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ABSTRACT
Early Cretaceous adakite or adakitic plutons are widely distributed in central eastern China, e.g.
lower Yangtze river belt (LYRB), the south Tan–Lu fault (STLF), and the Dabie orogen. Their
genesis, however, remains controversial. In this contribution, we present detailed geochemical
and geochronological study on the Guandian pluton in central Anhui Province, eastern China,
which has been formerly regarded as a part of the north belt in the LYRB and lately classified in
the STLF. Namely, it is located near the boundary between ridge subduction related slab melting
and partial melting of lower continental crust (LCC). The Guandian pluton consists of quartz
monzonite and is metaluminous and high-K calc-alkaline according to the chemical composition.
The samples show high SiO2 (59.15–62.32%), Al2O3 (14.51–15.39%), Sr (892–1184 ppm), Sr/Y
(56.74–86.32), and low Y (12.65–18.05 ppm), similar to typical geochemical features of adakite.
The Guandian adakitic rocks also exhibit high K2O (2.88–3.86%), MgO (3.89–5.24%), and Mg# (55–
60), negative anomalies of high field strength elements (e.g. Nb, Ta, and Ti), and positive
anomalies of Ba, Pb, and Sr. LA-ICP-MS zircon U–Pb dating yielded a weighted average age of
129.2 ± 0.7 Ma. Calculations of zircon Ce4+/Ce3+ (6.97–145) and (Eu/Eu*)N (0.23–0.42) on the basis
of in situ zircon trace element analysis indicate that the magma had a lower oxygen fugacity
relative to the ore-bearing adakites in the LYRB and Dexing, which is consistent with the fact of
ore-barren in the research area. In combination with previous research, we propose that Guandian
adakitic pluton was formed by partial melting of delaminated LCC triggered by Early Cretaceous
ridge subduction of the Pacific and Izanagi plates. During ridge subduction, physical erosion
destructed the thickened LCC and resulted in delamination, while thermal erosion facilitated
partial melting of the delaminated LCC.
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1. Introduction

The lower Yangtze river belt (LYRB), which is one of the
most important metallogenic belts in China, has inten-
sively been studied by geologists (Chang et al. 1991;
Pan and Dong 1999; Chen et al. 2001; Mao et al. 2006;
Yang and Lee 2011; Yang et al. 2011; Zhou et al. 2015).
It extends from Wuhan, Hubei Province in the west to
Zhenjiang, Jiangsu Province in the east. More than 200
deposits (Cu–Fe–Au, Mo, Zn, Pb, Ag) have been discov-
ered in the LYRB, of which most are of the skarn,
porphyry, or strata-bound type (Mao et al. 2006).
Previous molybdenite Re–Os dating shown that the

porphyry and skarn deposits in the LYRB formed at
the 143–134 Ma (Sun et al. 2003b) and were genetically
related to adakite (Zhang et al. 2001; Xu et al. 2002;
Wang et al. 2004a, 2004b, 2006a, 2007a; Li et al. 2009;
Ling et al. 2009; Xie et al. 2009, 2017a, 2017b; Liu et al.
2010; Deng et al. 2012, 2016; Hu et al. 2014).

The term ‘adakite’ was first introduced by Defant and
Drummond (1990), referring to volcanic or intrusive rocks in
Cenozoic arcs associated with subduction of young
(≤25 Ma) oceanic lithosphere. It has attracted intensive
attention owing to analogue to Archaean tonalite–trodhje-
mite–granodiorite (TTG) (Martin 1999) and close association
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with formation of porphyry copper-gold deposits (Sajona
andMaury 1998; Oyarzun et al. 2001; Sun et al. 2010, 2015).
Adakite or adakitic rocks can be distinguished from normal
arc magma by geochemical composition, e.g. SiO2 ≥ 56%,
high Sr (>400 ppm), Sr/Y (>20) and La/Yb (>20), and low Y
(≤18 ppm). Adakite formed through partial melting of sub-
ducted oceanic crust, i.e. slab melting, was supported by
experimental petrology (Rapp andWatson 1995; Rapp et al.
1999). However, following studies shown that the geo-
chemical features of adakite can also be produced by alter-
native mechanisms, e.g. partial melting of thickened lower
continental crust (LCC) (Chung et al. 2003; Hou et al. 2004;
Wang et al. 2007a, 2007b; Xue et al. 2017), delamination of
mafic LCC (Kay and Kay 1993; Xu et al. 2002; Gao et al. 2004;
Wang et al. 2004a), or differentiation of parental basaltic
magma (Castillo et al. 1999).

The genesis of Early Cretaceous adakite in the LYRB
remains controversial and a variety of models have been
proposed. Based on their low εNd and high initial Sr isotope
values compared to Cenozoic slab-derived adakites, it was
proposed to be partial melts of thickened and/or delami-
nated LCC (Zhang et al. 2001; Xu et al. 2002; Gao et al. 2004;
Wang et al. 2004b), partial melting of an enriched mantle
source together with the involvement of variable amounts
of lower crustal components (Xie et al. 2012), or the pro-
ducts of intracontinental magmatism, with no relation to
plate subduction (Hou et al. 2007). However, more and
more studies have shown that eastern China was influ-
enced by the Palaeo-Pacific subduction in the late
Mesozoic (Zhou and Li 2000; Wu et al. 2005; Zhou et al.
2006; Li and Li 2007; Sun et al. 2007, 2010; Ling et al. 2009,
2011). Adakite in the LYRB was proposed to be associated
with plate subduction, e.g. flat subduction of Pacific plate
followed by slab detachment or roll back (Liu et al. 2007;
Yan et al. 2008, 2015; Li et al. 2013), ridge subduction
coupled with opening of a slab window, based on spatial
and temporal distribution of Cretaceous rocks and the
plate drifting history (Sun et al. 2007, 2010; Ling et al.
2009; Li et al. 2012; Xie et al. 2012), or partial melting of
an enriched mantle source metasomatized by dewatering
from a delaminated flat-slab (Li et al. 2013).

The Guandian pluton in Anhui Province, eastern China,
has been formerly regarded as a part of the north belt in
the LYRB and lately classified in the south Tan–Lu fault
(STLF), referring to the areas adjacent to the STLF zone in
the eastern Yangtze block and in the eastern margin of
the Dabie orogen (Liu et al. 2010). Its genesis has been
controversial andwas proposed to be formed by anatectic
magmatismof Archaean granulites in the LCC (Xing 1997),
underplating and crust–mantle interaction originated
from the transitional zone controlled by the Tan–Lu fault
(Niu et al. 2002), lithospheric thinning of North China
Craton (NCC) (Xu et al. 2004), or partial melting of

delaminated LCC with subsequent interaction of mantle
peridotite (Zi et al. 2008).

In this study, we conducted a detailed whole rock
geochemistry and zircon U–Pb dating and trace element
analysis of the Guandian pluton, in combination with
previous research, to provide further constraints on its
origin and tectonic evolution of central eastern China.

2. Geological background

The LYRB is located in the northern margin of the
Yangtze block, which is separated from the Dabie–Sulu
orogenic belt to the north by the Xiangfan–Guangji fault
in the west and the Tan–Lu fault in the east. The
Jiangshan–Shaoxing fault separates the Yangtze block
from the Cathaysia block to the south (Figure 1(a)). The
basement rocks of the Yangtze block are composed of
biotite-hornblende gneisses and TTG (Pan and Dong
1999). Stratigraphic units in this area include late
Palaeoproterozoic metasedimentary rocks, Sinian to
Middle Triassic marine clastic sedimentary rocks and
carbonates, Late Triassic to Cretaceous continental clastic
rocks and volcanic rocks (Li et al. 2013; Zhou et al. 2015).

The LYRB is one of the most important metallogenic
belts in China (Chang et al. 1991; Pan and Dong 1999).
According to the spatial distribution, the ore deposits in the
LYRB can be divided into seven ore deposits from the west
to east: (1) Edong (e.g. Tongshangkou and Jiguanzui), (2)
Jiurui (e.g. Chengmenshang and Wushan), (3) Anqing–
Guichi (e.g. Yueshan), (4) Luzong (e.g. Shaxi), (5) Tongling
(e.g. Shujiadian and Dongguashan), (6) Ningwu, and (7)
Ningzhen (e.g. Anjishan) (Figure 1(b)) (Chang et al. 1991;
Pan and Dong 1999; Zhou et al. 2015). The deposits were
mainly formed in the Early Cretaceous (143–134 Ma) and
are contemporaneous with widely outcropped Cretaceous
igneous rocks in the LYRB (Sun et al. 2003b; Mao et al. 2006;
Xie et al. 2007) and are adakitic in composition.

The Cretaceous igneous rocks in the LYRB have been
divided into three belts: the south, inner, and north
belts. The south belt generally consists of large plutons,
with calc-alkaline characteristics. The inner belt consists
of high-K calc-alkaline intermediate-acidic intrusive
rocks (e.g. Tongling), high-Na calc-alkaline intermedi-
ate-basic intrusive rocks (e.g. Ningwu), shoshonite (e.g.
Ningwu and Luzong), and A-type granite. The north
belt has less intrusions compared with other two belts
and has mainly calc-alkaline rocks.

TheGuandianpluton is located in thenorthbelt and one
of the largest plutons distributed along the Tan–Lu fault
with a NNE–SSW trend (Figure 1(c)). It is 30 km long and
4 kmwide,with a total area of 42.5 km2 (Zi et al. 2008). There
are some other plutons distributed along the Tan–Lu fault,
e.g. Wawuliu, Wawuxue, Fangjiangzhuang, Damaocun,
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Xiaolizhuang, and Chituling (Huang et al. 2008; Liu et al.
2010). The Guandian pluton is mainly composed of quartz
monzonite, with major minerals of plagioclase, K-feldspar,
quartz, biotite, and hornblende and accessory minerals of
magnetite, apatite, titanite, and zircon.

3. Analytical methods

3.1. Major and trace element analyses

The major and trace elements of the bulk rock samples
were analysed at the State Key Laboratory of Isotope

Figure 1. (a) A simplified structural map of China. (b) Geologic map of the lower Yangtze river belt, modified after Ling et al. (2009).
(c) Geologic map of the south Tan–Lu fault area with sampling location, modified after 1:200,000 Geologic maps. XGF: Xiangfan–
Guangji fault, YCF: Yangxing–Changzhou fault, STLF: South Tan–Lu fault.
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Geochemistry, Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences (SKLIG-GIGCAS).

For major elements, fresh rocks were first ground to
<200 mesh and then fluxed with Li2B4O7 (1:8) to make
homogeneous glass discs at 1150–1200°C using a V8C
automatic fusion machine (Analymate China). The bulk
rock major elements were analysed using X-ray fluores-
cence spectrometry (Rigaku 100e) with precision better
than 1% (Ma et al. 2007).

For trace elements, samples were carried out using
fluxed glass discs (with sample to Li2B4O7 ratio of 1:3) at
1150–1200°C using a V8C automatic fusion machine and
analysed by LA-ICP-MS composed of an Agilent 7500a
ICP-MS coupled with a RESOLution M-50 ArF-Excimer
laser ablation system (λ = 193 nm). The laser energy was
80 mJ, spot size of 69 μm in diameter with repetition rate
of 6 Hz, and 40 s ablation time. Both a double-volume
sampling cell and Squid pulse smoothing service were
used to improve signal quality (Liang et al. 2009; Tu et al.
2011). 29Si was taken as an internal standard and NIST610
as an external standard. The analytical precision was bet-
ter than 5%. The trace element experimental data were
calculated by ICPMSDataCal 7.0 (Liu et al. 2008).

3.2. Zircon U–Pb dating and trace element
analysis

Zircon U–Pb dating and trace element analysis were con-
ducted at SKLIG-GIGCAS. Zircons were separated from
samples by traditional heavy magnetic and liquid

separation techniques, carefully examined under a binocu-
lar microscope, mounted with epoxy resin, and polished
down to expose internal structures for LA-ICP-MS analyses.
Cathodoluminescence (CL) and optical microscopy images
were used to inspect the zircon morphology. The clearest,
least fractured rims of the zircon crystals were selected as
suitable targets for laser ablation. The laser energy was
80 mJ, spot size of 31 μm in diameter with repetition rate
of 10 Hz, and 40 s ablation time. 29Si was taken as an
internal standard and NIST 610 and Temora as external
standards. The analytical precision was better than 5%.
The trace element data were processed by ICPMSDataCal
7.0 (Liu et al. 2008). Zircon Ce4+/Ce3+ ratios were calculated
with the software from the Research School of Earth
Sciences, Australian National University (Ballard et al.
2002; Liang et al. 2006). Concordia and weighted average
diagrams were constructed using Isoplot (Ludwig 2012).

4. Results

4.1. Whole rock major and trace elements

Whole rock major and trace element results are
listed in Supplementary Table 1. The samples have
high SiO2 (59.15–62.32%), Al2O3 (14.51–15.39%), K2O
(2.88–3.86%), and Na2O (3.58–4.42%) with total alka-
line (Na2O + K2O) ranging from 6.75% to 7.95% and
fall in the quartz monzonite area of the QAP dia-
gram (Figure 2). They are metaluminous with alumi-
nium saturation indices A/CNK (Al2O3/
(CaO + Na2O + K2O)) = 0.76–0.83 and A/NK (Al2O3/
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Figure 2. QAP diagram of the Guandian intrusive rocks. Q: quartz, A: alkali feldspar, P: plagioclase. Modified after Le Maitre et al.
(1989).

4 Z.-B. LUO ET AL.

D
ow

nl
oa

de
d 

by
 [

T
uf

ts
 U

ni
ve

rs
ity

] 
at

 1
7:

38
 2

7 
O

ct
ob

er
 2

01
7 



(Na2O + K2O)) = 1.34–1.58 (Figure 3) and belong to
high-K calc-alkaline series (Figure 4(a)). In addition,
they have relatively high MgO (3.59–5.24%) and Mg#
(55–60) (Figure 4(b)). Harker diagrams show that
SiO2 has a strong negative correlation with TiO2,
Fe2O3

T, MgO, CaO, and P2O5; positive correlation
with K2O; but no correlation with Na2O and Al2O3

(Figure 5), which may be related with crystallization
of Ti-bearing phases (ilmenite, titanite, etc.), apatite,
and mafic minerals during magmatic evolution.

The samples are characterized by enrichment of
large ion lithophile elements and depletion of high
field strength elements, with pronounced negative
anomalies of Nb, Ta, and Ti and positive anomalies of
Pb, Ba in the spider diagram (Figure 6(a)). They have

high Sr (892–1184 ppm) and Sr/Y (56.74–86.32), and low
Y (12.65–18.05 ppm), which are the typical geochemical
features of adakite (Supplementary Table 1 and
Figure 7). Chondrite-normalized REE patterns of these
samples show LREE enriched, HREE depleted without Eu
anomaly, with high (La/Yb)N = 15.32–21.13 and Eu/
Eu* = 0.92–1.13 (Figure 6(b)).

4.2. Zircon U–Pb dating and trace elements

Three samples of the Guandian pluton were selected to
conduct LA-ICP-MS zircon U–Pb dating and trace ele-
ments analysis. The results are listed in Supplementary
Tables 2 and 3. Zircons from Guandian pluton are gen-
erally prismatic, transparent, and euhedral. CL images of
the zircons display oscillatory zoning, with high Th/U
(0.77–1.68), indicating a magmatic origin (Hoskin and
Black 2000; Belousova et al. 2002). Zircon U–Pb dating
of samples 1105-1, 1105-2, and 1105-3 yielded
206Pb/238U ages of 129.6 ± 1.1, 127.8 ± 1.1, and
129.9 ± 1.2 Ma, respectively, with a weighted average
of 129.2 ± 0.7 Ma, indicating that the Guandian pluton
intruded in the Early Cretaceous (Figure 8).

The zircons are LREE depleted and HREE enriched,
with negative Eu anomaly and positive Ce anomaly
(Figure S1). Calculations of zircon Ce4+/Ce3+ (6.97–145)
and (Eu/Eu*)N (0.23–0.42) indicate a lower oxygen fuga-
city relative to the other ore-bearing adakites in the
LYRB and Dexing porphyry deposit, which is one of
the largest porphyry Cu deposits in eastern China
(Figure 9). The Ti-in-zircon temperature ranges from
655 to 980°C, with an average of ~780°C (Watson
et al. 2006).
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Figure 3. A/NK versus A/CNK diagram. A/NK: Al2O3/(Na2O + K2O)
(molar ratio), A/CNK: Al2O3/(CaO + Na2O + K2O) (molar ratio).
Literature data of LYRB adakite are from Ling et al. (2009).
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5. Discussion

5.1. Origin of the Guandian pluton

The Guandian pluton has geochemical characteristics of
adakite, e.g. high SiO2 (59.15–62.32%), Al2O3 (14.51–
15.38%), Sr (892–1184 ppm), Sr/Y (57.63–86.32), and
low Y (12.65–18.05 ppm) (Supplementary Table 1 and
Figure 7). In the Sr/Y and (La/Yb)N diagram, the
Guandian adakitic rocks fall in the overlapping area of

slab melting constrained by adakite from the Circum
Pacific and partial melting of the LCC defined by ada-
kitic rocks from the Dabie orogen (Figure 10; Liu et al.
2010; Ling et al. 2013). However, chemical compositions
of Guandian adakitic pluton, like the K2O/Na2O, Mg#,
MgO, Cr, and Ni contents, are generally similar to the
other plutons in the STLF, e.g. Fangjiangzhuang,
Damaocun, Xiaolizhuang, and Chituling which have
been identified as high-Mg adakitic rocks (Huang et al.

Figure 5. Harker diagrams of the Guandian intrusive rocks. SiO2 has a strong negative correction with TiO2, Fe2O3
T, MgO, CaO, and

P2O5; positive with K2O; but no correction with Na2O and Al2O3.
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2008; Liu et al. 2010), and it is contrast to those from
the LYRB (Ling et al. 2009, 2011; Liu et al. 2010).

The origin of Guandian pluton was controversial and
several genesis models have been recommended by
previous researchers (Xing 1997; Niu et al. 2002; Xu
et al. 2004; Zi et al. 2008). Xu et al. (2004) classified
the Guandian pluton as a part of the NCC and sug-
gested that it was associated with lithospheric thinning
of NCC. Although the Guandian pluton is located in the
east of the Tan–Lu fault and close to the NCC, it is
generally regarded as a part of the Yangtze block
(Figure 1). Most importantly, Early Cretaceous magma-
tism in the NCC associated with extension environment
is systematically younger, with a peak at 125 Ma (Wu
et al. 2005), than that of the Yangtze block which
started from 140 to 125 Ma (Sun et al. 2007).

The Guandian pluton was also proposed to be
formed by underplating of magma originated from
the crust–mantle transitional zone and crust–mantle

interaction during the later stage of Early Cretaceous
strike-slip movement of the Tan–Lu fault (Niu et al.
2002). This is supported by geochronology evidence
of the pluton and mylonite related with the Tan–Lu
fault, as well as the NNE–SSW distribution of Early
Cretaceous plutons outcrop near the Tan–Lu fault,
e.g. Guandian, Wawuliu, and Wawuxue plutons
(Figure 1). However, on the basis of isotopic composi-
tion, the pluton seems to have a primary contribution
from the LCC (Xing 1997; Zi et al. 2008). Xing (1997)
proposed that anatectic magmatism of Archaean
granulites in the LCC accounts for the formation of
the Guandian pluton, on the basis of whole rock Sr,
Nd, Pb, and O isotopic composition. Furthermore, a
detailed geochemical study indicated that partial
melting of delaminated LCC with subsequent interac-
tion of mantle peridotite accounted for the origin of
the Guandian pluton, which is supported by the
enriched 87Sr/86Sr (0.7059–0.7062), εNd(t) (−17.6 to
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−15.3) and εHf(t) (−26.3 to −22.6) isotope composi-
tions (Zi et al. 2008), and high MgO (3.59–5.24%)
and Mg# (55–60).

Detailed geochemical study indicated that adakitic
rocks from the STLF formed by partial melting of dela-
minated eclogitic LCC (Liu et al. 2010), which is also
furtherly supported by in situ zircon Hf and O isotope
research (Wang et al. 2013). On the contrary, adakite
from the LYRB was probably formed by partial melting

of subducted oceanic crust during ridge subduction
(Ling et al. 2009).

There are several requirements that partial melting
of delaminated LCC will happen. Initially, it requires
crustal thickening to produce a dense eclogitic LCC
(Gao et al. 2004). Second, in addition to gravity caused
by density contrast (Kay and Kay 1993), an extra
impetus is preferred to trigger delamination. Finally,
rising temperature faster than its solidus with

100μm

100μm

100μm

Figure 8. Zircon U–Pb concordia diagrams with representative CL images of the Guandian intrusive rocks. The weighted mean
206Pb/238U ages for samples 1105-1, 1105-2, and 1105-3 are 129.6 ± 1.1, 127.8 ± 1.1, and 129.9 ± 1.2 Ma, respectively.
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increasing depths to facilitate partial melting during
delamination (Ling et al. 2009). Unlike young and hot
subducted oceanic slabs which can much more easily
be melted, the LCC is generally much drier and thus
requires a higher temperature to melt.

Ridge subduction is a promising plate tectonic pro-
cess that can provide both physical erosion and thermal
erosion. Flat subduction of a spreading ridge will result
in strong physical subduction-related erosion of the
thickened LCC and subsequently trigger the delamina-
tion of the LCC. Furthermore, ridge subduction, prob-
ably accompanied by opening of a slab window, will
provide associated magmatism and extra heat, i.e. ther-
mal erosion, to facilitate partial melting of delaminated

LCC (Ling et al. 2013). Here, we propose that the
Guandian adakitic pluton was formed by partial melting
of delaminated LCC, triggered by ridge subduction in
the Early Cretaceous (Figure 11).

Based on the distribution of igneous rocks, e.g. ada-
kite, A-type granite, and Nb-enriched basalts, as well as
other lines of evidence, ridge subduction of the Pacific
and Izanagi plates was proposed to explain the genesis of
Cretaceous magmatism and associated mineralization in
central eastern China (Ling et al. 2009, 2013). The ridge
subduction model has been tested by further geochem-
ical and geochronological study of A-type granites,
including A1 and A2 subgroup, in central eastern China
(Li et al. 2012). Detailed geochemical comparison of ada-
kite or adakitic rocks from the LYRB, Dabie orogen, and
STLF (Liu et al., 2010; Ling et al. 2011) indicated that the
LYRB adakite formed by slab melting and the other two
have origin of the LCC (Liu et al. 2010; Ling et al. 2011).
Subsequent structure geological research pointed out
that the compressional period (145–136 Ma) in central
eastern China was dominated by Palaeo-Pacific–Izanagi
ridge subduction beneath the LYRB, as well as adakite
and Cu–Au mineralization (Li et al. 2014). Additionally, a
geophysical tomographic research provided a direct evi-
dence to support Cretaceous ridge subduction in eastern
China (Ouyang et al. 2014).

5.2. Porphyry mineralization, slab melting, and
oxygen fugacity

Porphyry deposits are the one of the most important
resources of Cu, Au, Mo, Ag, Zn, Sn, and W (Cooke et al.
2005; Sillitoe 2010; Sun et al. 2010, 2015, 2016, 2017),
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Figure 9. Zircon Ce4+/Ce3+ versus Eu/Eu* diagram for the
Guandian intrusive rocks. STLF: South Tan–Lu fault,
LYRB: lower Yangtze river belt. Data of the STLF and the
LYRB are from Wang et al. (2013, 2014). Data of Chile and
Dexing are from Ballard et al. (2002) and Zhang et al. (2013).
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which account for ~80% Cu and ~95% Mo of the
world’s total reserves (Sun et al. 2015). Majority of the
porphyry systems are associated with oxidized magma
(Ballard et al. 2002; Mungall 2002; Liang et al. 2006; Sun
et al. 2013; Zhang et al. 2017), which is normally adakitic
in chemical composition (Sun et al. 2011, 2012, 2015,
2017).

In principle, high oxygen fugacity and slab melting
are the two keys to formation of porphyry deposits (Sun
et al. 2012). Cu, Au, and Mo are chalcophile elements,
whose partitioning in magma is largely controlled by
the behaviour and speciation of sulphur, while the
status of sulphur is controlled by oxygen fugacity (Sun
et al. 2015). It has been proposed that oxygen fugacity
of log fO2 > FMQ + 2 (i.e. ΔFMQ + 2) is the magic
number for porphyry mineralization, where FMQ repre-
sents oxygen buffer of fayalite–magnetite–quartz
(Mungall 2002; Sun et al. 2013). Most of porphyry Cu
deposits are distributed along the eastern Pacific mar-
gin, accounting for about 60% of the world’s total Cu
resource (Cooke et al. 2005), which are generally asso-
ciated with slab melting of ridge subduction (Sun et al.
2010). Modelling indicated that partial melting of sub-
ducted young oceanic slabs at high oxygen fugacity
(>ΔFMQ + 2) may form magmas with initial Cu contents
up to >500 ppm, which is favourable for porphyry
mineralization (Sun et al. 2017).

In contrast with oceanic crust, which has Cu concen-
tration (60–130 ppm) (Sun et al. 2003a), the LCC has
lower Cu concentration of 27 ppm (Rudnick and Gao
2003), resulting in that slab melts will have higher initial
copper concentrations than LCC melt (Sun et al. 2011).
Moreover, the subduction zone is more oxidizing than
the LCC, which benefits to Cu–Au mineralization (Sun
et al. 2012). Therefore, adakite formed by slab melting is
more favourable for porphyry mineralization than
formed by partial melting of LCC in terms of initial Cu
concentration.

Adakite or adakitic rocks formed by slab melting or
partial melting of LCC are contrast in chemical and
isotopic compositions (Liu et al. 2010; Ling et al. 2011),
as well as oxygen fugacity (Wang et al. 2013). Zircon is a
common refractory mineral in rocks which can preserve
the original chemical composition of magma, including
trace elements. The trace element concentrations of
zircon can be taken to calculate Ce4+/Ce3+ ratio and
Eu/Eu* anomaly to evaluate oxygen fugacity of
magma (Ballard et al. 2002; Liang et al. 2006). The ore-
bearing adakite in the LYRB and Dexing porphyry
deposit in central eastern China have much high oxy-
gen fugacity than ore-barren adakitic rocks in the Dabie
orogen and the STLF, as indicated by zircon Ce4+/Ce3+

ratios and Eu/Eu* (Wang et al. 2013; Zhang et al. 2013,

2017). Zircon Ce4+/Ce3+ (6.97–145) and (Eu/Eu*)N (0.23–
0.42) of the Guandian adakitic pluton are similar to
other plutons in the STLF but lower than those of the
LYRB and Dexing (Wang et al. 2013; Zhang et al. 2013,
2017). This indicates the Guandian adakitic pluton ori-
ginated from magma with low oxygen fugacity, which
is also the case for the other plutons in the STLF
(Figure 9). This is consistent with magma having origin
of the LCC, as well as ore-barren fact in the STFL.

6. Conclusion

The Guandian pluton is metaluminous and high-K calc-
alkaline and characterized by typical chemical composi-
tion of adakite, e.g. high SiO2 (59.15–62.32%), Al2O3

(14.51–15.39%), Sr (892–1184 ppm), Sr/Y (56.74–86.32),
and low Y (12.65–18.05 ppm). LA-ICP-MS zircon U–Pb
dating of the Guandian pluton yielded a weighted aver-
age age of 129.2 ± 0.7 Ma. Zircon Ce4+/Ce3+ (6.97–145)
and (Eu/Eu*)N (0.23–0.42) indicate lower oxygen fugacity
relative to the ore-bearing adakites in the LYRB and
Dexing, which is consistent with the fact of ore-barren
in the STLF. We propose that the Guandian pluton was
formed by partial melting of delaminated LCC, triggered
by Early Cretaceous ridge subduction of the Pacific and
Izanagi plates. Physical erosion destructed the thickened
LCC and resulted in delamination, while thermal erosion
facilitated partial melting of the delaminated LCC.
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