAHs were more prevalent than LMW-PAHs.



Fig. 5. Cross plots of different diagnostic ratio used for source identification of PAH in soil. The concentrations of HMW-PAHs were more prevalent than LMW-PAHs.
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traffic emissions, cooking method and biomass burning as the major
source of PAH in house dust in Asia.

3.5.2. PCA analysis
Principal component analysis (PCA) is a well-known effective tool

for studying the distinct source of environmental pollutants (Liu et al.,
2010; Devi et al., 2016). PCA analysis was performed on whole soil
PAHs data set. Loading value N0.50, was taken into account for
interpreting the contribution of PAHs isomer. Five major PCs were ex-
tracted with Eigen value N1, and contained 85.98% of the total variance
(Table S7). PC 1 accounted for 44.55% of the total variance, and was
highly loaded with HMW-PAHs (FLUA, PYR, BaA, BbF,BkF, BaP, DahA,
IcdP and BghiP). BghiP, IcdP, BaP, and DahA are good indicator of vehic-
ular emissions (Motelay-Massei et al., 2003; Liu et al., 2010; Zhang et al.,
2012). Less volatile PAHs, for instance, IcdP, BghiP, DahA are mainly re-
leased fromdiesel exhausts (Callen et al., 2012; Dumanoglu et al., 2017).
BaA, BbF and BkF are representative of fossil fuel combustions (Harrison
et al., 1996). Previously, vehicular emission was identified as dominant
source of PAHs in urban soil near Pearl River Delta (Bi et al., 2003). FLUA,
BaP and PYR are taken as tracer of coal combustions (Zhang et al., 2012;
Yuan et al., 2014). Hence, PC 1 is referred as mainly originated from ve-
hicular emissions and industrial combustions of fossil fuels and coals. PC
2 explained 19.77% of the total variance with high loading on LMW-
PAHs (FLU, PHE, ANT and NAP) and negative loading on CHR. PHE,
ANT and CHR are fingerprints of wood combustions (Khalili et al.,
1995), while CHR is marker for combustion of coke oven and biomass
(Wang et al., 2013; Yang et al., 2013). NAP results from wood burning
and biomass burning (Zhang et al., 2008). Therefore, this factor
represents emission from residential combustion of biomass/wood. PC
3 represented 8.41% of the total variance, and was highly loaded with
ACE (0.609), TOC (0.613) and BC (0.510). ACE is good predictor of coal
combustions (Wang et al., 2009; Lin et al., 2013). Roughly, 8% variation
in soil PAHs data was due to TOC and BC that suggest other than soil
properties factor such as gas absorption and deposition of locally emit-
ted PAHs significantly influence soil PAH concentration (Cetin et al.,
2007). Therefore, PC 3 is identified as emission from coal combustion
and influence of soil organic carbon. PC 4 accounted 6.99% of the total
variance but didn't contain any significant loading. PC 5 explored
6.24% of the total variance and was loaded with ACE (0.811), which is
indicator of coal combustions.

Multivariate PCA analysis was also applied to dust PAHs dataset to
distinct the possible sources in indoor environment, and are presented
in Table S8. For house dust, four major PC were extracted with Eigen
value N1 following varimax rotation. PC 1 accounted 51.2% of total var-
iance andwas highly loadedwith LMW-PAHs (NAP, ACY, ACE, FLU, PHE,
and ANT) and HMW-PAHs (FLUA, BaA, BbF, BkF, DahA, IcdP and PYR).
BaA, BbF, BkF, IcdP and DahA are indicators of fossil fuel combustions
(Harrison et al., 1996; Yang et al., 1998). NAP, ACY, FLU, PHE and ANT
represent emissions from petrogenic source (Fang et al., 2004; Qi
et al., 2014) together with incomplete combustions of biomass or
wood burning (Zhang et al., 2008). Therefore, PC1 is identified as emis-
sion from fossil fuel combustions and biomass burning. PC 2 contained
12.8% of the total variance, and was highly loaded with IcdP, BghiP
and DahA. High loadings on IcdP, BghiP and DahA are good indicators
of vehicular emissions (Fang et al., 2004; Jiang et al., 2009). Hence,
this factor is taken as petrogenic source. PC 3 represented 8.31% of the



Fig. 6. Cross plots of different diagnostic ratio used for source identification of PAH in dust. The concentrations of HMW-PAHs were more prevalent than LMW-PAHs.
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total variance and hadmoderate loading on IcdP and ACY. IcdP and ACY
are good contributor of petrogenic emission (Jiang et al., 2009). Hence,
PC 3 is also recognized as petrogenic origin. PC 4 explored 7.16% of the
total variance and was moderately loaded with TOC (0.725) and BC
(0.579).

3.6. Estimation of toxicological effects of PAHs

BaP is well known carcinogen which is used to evaluate the carcino-
genic potency of individual PAHbased on toxic equivalence factor (TEF).
TEF is considered as the carcinogenic strength of individual PAHwith re-
spect to BaP (Tsai et al., 2004; Lin et al., 2008; Zhu et al., 2014). The tox-
icity equivalency quantities (TEQs) of PAHs are estimated by
multiplying the concentration of individual PAHs with their corre-
sponding TEF values. TEF value of individual PAH used in this study
was acquired from Tsai et al. (2004). The average TEQs for PAH in soil
was estimated as 294±121 ng/g. As per Canadian soil quality guideline,
the recommended TEQs limit in soil for the protection of Environment
and health is 700 ng/g (CCME, 2010; Liu et al., 2010). All soil samples
in this study irrespective of city showed TEQs value much below safe
limit, suggesting little risk to Nepalese population due to soil PAH pollu-
tion. Moreover, the estimated TEQ value in soil in this study was 2–12
times higher than those reported in urban soil from Viseu in Portugal
(24 ng/g) (Cachada et al., 2012), Kocaeli in Turkey (90 ± 131 ng/g)
(Cetin, 2016), Terragona in Spain (124 ng/g) (Nadal et al., 2004), and
Beijing in China (181 ng/g) (Liu et al., 2010), but were comparable to
those reported in Shanghai in China (236 ng/g) (Wang et al., 2013)
and Lisbon in Portugal (229 ng/g)(Cachada et al., 2012). However, the
estimated TEQs for soil was 2–3 times lower than previously reported
in urban soil from Shanghai (892 ng/g) (Jiang et al., 2009) and Nanjing
(445 ng/g) (Wang et al., 2015) in China and Agra in India (650 ng/g)
(Masih and Taneja, 2006). The estimated TEQs for 16 different PAHs in
soil were: NAP (0.117 ng/g), ACY (0.033 ng/g), ACE (0.037), FLU
(0.050 ng/g), PHE (0.244 ng/g), ANT (1.52 ng/g), FLUA(0.126 ng/g),
PYR(0.105 ng/g), BaA(9.91 ng/g), CHR(10.60 ng/g), BbF (8.38 ng/g),
BkF (11.0 ng/g), BaP (129 ng/g), IcdP (6.47 ng/g), DahA(117 ng/g) and
BghiP (0.085). BaP is well-known for its high cancer potency because
of high carcinogenic contributor among different PAH followed by
DahA and BbF (Pufulete et al., 2004). In this study, the TEQs for BaP
were also estimated maximum (129 ng/g) suggesting high risk of soil
carcinogenicity. Equally, other PAHs such as DahA (117 ng/g) and BkF
(11 ng/g), and CHR (10.6 ng/g) also indicated higher TEQs value. Be-
cause of non-availability TEQs limit for PAHs in Nepalese soil, we com-
pared our result of TEQs with Dutch guideline value (32.96 ng/g)
(Crnković et al., 2007; Wang and Lang, 2010). When compared with
Dutch limit, the estimated average TEQs (294 ng/g) was 8–9 times
higher than Dutch target value of 32.9 ng/g. The TEQs of BaP
(129 ng/g) was 3–4 times greater than Dutch target value.

For dust, the average TEQs for PAHs was estimated as 243 ±
126 ng/g. This TEQs value is 1.5–2 times higher than those reported in
house dust in Kuwait (162.2 ng/g) (Gevao et al., 2007), office floor
dust (155 ng/g) and lecture room (151–165 ng/g) from Jordan
(Maragkidou et al., 2017). However, the estimated TEQs in this study
was 2 times lower than those reported in corridor dust in Jordon
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(483 ng/g), but comparable with big corridor dust in Jordan (220 ng/g)
(Maragkidou et al., 2017). The individual TEQ for 16 PAHs was NAP
(0.11 ng/g), ACY (0.03 ng/g), ACE (0.03), FLU (0.05 ng/g), PHE
(0.18 ng/g), ANT (0.67 ng/g), FLUA(0.16 ng/g), PYR(0.14 ng/g),
BaA(11.6 ng/g), CHR(1.71 ng/g), BbF (7.47 ng/g), BkF (11.6 ng/g), BaP
(136 ng/g), IcdP (62.0 ng/g), DahA(11.2 ng/g) and BghiP (0.10).

4. Conclusions

In this study, concentration, profile, spatial distribution, sources and
environmental fate of 16 PAHs was investigated in soil and dust matri-
ces of Nepal. Overall the concentrations of ∑16PAHs were about 1.5
times higher in soil than dust. The carcinogenic PAHs were also mea-
sured high both in soil and dust, and accounted for N50% of total
PAHs. Generally, HMW-PAHs were more abundant than LMW-PAHs
both in soil and dust, suggesting the dominance of pyrogenic source.
In terms of compositional pattern, CHR was the most abundant chemi-
cal in in soil, while PHE exceeded in dust samples. The 4-ring PAH was
identified as the most abundant PAH among different ring-PAHs,
which is consistent with global studies. Relatively, Birgunj and
Kathmandu showed higher level of ∑16PAHs both in soil and dust
than those in Pokhara and Biratnagar, andwere relatedwith large num-
ber of registered vehicles in the cities. The concentration of∑16PAHs in
this study were comparable to PAH concentrations reported in some
megacities around the world. TOC and BC were moderately to weakly
related with PAHs both in soil and dust indicating little influence of
soil organic carbon in sorption of PAHs. Source Diagnostic ratio and
principal component analysis confirmed combustion of biomass, fossil
fuel combustion and traffic/vehicular emissions as the principal sources
of PAH in Nepalese urban environment. The high average TEQ value es-
timated for PAHs in soil than dust suggested relatively higher risk for
soil carcinogenicity compared to dust carcinogenicity.
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