峨眉山大火成岩省二滩高钛玄武岩和白马层状 岩体中单斜辉石的成分特征及其成因指示

王焰¹² 邢长明¹²

中国科学院 矿物学与成矿学重点实验室 中国科学院 广州地球化学研究所 广州 510640;
2.广东省矿物物理与材料研究开发重点实验室 广州 510640

摘 要:本文通过研究峨眉山大火成岩省白马层状岩体和二滩高钛玄武岩中单斜辉石的主量和微量元素组成,反演与单斜辉 石平衡的熔体成分,以查明层状岩体和高钛玄武岩之间的成因联系。结果显示,不同岩石中单斜辉石的稀土配分型式基本相 似,在微量元素配分图解中均表现出 Sr、Zr、Hf、Ti、Zn、Co和Ni负异常。二滩高钛玄武岩中单斜辉石斑晶环带核部的成分与高 钛苦橄岩中单斜辉石斑晶的成分类似。模拟结果显示,白马岩体中与单斜辉石平衡的熔体成分与峨眉山高钛玄武岩成分类 似,单斜辉石的 Zr-Hf 负异常与 Zr 和 Hf 在单斜辉石和熔体之间的分配系数较低有关。因此,高钛玄武岩和白马岩体分别代表 深部岩浆房高钛苦橄质岩浆经分离结晶作用产生的高钛玄武质岩浆的喷出和侵入产物。 关键词:单斜辉石;白马层状岩体;高钛玄武岩;高钛苦橄岩;峨眉山大火成岩省

中图分类号: P578.954 文章编号: 1007-2802(2018) 06-1019-16 doi: 10.19658/j.issn.1007-2802.2018.37.113

Compositions of Clinopyroxenes from the Ertan High–Ti Basalt and Baima Layered Intrusion of the Emeishan Large Igneous Province: Implication for a Genetic Link of the High–Ti Basalt and Layered Intrusion

WANG Yan¹², XING Chang-ming¹²

 Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 , China;
Guangzhou 510640 , China;
Guangzhou 510640 , China

Abstract: Clinopyroxene phenocrysts from the Ertan high–Ti basalt and cumulus clinopyroxene from the Baima intrusion are analyzed for major and trace element compositions to invert the composition of melt in equilibrium with clinopyroxene and then to investigate a possible genetic link of the high–Ti basalt and layered intrusion in the Emeishan large igneous province. The results show that the clinopyroxene grains from different rock types have similar chondrite–normalized REE patterns and display negative Sr , Zr , Hf , Ti , Zn , Co and Ni anomalies on the primitive mantle–normalized trace element patterns. The major oxide compositions of the core parts of the oscillatory–zoned clinopyroxene phenocrysts from the Ertan high–Ti basalt are similar to those of the clinopyroxene phenocrysts of the Emeishan high–Ti picrite. Modelling results indicate that the melts that are in equilibrium with clinopyroxene in the Baima intrusion have compositions similar to those of the Emeishan high–Ti basalt , and the negative Zr-Hf anomalies of clinopyroxene are attributed to low partition coefficients of Zr and Hf between clinopyroxene and melt. Therefore , it is considered that the high–Ti basalt and Baima layered intrusion may respectively represent the extrusive and intrusive rocks of the high–Ti basalt cmagma evolved from the high–Ti picritic magma through fractional crystallization in deep–seated staging magma chamber.

Key words: clinopyroxene; the Baima layered intrusion; high-Ti basalt; high-Ti picrite; the Emeishan large igneous province

收稿编号: 2018-153 2018-07-25 收到 2018-09-10 改回

基金项目: 国家自然科学基金项目(41473037 A1502048 A1325006, 2017B030314175)

第一作者简介: 王焰(1968-), 女,博士,研究员,研究方向: 镁铁-超镁铁质岩石地球化学. E-mail: wang_yan@gig.ac.cn.

峨眉山大火成岩省中的镁铁-超镁铁质层状 岩体赋含 880 万吨钒和 8.7 亿吨钛 ,是中国最主 要的钒和钛产地,分别占全球钒资源量的6.7%和 钛资源量的 35.2%。这些层状岩体中的橄榄石普 遍具有较低的 Fo 值(63%~83%; Pang et al., 2009; Bai et al., 2012; Dong et al., 2013; Liu et al., 2014), 普遍的认识是从演化的、铁玄武质岩 浆中形成的(Zhou et al., 2005; Shellnutt et al., 2009; Zhong et al., 2011; Wang et al., 2014)。这 种富铁岩浆被认为与攀西地区广泛发育的峨眉山 高钛玄武岩的成分类似(Wang et al., 2014)。世 界上其它的一些富含铁钛氧化物的层状岩体,如 Sept Iles、Duluth、Bjekreim-Sokndal、Skaergaard 和 Fedorivka 等 均指示其母岩浆成分为铁玄武质岩 浆(Namur et al., 2010)。但是,攀西地区的峨眉 山高钛玄武岩与层状岩体是否存在直接的成因联 系一直缺乏深入研究。有些学者认为,高钛玄武 岩是浅部岩浆房矿物堆晶形成层状岩体之后的残 余岩浆喷出地表形成的(Bai et al., 2012)。也有 学者认为,二者分别对应深部岩浆房中的高钛苦 橄质岩浆分离结晶形成的玄武质岩浆直接喷出地 表形成的火山岩和侵入到浅部岩浆房形成的堆晶 产物(Zhou et al., 2013)。要评估这两种岩浆过 程 需要查明的关键问题是 深部岩浆房高钛苦橄 质岩浆经过结晶分异形成的残余岩浆作为层状岩 体的母岩浆进入浅部岩浆房形成层状岩体后,最 终残余岩浆的成分是否能与高钛玄武岩对应。这 一点对认识高钛玄武岩和层状岩体是否存在内在 的成因联系十分重要,并有助于认识攀西层状岩 体形成的岩浆演化过程。

组成层状岩体的岩石普遍经历了堆晶作用,因 此其全岩地球化学组成难以直接反演岩浆的成分。 但是,在铁玄武质岩浆分离结晶作用过程中,从不 同演化阶段熔体中结晶的矿物,其主量和微量元素 组成的变化有可能记录岩浆的演化过程。峨眉山 高钛玄武岩普遍发育单斜辉石斑晶,单斜辉石也是 层状岩体的主要堆晶矿物。另外,很多地球化学行 为相近的微量元素在单斜辉石/熔体中的分配系数 (*D*)相对于橄榄石和斜长石要高得多(Forsythe *et al.*,1994; Wood and Blundy,1997)。因此,单斜辉 石对于地幔部分熔融和岩浆分异过程中的元素分 配起着非常重要的作用,控制了一系列岩浆中众多 微量元素的绝对和相对含量(Hart and Dunn,1993; Forsythe *et al.*,1994)。

在本次研究中,笔者选择攀西二滩地区发育的

峨眉山高钛玄武岩和白马层状岩体,对二滩高钛玄 武岩中的单斜辉石斑晶和白马岩体下部带海绵陨 铁矿石和上部带橄榄辉长岩中的单斜辉石进行岩 相学观察和主微量元素分析。利用单斜辉石的微 量元素组成反演与其平衡的熔体成分,并将计算的 熔体成分与峨眉山高钛玄武岩和高钛苦橄岩进行 对比。在此基础上,对形成层状岩体的岩浆过程、 以及层状岩体与高钛玄武岩之间的成因联系进行 探讨。

1 地质背景和单斜辉石在岩石中的 产状

在攀西地区,沿南北向深断裂发育一系列的镁 铁-超镁铁质层状岩体,包括攀枝花、红格、新街、白 马和太和岩体。这些岩体赋含不同规模的钒钛磁 铁矿矿床,是中国重要的钒钛磁铁矿矿集区。这些 岩体被认为是峨眉山大火成岩省的一部分,其形成 与~260 Ma 的峨眉山地幔柱岩浆活动有关。同时,

Fig.1 Distribution of high-Ti flood basalts , mafic-ultramafic layered intrusions and coeval felsic plutons of the Emeishan large igneous province in the Panxi region

地幔柱岩浆形成的高钛玄武岩在攀西地区广泛发育在米易、二滩和龙帚山地区(Xu et al., 2001; 梅 厚钧等, 2003; Qi et al., 2008; 图 1)。

二滩地区的高钛玄武岩由斜长石斑晶(3%~ 40%)、单斜辉石斑晶(2%~10%)和的基质(50% ~90%)组成。单斜辉石斑晶一般呈自形或半自 形,颗粒大小为 0.2~2 mm(图 2a、2b)。大斑晶(> 300 μm)一般表面干净,没有明显的结晶环带。较 小的单斜辉石颗粒(<300 μm)或呈集合体占据斜 长石斑晶形成的三角形格架内(图 2b),或分散在 基质中。其中有些小斑晶表现出明显的环带结 构,显微镜下呈现出浅色的核部和震荡环带发育

(a) 二滩高钛玄武岩中的单斜辉石和斜长石斑晶,单斜辉石中不发育钛铁矿出溶片晶(正交偏光 样品 ET-5);(b) 二滩高钛玄武岩中他形 单斜辉石大斑晶和小斑晶集合体充填在斜长石斑晶构成的三角格架中(正交偏光 样品 ET-5);(c) 二滩高钛玄武岩中具震荡环带结构的 单斜辉石小斑晶被基质包裹(正交偏光 样品 ET-1);(d) 白马层状岩体下部带海绵陨铁矿石中铁钛氧化物呈粒间相充填在硅酸盐矿物之间 (正交偏光 样品 BM820);(e) 白马层状岩体下部带海绵陨铁矿石中的堆晶单斜辉石 颗粒内发育大量钛铁矿出溶片晶和硅酸盐矿物包体(正 交偏光 样品 BM820);(f) 白马层状岩体上部带橄榄辉长岩中的单斜辉石颗粒发育不同程度钛铁矿出溶片晶(正交偏光 样品 BM828) 图 2 二滩高钛玄武岩中单斜辉石斑晶和白马层状岩体矿石和岩石中单斜辉石的岩相学特征

Fig.2 Micrographs showing petrographic characteristics of clinopyroxene phenocrysts from the Ertan high–Ti basalt and cumulus clinopyroxene from Fe–Ti oxide ores and olivine gabbro of the Baima layered intrusion

的幔部和边部(图 2c)。震荡环带的宽度较窄,一 般约 10~20 μm,且具震荡环带结构的辉石边缘常 具熔蚀边(图 2c)。

白马岩体呈南北向延伸约 24 km,2~6.5 km 宽約1600m厚,可分成下部带和上部带(Liu et al.,2014)。下部带约150~300m厚,主要由橄长 岩、橄榄辉石岩和橄榄辉长岩组成,并赋含约100m 厚的铁钛氧化物矿石层。上部带厚达约1200m,主 要由橄榄辉长岩、辉长岩和含磷灰石的辉长岩组 成岩石中含少于10%的铁钛氧化物。下部带中的 铁钛氧化物矿石类型主要为海绵陨铁矿石,铁钛氧 化物主要呈相互贯通的粒间相包裹橄榄石、斜长石 和单斜辉石(图2d)。下部带海绵陨铁矿石和上部 带橄榄辉长岩中的单斜辉石颗粒大小从0.2~5 mm 不等,多具钛铁矿和磁铁矿出溶条纹(图2e、2f),但 未见环带结构。

2 分析方法

单斜辉石的原位主量和微量元素组成在稍厚 的探针片上分析获得。主量元素含量采用中国科 学院广州地球化学研究所的 JEOL JXA-8100 型电 子探针进行分析。实验条件为:加速电压 15 kV,测 试电流 20 nA ,束斑直径为 1 μ m ,Si、Al、Fe、Mn、Mg 和 Ca 的计数时间为峰期 20 s 和上、下背景各 10 s, Cr 和 Ti 的计数时间为峰期 40 s 和上、下背景各 20 s,Na 和 K 的计数时间为峰期 10 s 和上、下背景各 5 s。数据校正条件: Si、Fe、Mg 和 Ca 用透辉石校正, Na 和 Al 用硬玉校正,Cr 用 Cr₂O₃ 校正,Ti 用金红石 校正,Mn 用 MnO 校正。原始数据采用 ZAF 方法校 正。Si、Ti、Al、Fe、Mg 和 Ca 的相对精度为±2%,Na、 K、Cr 和 Mn 的相对精度为±5%。

微量元素含量分析在中国科学院广州地球化 学研究所的激光剥蚀电感耦合等离子质谱仪上 (LA-ICP-MS)完成。该系统由 Agilent 7500a ICP-MS 连接一个 Resonetics 193 nm ArF 激光剥蚀系统 组成。激光剥蚀采用单点剥蚀方式,光斑大小为 31 μ m,能量设定为 80 mJ,剥蚀频率为 8 Hz。利用氦 气做为载气,分别选用标样 NIST SRM 610 和 612 作 为外标和未知样品进行监控。利用 GLITTER 软件 (4.0 版本)(Griffin *et al.*, 2008)进行离线数据校 正 校正过程中采用电子探针测定的 CaO 含量做为 单斜辉石的内标进行校正。大部分微量元素的检 出限 小于 0.1 × 10⁻⁶,分析误差小于 10%(相 对误差)。

3 分析结果

3.1 单斜辉石的主量元素组成

二滩高钛玄武岩中单斜辉石斑晶主要为透辉 石和普通辉石($En_{36-49}Fs_{8-21}Wo_{39-47}$)。无环带单斜 辉石大斑晶的 Mg^{*} 值 [$Mg^{*} = 100 \times Mg/(Mg+Fe^{T})$] 为 72~79 ,Al₂O₃ 含量为 1.90%~4.17% ,TiO₂ 含量 为 0.61~1.78%(表1 图 3)。具震荡环带的小斑晶 从核部到边部显示明显的成分变化:核部的 Mg^{*} 值 高达 81~85 ,幔部降至 73~79 ,边部最低只有 64~69 (表 2 ,图 4)。具震荡环带的辉石斑晶 ,其幔部的 Mg^{*} 与无环带斑晶的 Mg^{*} 值范围一致。整体来说 ,单 斜辉石斑晶的 Mg^{*} 值与 Al_2O_3 和 TiO₂ 之间呈负相关 关系(图 3)。

自马岩体下部带海绵陨铁矿石中的单斜辉石 ($En_{40-43}Fs_{10-16}Wo_{43-49}$)和上部带橄榄辉长岩中的单斜 辉石($En_{39-42}Fs_{12-16}Wo_{43-48}$)也都主要为透辉石和普通 辉石(表3)二者的单斜辉石 Mg^{*} 值范围一致,为72~ 80 但海绵陨铁矿石中的单斜辉石具有相对略高的 Al_2O_3 和 TiO₂含量(图3)。海绵陨铁矿石中的单斜 辉石大部分含3.11%~3.89%的 Al_2O_3 和 0.98%~ 1.42%的 TiO₂ 橄榄辉长岩中的单斜辉石含2.60%~ 3.03%的 Al_2O_3 和 0.63%~0.89%的 TiO₂(表3)。

在 Mg[#]-Al₂O₃ 和 Mg[#]-TiO₂ 图解上(图 3),白马 岩体海绵陨铁矿石和橄榄辉长岩中的单斜辉石的 Mg[#]值明显低于二滩高钛玄武岩中具震荡环带单斜 辉石斑晶核部的 Mg[#]值,但其整体变化范围与二滩 高钛玄武岩中无环带单斜辉石斑晶的 Mg[#]值变化范 围一致,也与具震荡环带斑晶幔部的 Mg[#]变化范围 基本一致。

3.2 单斜辉石的微量元素组成

二滩高钛玄武岩中无环带单斜辉石斑晶的稀 土元素(REE) 总量 25.5×10⁻⁶~63.9×10⁻⁶, La_N/Yb_N 值为 0.66~1.93(表 1)。在球粒陨石标准化稀土元 素配分图解上,表现为中稀土富集、并具轻微 Eu 负 异常的特征 δ Eu 值为 0.74~1.11(表 1,图 5a)。无 环带单斜辉石斑晶的 Zr 含量为 16.8×10⁻⁶~67.5× 10⁻⁶ Sr 含量为 22.9×10⁻⁶~43.5×10⁻⁶(表 1)。在原 始地幔标准化的微量元素配分图解上,表现为明 显的 Nb、Ta、Sr、Zr、Hf、Ti、Zn、Co 和 Ni 的负异常、 以及 V 和 Cr 的正异常(图 6a)。单斜辉石的 Nb、 Ta、Th 和 Ba 含量接近检出限,将不用于后续讨论。 具震荡环带的单斜辉石斑晶由于颗粒太小,未能 进行激光剥蚀原位成分分析。

表 1	二滩高钛玄武岩中单斜辉石的主量和微量元素组成

Table 1 Major and trace element compositions of clinopyroxene phenocrysts from the Ertan high-Ti basalt

样品号	ET-1	ET-1	ET-1	ET-1	ET-3	ET-3	ET-5	ET-5	ET-6	ET-8	ET-8	ET-8	ET-10
分析点	1	2	3	5	2	3	1	4	1	1	2	5	2
SiO ₂	49.60	50.82	50.60	49.47	51.54	51.85	50.31	52.19	52.30	49.31	49.26	48.12	50.34
TiO_2	1.25	0.87	0.96	1.19	0.70	0.87	0.71	0.79	0.61	1.45	1.37	1.78	0.98
Al_2O_3	4.17	2.81	3.39	3.93	2.12	1.90	2.81	2.01	2.41	4.02	3.13	4.01	3.08
FeO	8.44	7.36	8.16	8.24	9.19	8.88	7.99	9.37	8.08	8.23	9.44	9.66	8.36
MnO	0.26	0.12	0.17	0.16	0.12	0.19	0.24	0.16	0.17	0.20	0.13	0.20	0.13
MgO	14.01	14.94	15.09	14.67	15.60	15.53	15.96	15.84	16.70	14.69	14.45	14.18	15.70
CaO	22.38	22.42	21.98	22.47	19.90	20.63	20.85	19.96	19.19	21.31	21.43	21.48	20.87
Na ₂ O	0.36	0.27	0.34	0.30	0.36	0.33	0.28	0.29	0.29	0.57	0.43	0.41	0.27
Cr_2O_3	0.20	0.19	0.19	0.12	0.06	0.09	0.32	0.11	0.19	0.36	0.13	0.12	0.16
总计	100.66	99.80	100.89	100.55	99. 59	100.27	99.50	100.72	99.93	100.13	99.77	99.96	99.91
Mg [#]	75.00	78.00	77.00	76.00	75.00	76.00	78.00	75.00	79.00	76.00	73.00	72.00	77.00
Ti	6016.00	6956.00	4992.00	6393.00	4571.00	5909.00	4867.00	4186.00	3738.00	9063.00	9254.00	7800.00	4768.00
V	330.00	358.00	304.00	385.00	497.00	641.00	597.00	499.00	469.00	471.00	416.00	365.00	541.00
Cr	1969.00	2539.00	3088.00	3058.00	827.00	1280.00	1112.00	1025.00	2172.00	2562.00	669.00	726.00	2267.00
Co	51.90	53.20	49.00	48.10	62.00	60.10	59.20	60.90	60.30	54.10	48.80	46.70	61.90
Ni	282.00	285.00	269.00	278.00	171.00	162.00	184.00	176.00	298.00	268.00	205.00	197.00	224.00
Zn	39.70	41.00	43.80	40.90	64.60	62.60	59.30	64.80	52.00	61.40	64.20	59.60	58.60
Ga	7.77	9.19	7.77	9.72	6.39	8.09	6.77	5.28	5.86	14.20	10.60	9.01	6.63
Sr	43.50	43.60	40.70	39.80	25.20	33.80	27.80	22.90	28.10	42.30	38.60	33.10	29.70
Y	10.80	12.70	9.30	10.40	13.80	17.20	15.30	12.90	13.60	25.20	22.40	19.00	14.30
Zr	26.10	35.70	36.00	31.80	18.10	29.60	21.40	16.80	18.90	67.50	57.70	44.20	22.10
Hf	1.32	1.84	1.37	1.44	0.95	1.42	1.02	0.74	0.96	3.11	2.78	2.02	1.07
La	1.72	2.05	1.85	1.99	1.24	1.86	1.46	1.18	1.31	3.66	3.60	2.83	1.43
Ce	6.53	8.22	5.90	6.88	5.17	7.36	5.65	4.80	5.13	14.20	13.70	10.90	5.57
Pr	1.26	1.46	1.02	1.31	1.04	1.42	1.07	0.93	0.94	2.64	2.66	2.10	1.05
Nd	7.95	9.39	6.53	7.94	7.12	9.30	6.84	5.98	7.05	16.20	16.30	12.50	7.10
Sm	2.56	2.67	2.32	2.44	2.61	3.21	2.85	2.42	2.50	5.47	5.22	4.42	3.06
Eu	0.83	1.02	0.72	0.91	0.82	1.01	0.75	0.77	0.70	1.96	1.68	1.38	0.89
Gd	2.70	3.21	2.52	2.59	3.17	3.49	3.31	2.83	2.92	6.35	5.76	4.49	3.30
Tb	0.40	0.52	0.35	0.43	0.49	0.63	0.51	0.48	0.50	0.98	0.92	0.75	0.51
Dy	2.48	3.01	2.19	2.41	2.88	3.55	3.03	2.67	2.89	5.80	5.29	4.29	3.11
Ho	0.45	0.53	0.38	0.48	0.58	0.68	0.63	0.50	0.63	1.04	0.93	0.79	0.58
Er	1.07	1.35	0.87	1.01	1.43	1.65	1.50	1.36	1.44	2.47	2.22	1.79	1.54
Tm	0.13	0.17	0.11	0.11	0.18	0.23	0.20	0.20	0.18	0.35	0.27	0.22	0.20
Yb	0.76	1.03	0.91	0.74	1.35	1.59	1.13	1.24	1.34	2.54	1.81	1.36	1.09
Lu	0.12	0.14	0.12	0.11	0.17	0.21	0.18	0.18	0.17	0.26	0.23	0.20	0.20
Ba	0.11	0.33	0.82	0.38	0.05	0.33	0.18	0.03	0.04	-	0.10	0.09	0.05
Th	0.02	0.03	0.05	0.03	0.02	0.02	0.03	0.02	0.02	-	0.04	0.02	0.04
Nb	0.06	0.09	0.05	0.08	0.06	0.05	0.06	0.04	0.02	-	0.12	0.09	0.06
Та	0.02	0.02	0.01	0.02	0.01	0.01	0.01	0.02	0.01	-	0.02	0.01	0.02
\sum REE	29.00	34.80	25.80	29.30	28.30	36.20	29.10	25.50	27.70	63.90	60.50	47.90	29.60
${\rm La}_{\rm N}/{\rm Yb}_{\rm N}$	1.62	1.43	1.46	1.93	0.66	0.84	0. 93	0.68	0.70	1.03	1.43	1.49	0.94
dEu	0.95	1.06	0.91	1.10	0.87	0.91	0.74	0.90	0.79	1.01	0.93	0.94	0.85

注:主要氧化物单位为% 微量元素单位为(×10⁻⁶)。

白马岩体下部带海绵陨铁矿石和上部带橄榄 辉长岩中的单斜辉石的 REE 配分型式均呈现出中 稀土相对轻、重稀土富集的趋势,与二滩高钛玄武 岩中单斜辉石斑晶的 REE 变化趋势类似(图 5b)。 整体上,上部带橄榄辉长岩中的单斜辉石含有比下 部带海绵陨铁矿石中的单斜辉石更高的 REE 含量: 海绵陨铁矿石中单斜辉石的 REE 总量为 36.0×10⁻⁶ ~61. 6×10^{-6} , La_N / Yb_N 值为 1. 00~1. 95, δEu 值为 1. 01~1. 40, 无明显 Eu 异常; 橄榄辉长岩中单斜辉 石的 REE 总量为 67. $2 \times 10^{-6} \sim 97.7 \times 10^{-6}$, La_N / Yb_N 值为 0. 56~1. 30 δEu 值为 0. 56~0. 90, 表现出弱的 Eu 负异常(表 3 图 5b)。海绵陨铁矿石中单斜辉石 的 Zr 含量为 11. $0 \times 10^{-6} \sim 17.8 \times 10^{-6}$ Sr 含量为 49. 1 ×10⁻⁶~69.7×10⁻⁶; 橄榄辉长岩中单斜辉石的

						栽	2 二灌]	高钛玄武	法中具	震荡环背	节的单斜	晖石主量	1元素组)	戎						
			Table	2 Majo	or elemen	nt compo	sitions of	f the osc	illatory	zoning c	clinopyro	xene phe	nocrysts	from th	ie Ertan	high-Ti	basalt			(%)
样品号	ET-1-1	ET-1-1	ET-1-1	ET-1-1	ET-1-2	ET-1-2	ET-1-2	ET-1-2	ET-1-2	ET-1-2	ET-1-3	ET-1-3	ET-1-3	ET-1-3	ET-1-3	ET-1-3	ET-1-3	ET-1-3	ET-1-3	ET-1-3
分析点	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
SiO_2	52.82	51.03	50.41	49.21	51.52	50.26	52.06	50.59	51.06	49.01	50.80	52.15	51.73	51.70	50.62	50.54	50.65	49.36	49.49	48.41
Ti0 ₂	0.57	0.93	1.02	1.57	0.56	0.90	0.53	1.00	0.89	1.51	0.80	0.58	0.56	0.53	0.83	1.06	0.87	1.32	1.28	1.53
Al ₂ 0 ₃	1.61	3.01	3.54	3.92	2.19	3.74	2.53	3.39	3.22	4.02	3.31	2.51	2.47	2.40	3.31	3.40	3.30	3.93	3.97	4.07
FeO	5.87	7.34	7.67	10.83	5.70	6.46	5.87	7.40	7.21	10.75	7.31	5.62	5.63	5.13	7.22	7.63	7.71	8.55	9.39	12.53
MnO	0.17	0.15	0.14	0.18	0.15	0.14	0.12	0.18	0.16	0.23	0.17	0.16	0.09	0.10	0.18	0.16	0.18	0.21	0.20	0.26
MgO	17.58	15.15	14.88	13.13	15.95	15.59	16.10	14.97	15.15	13.48	15.73	16.20	16.12	16.12	15.26	14.95	15.23	14.40	14.08	12.64
CaO	21.22	22.25	22.19	20.94	22.66	22.20	22.71	22.35	21.44	21.24	22.05	21.70	22.94	23.01	22.58	22.44	22.54	22.05	21.88	20.73
Na_2O	0.19	0.23	0.33	0.38	0.24	0.27	0.21	0.30	0.26	0.40	0.32	0.25	0.27	0.35	0.26	0.28	0.32	0.33	0.33	0.43
Cr_2O_3	0.62	0.25	0.29	0.06	0.46	0.59	0.51	0.22	0.22	0.03	0.55	0.74	0.66	0.76	0.34	0.23	0.21	0.16	0.09	1
总计	100.65	100.34	100.45	100.23	99.42	100.16	100.62	100.40	99.61	100.67	101.04	99.90	100.47	100.08	100.60	100.67	101.01	100.30	100.70	100.61
Mg#	84.00	79.00	78.00	68.00	83.00	81.00	83.00	78.00	79.00	69.00	79.00	84.00	84.00	85.00	79.00	78.00	78.00	75.00	73.00	64.00

cumulus clinopyroxene from the Baima layered intrusion

Zr 含量为 19.7×10⁻⁶~53.6×10⁻⁶, Sr 含量为 39.2× 10⁻⁶~50.5×10⁻⁶(表 3)。在原始地幔标准化的微量 元素配分图解上 表现出 Nb、Ta、Sr、Zr、Hf、Co、Ni 和 Cr 负异常,以及 V 正异常(图 6b)。

3.3 利用 EMPA 和 LA-ICP-MS 方法分别获得的 单斜辉石 Ti 含量结果比较

值得注意的现象是,如果单斜辉石中存在细小矿 物包裹体或出溶片晶,在晶体同一位置利用 EMPA 和 LA-ICP-MS 方法获得的分析结果可能会有所不同。这 是因为 EMPA 方法获得的是矿物表面~1 μm 深度范围 内的成分 而 LA-ICP-MS 方法是对矿物进行微米级深 度的剥蚀,从而获得矿物本身和细小包裹体或出溶片 晶的混合成分。但是,前人对磁铁矿进行 LA-ICP-MS 分析的结果显示,磁铁矿和出溶片晶的混合成分可能 更接近磁铁矿的原始成分(Dare *et al.*,2012)。

图 4 二滩玄武岩中具震荡环带的单斜辉石斑晶的 Mg[#]值变化剖面

Fig.4 Profiles for variation of Mg# values across the oscillatory zoning clinopyroxene phenocrysts from the Ertan high-Ti basalt

球粒陨石标准化稀土元素配分图解

Fig.5 Chondrite-normalized rare earth element patterns for clinopyroxene phenocrysts from the Ertan high-Ti basalt (a) and cumulus clinopyroxene from net-textured Fe-Ti oxide ores and olivine gabbro of the Baima layered intrusion (b)

,	Table 3	Major and	d trace ele	ment comp	ositions of	clinopyroz	xene grain	s of the Ba	nima layero	ed intrusion	n
样品类型						海绵陨铁矿	石				
样品号	BM802	BM802	BM803	BM803	BM820	BM820	BM802	BM802	BM802	BM802	BM802
分析点	3	6	2	5	5	6	1	2	8	9	10
SiO ₂	49.57	49.00	49.58	49.28	49.25	49.58	50.49	49.83	50.17	50.73	50.44
TiO_2	1.21	1.22	1.21	1.11	1.24	1.33	1.15	1.18	1.26	0.98	1.39
Al_2O_3	3.51	3.72	3.61	3.63	3.50	3.55	3.65	3.63	3.46	3.51	3.78
TFeO	9.86	8.97	8.73	7.85	8.52	9.05	7.40	7.92	7.11	6.34	8.97
MnO	0.18	0.22	0.23	0.16	0.16	0.18	0.20	0.20	0.28	0.24	0.31
MgO	14.09	14.22	14.22	14.34	14.34	14.28	14.38	13.85	14.06	14.33	13.97
CaO	21.49	22. 28	22.09	22.75	22. 20	21.60	22.43	22.80	22.34	24.11	21.01
Na ₂ O	0.49	0.55	0.53	0.53	0.54	0.61	0.59	0.59	0.65	0.53	0.49
Cr_2O_3	-	0.04	-	-	0.07	0.02	0.02	-	0.06	-	-
总计	100.41	100. 23	100. 19	99.64	99.84	100.19	100.30	99.99	99.38	100.77	100.36
$Mg^{\#}$	72	74	74	77	75	74	78	76	78	80	74
Ti	7951	8229	8098	8351	8212	7922	8342	7386	7141	7332	6643
V	323	341	366	355	354	336	355	324	308	319	268
Cr	4.90	1.98	11.3	5.58	15.86	11.12	11.2	3.87	4.93	4.91	0.66
Co	43.6	46.8	47.1	48.2	47.1	45.6	41.0	40.8	35.6	50.7	37.1
Ni	40.3	46.8	47.5	49.1	38.1	37.6	46.9	47.4	37.7	40.3	38.3
Zn	59.6	48.7	55.1	52.6	51.9	50.3	52.4	44.8	41.1	37.9	46.1
Ga	9.08	9.69	9.64	9.65	9.58	9.12	10.5	8.67	8.19	9.22	7.67
Sr	62.8	56.4	56.6	62.7	61.6	58.1	62.1	54.3	52.8	52.4	61.1
Y	18.3	18.0	19.1	18.9	17.9	17.3	19.5	20.5	20.4	21.3	17.5
Zr	14.5	13.4	15.1	14.0	14.9	14.0	15.3	16.6	16.2	16.9	15.0
Hf	0.71	0.77	0.88	0.78	0.73	0.71	0.74	0.77	0.68	0.79	0.72
La	2.89	2.86	2.75	3.61	2.60	2.96	3.34	3.64	3.53	3.71	3.39
Ce	10.3	10.1	10.4	12.0	10.3	9.99	12.2	12.9	13.2	13.2	11.4
Pr	1.92	1.84	1.94	2.13	1.96	1.87	2.20	2.34	2.31	2.54	1.96
Nd	12.6	11.2	12.6	13.2	11.5	11.4	13.1	14.9	15.0	14.7	12.1
Sm	4.03	4.04	4.15	4.18	4.01	3.68	4.70	4.48	5.02	4.55	3.85
Eu	1.60	1.69	1.73	1.73	1.62	1.53	2.01	2.03	1.73	1.86	1.71
Gd	4.26	4.21	4.22	3.70	4.02	4.33	4.85	5.22	5.38	6.03	4.24
Tb	0.73	0.72	0.78	0.60	0.69	0.64	0.77	0.79	0.75	0.84	0.58
Dy	3.99	4.18	4.37	4.16	3.94	3.74	4.47	4. 52	4.78	4.57	3.89
Ho	0.80	0.71	0.78	0.82	0.81	0.73	0.88	0.81	0.90	0.89	0.75
Er	1.86	1.83	2.05	1.85	1.89	1.83	2.09	2.14	2.07	2.42	1.72
Tm	0.21	0.20	0.30	0.28	0.26	0.27	0.26	0.28	0.30	0.34	0.23
Yb	1.67	1.51	1.63	1.62	1.65	1.44	1.65	1.88	2.01	1.84	1.38
Lu	0.21	0.20	0.24	0.23	0.23	0.18	0.23	0.27	0.26	0.29	0.19
Ba	0.13	0.26	0.17	0.08	0.18	0.11	0.78	0.12	0.15	0.34	0.28
Th	0.11	0.10	0.15	0.22	0.26	0.15	0.22	0.15	0.15	0.23	0.20
Nb	0.16	0.05	0.06	0.17	0.10	0.15	0.12	0.07	0.10	0.08	0.12
Та	0.02	0.01	0.02	0.02	0.02	0.02	0.04	0.00	0.02	0.01	0.03
REE	47.0	45.3	47.9	50.1	45.4	44.6	52.7	56.2	57.2	57.8	47.4
La_N / Yb_N	1.24	1.36	1.21	1.60	1.13	1.47	1.45	1.39	1.26	1.45	1.76
dEu	1.17	1.24	1.25	1.32	1. 22	1.17	1. 28	1.28	1.01	1.08	1.29
样品类型						海绵陨铁矿	石				
样品号	BM802	BM820	BM820	BM820	BM820	BM820	BM821	BM821	BM822	BM822	BM823
<u>分析点</u>	3	6	2	5	5	6	1	2	8	9	10
510 ₂	50.17	50. 29	49.36	49.71	49.94	50.38	49.56	49.56	50.96	50.64	50.16
	1.19	1.25	1.40	1.23	1.42	1.16	1.27	1. 19	1.01	1.19	1.08
AI ₂ O ₃	3.55	3.75	3.89	3.67	3.45	3.54	3.45	3.48	3.11	3.34	2.70
IFeO M.C	/. 50	8.88	7.95	8.23	8.12	8.65	9.27	7.25	9.41	8.40	9.31
MnO M.C	0.28	0.28	0.23	0.18	0.27	0.23	0.19	0.17	0.23	0.20	0.20
MgO	13.93	14.70	13.70	13.65	14.14	14.82	14. 33	14. 24	14. 15	13.80	14.72
CaO	22. 21	20.94	21.90	22.38	22.08	20.74	21.53	23.59	20.62	21.97	21.57

表 3	白马层状岩体中单斜辉石的主量和微量元素组成
d traca al	mont compositions of aligonyroyong grains of the

绩夷	3
334.13	

样品类型						海绵陨铁矿	石				
样品号	BM802	BM820	BM820	BM820	BM820	BM820	BM821	BM821	BM822	BM822	BM823
分析点	3	6	2	5	5	6	1	2	8	9	10
Na ₂ O	0.55	0.50	0.60	0.49	0.38	0.58	0.49	0. 59	0.96	0.50	0.45
Cr_2O_3	-	-	-	0.02	0.01	0.02	-	0.02	-	-	-
总计	99.37	100. 59	99.02	99. 55	99.80	100.13	100.10	100.08	100.43	100.03	100. 18
$Mg^{\#}$	77	75	75	75	76	75	73	78	73	75	74
Ti	7181	7776	7451	7704	7436	7513	7729	8825	6559	8295	7466
V	307	370	340	352	344	305	313	370	271	344	269
Cr	5.86	15.4	12.4	13.2	14.1	6.14	8.34	10.94	<1.09	5.36	<1.27
Co	39.4	41.0	40.7	42.5	42.2	38.5	43.3	45.8	41.7	42.2	44.2
Ni	43.6	36.6	35.2	37.6	35.7	33.1	35.9	38.0	32.2	37.6	18.1
Zn	42.0	45.3	45.5	44.4	47.2	43.7	51.8	49.2	55.7	44.2	53.6
Ga	8.37	8.91	8.31	8.32	8.52	8.18	9.52	10.20	7.79	8.36	7.50
Sr	53.3	61.0	55.9	59.3	55.0	61.2	69.7	62.1	67.4	54.1	49.1
Y	18.9	16.4	18.7	15.6	14.9	21.0	19.1	21.0	17.2	20.1	16.7
Zr	14.9	13.4	13.2	12.3	12.5	16.8	17.8	17.6	16.9	16.1	11.0
Hf	0.75	0.71	0.66	0.63	0.67	0.87	0.92	0.77	0.84	0.66	0.54
La	3.43	2.20	2.75	2.10	1.86	4.82	3.78	4.09	3.14	4.55	2.07
Ce	12.1	8.46	10.6	8.02	7.12	16.1	12.5	14.1	10.3	15.3	7.84
Pr	2.18	1.62	1.99	1.57	1.43	2.78	2.11	2.38	1.81	2.63	1.65
Nd	12.6	11.2	12.5	10. 2	9.49	15.4	13.7	14.3	11.0	15.2	11.3
Sm	3.82	3.46	4.23	3.42	3.16	4. 78	3.88	4.86	3.34	4.32	3.72
Eu	1.63	1. 59	1.64	1.44	1.37	1.84	1.96	1.90	1.63	1.69	1.67
Ga	4.42	4.18	4.57	4.09	5.94 0.50	5.22	4. 70	5.15	4.20	4.01	5. 89
1D D	0.72	0. 61	0. /1	0. 59	0.50	0.76	0. 77	0.81	0.67	0.75	0. 65
Dy IL	4.14	5.05 0.71	4. 19	5.46 0.62	5. 18 0. 62	4. 29	4.15	4. 54	5.77	4.04	5.40 0.71
по Б.	1.08	1.68	0.79	0.03	0.03	0.88	1.08	2 30	1.03	1.03	0.71
Er Tm	0.26	0.20	2.02	0.21	0.10	2.10	0.26	2.30	0.23	0.26	0.24
Thi Yh	1.81	1 45	1 59	1 44	1 33	2.00	1.75	1.95	1 48	0.20	1 43
Lu	0.24	0.19	0.25	0.18	0.18	0.27	0.22	0.27	0.26	0.20	0.19
Ba	0.11	0.54	0.11	-	0.18	_	0.17	0.94	-	0.14	0. 25
Th	0.21	0.11	0.15	0.08	0.05	0.61	0.32	0.34	0.26	0. 28	0.03
Nb	0.11	0.06	0.05	0.08	0.09	0.12	0.16	0.13	0.28	0.12	0.05
Та	0.02	0.01	0.01	0.01	0.01	0.01	0.02	0.04	0.04	0.01	0.02
Σ REE	50.1	41.2	48.1	39.0	36.0	61.6	52.6	57.6	44.5	58.0	40. 5
La_N/Yb_N	1.36	1.09	1.24	1.05	1.00	1.73	1.55	1.50	1.52	1.95	1.04
dEu	1.21	1.27	1.13	1.17	1.19	1.12	1.40	1.15	1.33	1.15	1.33
样品类型						橄榄辉长岩	1				
样品号	BM805	BM805	BM826	BM826	BM827	BM827	BM828	BM828	BM829		
分析点	6	9	1	6	2	9	7	8	4		
SiO_2	51.31	49.56	50.12	50.28	50.43	49.92	49.98	50.51	50.12		
TiO_2	0.89	0.77	0.63	0.89	0.80	0.72	0.82	0.63	0.80		
Al_2O_3	2.80	2.85	2.85	2.79	2.75	3.40	3.03	2.60	2.64		
TFeO	8.04	8.80	8.30	9.62	9.31	8.21	8.23	7.62	8.77		
MnO	0.27	0.31	0.20	0.28	0. 23	0. 23	0.29	0.22	0.25		
MgO	14.61	14.37	14.64	14. 59	14.88	13.73	14.17	14.28	14.25		
CaO	22.41	22. 28	22.38	21.70	21.53	23. 21	23.16	23.90	22. 25		
Na ₂ O	0.28	0.45	0.40	0.35	0.38	0.36	0.42	0.34	0.43		
Cr_2O_3	-	-	-	-	-	-	0.01	-	-		
总计	100. 59	99.39	99. 50	100. 51	100.31	99.78	100.10	100.10	99.51		
Mg [#]	76	74	76	73	74	75	75	77	74		
Ti V	7068	6975	4061	5570	5287	6055	5293	6472	6431		
V C	310	304	230	265	253	337	264	333	320		
Cr	5. /6 45. 2	3.06	10.0	10.2	9.81	18.8	9.55	16.2	13.6		
Co	45. 5	44. 5	45.3	46. 6	44.2	44.2	44. 2	44. 2	48. 5		

焃	耒	3
ジナ	1.X	5

样品类型						橄榄辉长岩	4		
样品号	BM805	BM805	BM826	BM826	BM827	BM827	BM828	BM828	BM829
分析点	6	9	1	6	2	9	7	8	4
Ni	29.60	29.20	31.70	33.00	30.70	29.20	30.30	30.30	32.60
Zn	69.00	65.20	62.00	66.00	58.30	57.90	60.90	57.40	54.90
Ga	8.81	8.46	7.12	7.68	7.58	8.78	7.67	9.17	8.91
Sr	49.70	49.50	39.20	45.00	42.30	50.50	41.50	45.30	48.30
Y	35.50	35.10	38.80	45.50	43.50	27.30	43.10	40.60	27.20
Zr	26.00	25.20	53.60	38.50	38.60	30.40	40.80	43.00	19.70
Hf	1.09	0.95	2.16	1.44	1.54	0.77	1.60	1.49	0.79
La	4.19	4.02	4.19	4.59	4.54	4.24	3.50	4.27	4.31
Ce	17.00	16.70	18.00	19.30	18.60	16.10	16.70	18.50	16.70
Pr	3.49	3.24	3.62	3.82	3.62	2.97	3.43	3.70	2.99
Nd	20.50	21.40	23.20	25.40	24.00	16.80	23.40	23.30	18.20
Sm	6.87	7.04	7.72	8.55	8.74	5.38	8.15	8.37	5.25
Eu	1.73	1.86	1.78	1.99	1.64	1.61	1.74	2.06	1.64
Gd	7.69	7.68	8.22	9.88	8.98	5.82	8.77	8.69	5.88
Tb	1.21	1.16	1.35	1.56	1.51	0.89	1.52	1.40	0.89
Dy	7.52	7.07	8.19	9.63	9.17	5.67	9.21	8.83	6.03
Ho	1.44	1.50	1.70	1.92	1.86	1.17	1.79	1.73	1.16
Er	4.10	3.58	4.20	4.94	4.60	2.88	4.39	4.23	2.99
Tm	0.55	0.55	0.47	0.66	0.62	0.41	0.63	0.63	0.41
Yb	3.78	3.55	3.78	4.63	4.11	2.76	4.46	3.95	2.38
Lu	0.56	0.45	0.51	0.72	0.62	0.44	0.56	0.55	0.37
Ba	0.14	0.88	1.00	0.42	0.68	-	0.21	-	-
Th	0.25	0.19	0.37	0.70	0.20	0.39	0.26	0.22	0.47
Nb	0.05	0.05	0.04	0.05	0.07	0.14	0.04	0.04	0.05
Та	0.02	0.03	0.02	0.02	0.01	0.02	0.02	0.02	0.02
Σ REE	80.70	79.80	87.00	97.70	92.60	67.20	88.20	90.20	69.20
${\rm La}_{\rm N}/{\rm Yb}_{\rm N}$	0.80	0.81	0.80	0.71	0.79	1.10	0.56	0.78	1.30
dEu	0.72	0.77	0.68	0.66	0.56	0.87	0.63	0.73	0.90

注: 氧化物单位为% 微量元素单位为(×10⁻⁶)。

单斜辉石(b)的原始地幔标准化微量元素配分图解

利用 EMPA 和 LA-ICP-MS 方法分别获得的二 滩高钛玄武岩中单斜辉石斑晶和白马岩体海绵陨 铁矿石和橄榄辉长岩中堆晶单斜辉石的 Ti 含量,只 有少数数据点落在对角线趋势线上(图 7a)。尤其 是白马岩体中的大多数单斜辉石颗粒利用 LA-ICP- MS 方法获得的 Ti 含量值均略高于 EMPA 方法获得 的 Ti 含量值(图 7a),这可能与单斜辉石普遍发育 钛铁矿出溶片晶有关(图 2e,2f),说明 LA-ICP-MS 方法获得的 Ti 含量值极有可能是单斜辉石与矿物 包裹体和/或钛铁矿出溶片晶的混合结果。

图 7 利用 EMPA 和 LA-ICP-MS 方法分别获得的单斜辉石 Ti 含量比较(a) 和 LA-ICP-MS 方法 获得的单斜辉石 Ti 和 Zr 含量协变图(b)

Fig.7 Comparison of Ti contents of clinopyroxene phenocrysts, analyzed by using EMPA and LA-ICP-MS, from the Ertan high-Ti basalt and those of cumulus clinopyroxene from net-textured Fe-Ti oxide ores and olivine gabbro of the Baima layered intrusion (a) and a binary plot of Ti versus Zr contents of clinopyroxene analyzed by using LA-ICP-MS (b)

由于此次研究中 LA-ICP-MS 原位分析矿物微 量元素的束斑大小为 31 μm,LA-ICP-MS 方法测定 的 Ti 含量普遍偏高,其原因可能是二滩高钛玄武岩 的单斜辉石斑晶和白马岩体的单斜辉石中都存在 微米级或纳米级的钛铁矿出溶片晶,但这些非常细 小的出溶片晶利用常规显微镜或电子探针则无法 观察到。在这种情况下,利用 LA-ICP-MS 方法获得 的 Ti 含量值可能更接近原生单斜辉石的 Ti 含量。

单斜辉石中的钛铁矿出溶有可能降低单斜辉 石的 Fe 含量,导致单斜辉石的 Mg[#]值偏高。但是, 不同单斜辉石颗粒中钛铁矿的出溶程度不尽相同, 很难直接定量估算钛铁矿出溶程度对单斜辉石 Mg[#] 值的影响。由于单斜辉石中钛铁矿的出溶现象在 白马岩体不同类型的岩石中均普遍发育,我们认 为 尽管根据单斜辉石 EMPA 结果直接计算的 Mg[#] 值可能偏高,但不同矿石和岩石中单斜辉石化学组 成的相对差别仍具有重要意义。

4 讨论

在球粒陨石标准化的 REE 配分图解和原始地 幔标准化的微量元素配分图解上,二滩高钛玄武岩 和白马层状岩体中单斜辉石的稀土和微量元素组 成的异常特征具有很多类似和不同之处(图 5、图 6)。分配系数较高的(*D*>1)的相容元素如 Cr 和 Ni 等可用于指示岩浆的早期演化过程,而分配系数较 低的(*D*<1)的不相容元素如 REE 和高场强元素 Zr、Hf 等则可用于模拟岩浆演化晚期过程和部分熔 融过程。因此,二滩高钛玄武岩中的单斜辉石斑晶 和白马岩体下部带海绵陨铁矿石,以及上部带橄榄 辉长岩中的单斜辉石堆晶都可能携带与岩石成因 和岩浆演化的重要信息,并可指示峨眉山高钛玄武 岩和层状岩体之间的成因联系。

4.1 二滩高钛玄武岩中单斜辉石斑晶的成因

在 Mg[#]-Al₂O₃ 和 Mg[#]-TiO₂ 图解上,二滩高钛玄 武岩中具振荡环带的单斜辉石小斑晶的核部具有 较高的 Mg[#] 值(81~85) 和 Cr₂O₃ 含量(0.44%~ 0.76%) (图 3a), 说明其可能是从相对原始的岩浆 中结晶而成的。同时,峨眉山高钛苦橄岩中单斜辉 石斑晶的 Mg[#]值为 84~86, Cr₂O₃ 含量为 0.58%~ 1.16%(Kamenetsky et al., 2011)。因此,具振荡环 带的单斜辉石小斑晶核部的 Mg[#]值和 Cr₂O₃ 含量与 高钛苦橄岩中单斜辉石斑晶的相应值相当(图 8a), 说明单斜辉石小斑晶的核部可能是从类似高钛苦 橄岩成分的原始岩浆中结晶而成的,并随演化的高 钛玄武质岩浆喷发至地表。另一方面,具振荡环带 的单斜辉石小斑晶的幔部和边部通常非常密集和 细窄(10~20 μm)(图 2c),这是火山岩中矿物斑晶 常见的一种环带结构,是在岩浆快速冷却过程中, 主要由扩散作用控制形成的不平衡生长环带 (Downes, 1974; Elardo and Shearer, 2014)。因此, 考虑到具振荡环带的单斜辉石幔部和边部的成分 特征(图4) 其可能是从快速冷却的高钛玄武质岩 浆结晶而成的。

二滩高钛玄武岩中无环带单斜辉石大斑晶的 Mg[#]值和 Cr₂O₃ 含量低于有环带单斜辉石小斑晶核 部的相应值,但与有环带斑晶的幔部成分范围类 似,且两者具有相同的演化趋势(图3) 这暗示无环 带的单斜辉石大斑晶是从相对演化的高钛玄武质 岩浆中结晶而成的。Wang 等(2014) 认为,峨眉山 高钛玄武岩是高钛苦橄质岩浆在深部岩浆房经历 橄榄石和铬铁矿分离结晶、以及少量硫化物熔离 之后的残余熔体直接喷出地表形成的,这也许能 够解释二滩高钛玄武岩中单斜辉石斑晶普遍具有 Zn、Co和 Ni 负异常的特征(图 6a)。因此,单斜辉 石的环带记录的成分变化与岩浆成分的变化密切 相关。

二滩高钛玄武岩中具振荡环带的单斜辉石小 斑晶的核部相对其幔部和边部,以及无环带单斜辉 石大斑晶具有较低的 Al^{IV}值,但与高钛苦橄岩中单 斜辉石斑晶的相应值比较类似(图 8b)。单斜辉石 的 Al^{IV}值被认为与结晶压力呈正相关关系(Nimis, 1995),但是,具振荡环带辉石小斑晶的幔部和边 部、以及无环带单斜辉石斑晶的 Al^{IV}值远高于具振 荡环带辉石小斑晶的核部和高钛苦橄岩中的单斜 辉石斑晶的相应值(图 8b),这很难用结晶压力来解 释。而更可能的解释是,无环带单斜辉石大斑晶、 以及具振荡环带单斜辉石小斑晶的幔部和边部是 从分异的高钛苦橄质或玄武质岩浆中形成的。伴 随深部岩浆房中高钛苦橄质岩浆的分异,残余岩浆 的 Fe、Ti 和 Al 含量逐渐升高(Wang *et al.*, 2014), 这与二滩高钛玄武岩中单斜辉石斑晶具有逐渐升 高的 TFeO 和 TiO₂ 含量变化趋势一致(图 3)。

图 8 二滩高钛玄武岩和峨眉山高钛苦橄岩中单斜辉石斑晶的 Mg[#]-Cr₂O₃ 图解(a) 和单斜辉石 Mg[#]-Al^{IV}占位数图解(b) Fig.8 Plots of Mg[#]-Cr₂O₃(a) and Mg[#]-Al^{IV} atom per formula unit (b) for clinopyroxene phenocrysts from the Ertan high-Ti basalt and Emeishan high-Ti picrite

4.2 单斜辉石 Zr 和 Hf 含量较低的原因

二滩高钛玄武岩中的单斜辉石斑晶、白马岩体 下部带海绵陨铁矿石和上部带橄榄辉长岩中的单 斜辉石 在原始地幔标准化的微量元素配分图解上 均表现出明显的 Zr-Hf 负异常(图 6)。事实上,在 镁铁--超镁铁质和长英质岩体中赋存的单斜辉石普 遍具有这一特点(Rampone et al., 1991; Vannucci et al., 1991; Plá Cid et al., 2005; Francis and Minarik, 2008; Fedele et al., 2009)。单斜辉石中的钛铁矿 出溶片晶有可能影响单斜辉石的微量元素组成 因 为Zr、Hf 等元素在钛铁矿中为相容元素 Zr 在钛铁 矿/熔体之间的分配系数高达 6.1 (McBirney, 2002) 远远高于 Zr 在单斜辉石中的分配系数(0.08 ~0. 24; Hart and Dunn 1993; Forsythe et al. , 1994) 。 如果单斜辉石的 Zr 含量与钛铁矿的出溶片晶有关, 出溶片晶发育的部位应同时具有较高的 Ti 和 Zr 含 量。这一现象在二滩高钛玄武岩的单斜辉石斑晶 中表现得比较明显,利用 LA-ICP-MS 方法获得的单

斜辉石斑晶的 Ti 和 Zr 含量大致呈正相关关系(图 7b)。白马岩体的单斜辉石虽然可以观察到明显的 钛铁矿出溶片晶,但是,下部带海绵陨铁矿石中的 单斜辉石的 Ti 与 Zr 含量基本不相关,上部带橄榄 辉长岩中单斜辉石具有相对较高的 Zr 和较低的 Ti 含量,且 Ti 与 Zr 含量呈负相关关系(图 7b),说明 这些单斜辉石颗粒的微量元素组成不仅仅是由钛 铁矿的出溶片晶造成的。

值得注意的是,白马岩体中单斜辉石的 Zr-Hf 负异常与其上部带橄榄辉长岩的全岩微量元素配 分型式一致(图 6b),但是二滩高钛玄武岩的全岩 微量元素配分型式上却未出现明显的 Zr-Hf 负异 常(图 6a)。有研究认为,这是由于层状岩体中铁 钛氧化物(磁铁矿和钛铁矿)含量高造成的(Song *et al.*,2013)。但是,如上所述,Zr 在钛铁矿中的 分配系数远大于其在单斜辉石中的分配系数,Zr 在磁铁矿/熔体中的分配系数为0.33,也大于其在 斜长石(0.01)和橄榄石(0.01)中的分配系数 (McBirney, 2002)。如果大量铁钛氧化物早期分 离结晶、且单斜辉石的结晶晚于铁钛氧化物,则单 斜辉石可能会表现出 Zr、Hf 和 Ti 的负异常,这似 乎与层状岩体中铁矿石的全岩微量元素组成普遍 具有 Zr-Hf 正异常的现象一致(Zhou et al., 2005; Liu et al., 2014; Song et al., 2013) ,但却不能解释 铁矿石的全岩 Zr 含量为什么远低于上覆辉长岩的 全岩 Zr 含量,其中仅含有少量的铁钛氧化物。例 如,位于攀枝花岩体底部的块状矿石(SiO₂<5%) 的 Zr 含量为 10×10⁻⁶~13×10⁻⁶ (Zhou *et al.*, 2005) 假定矿石中含有 10%~20% 的钛铁矿 ,Zr 在磁铁矿和钛铁矿中的分配系数分别为 0.33 和 6.1(McBirney, 2002),经质量平衡计算获得的母 岩浆的 Zr 含量应为 9×10⁻⁶~15×10⁻⁶。该值远低 于峨眉山高钛玄武岩和高钛苦橄岩中的 Zr 含量 $(>100\times10^{-6})$ Xu et al., 2001; Xiao et al., 2004; Zhang et al., 2006; Qi et al., 2008), 说明 Zr 大部 分应该还是进入残余岩浆或粒间熔体中,而不是 铁钛氧化物中。甚至也有一些实验结果表明,Zr 在钛铁矿/熔体之间的分配系数可能只有 0.3~ 0.8(McCallum and Charette , 1978; Klemme et al. , 2006),如果是这样,Zr更不太可能更多的进入铁 钛氧化物中。这表明,单斜辉石中的 Zr-Hf 负异常 并不是由于铁钛氧化物的分离结晶造成的,白马 岩体橄榄辉长岩中的 Zr-Hf 负异常不可能用铁钛 氧化物的早期分离结晶来解释。

4.3 Zr 和 Hf 在单斜辉石中的分配系数

实验结果表明,单斜辉石的 Zr-Hf 负异常可能 仅仅是 Zr 和 Hf 在单斜辉石/熔体之间的分配系数 低于相邻的 Sm 和 Nd 造成的(Hart and Dunn, 1993; Hauri et al., 1994; Green et al., 2000)。由于 微量元素在单斜辉石中的分配系数与单斜辉石本 身的主量元素组成、温度和压力有关,我们利用本 次研究获得的单斜辉石的主量元素数据、并分别利 用 Wood 和 Blundy(1997, 2003) 和 Bédard(2014) 的 方法模拟计算了单斜辉石中微量元素的分配系数。 结果显示 REE 在单斜辉石 M2 位置的分配系数在 0.054~0.575 之间 / 重稀土(HREE) 在 M1 位置的分 配系数在 0.013~0.126 之间 与前人报道的高钛玄 武岩中单斜辉石的分配系数类似(图 9a)。通过计 算获得的不相容元素在单斜辉石中的分配系数为: $D_{\rm Sr}^{\rm Cpx/melt} = 0.106 \sim 0.160$, $D_{\rm Ti}^{\rm Cpx/melt} = 0.276 \sim 0.468$, $D_{Tr}^{Cpx/melt}$ 和 $D_{Hf}^{Cpx/melt}$ 分别为 0.065~0.127 和 0.124~ 0.225 。利用获得的微量元素分配系数反算与二滩 高钛玄武岩单斜辉石平衡的熔体成分,计算公式采 用 $L_i = C_i^{epx} / D_i$ 其中 L_i 表示元素 i 在熔体中的含量, C_i^{cpx} 表示元素 i 在单斜辉石中的含量 D_i 表示元素 i 在单斜辉石和熔体之间的分配系数。结果表明,利 用 Bédard(2014) 方法计算的熔体成分的微量元素 配分型式与二滩高钛玄武岩的全岩微量元素的配 分型式十分类似(图 9b) 表明模拟获得的单斜辉石 微量元素的分配系数是比较合理的。

Fig.9 REE partition coefficients between melt and clinopyroxene obtained by various modellings based on the compositions of clinopyroxene phenocrysts from the Ertan high-Ti basalt (a) and comparison of calculated compositions of the melt in equilibrium with clinopyroxene phenocrysts of the Ertan high-Ti basalt and whole-rock compositions of the Ertan high-Ti basalt (b)

对于堆晶岩,理论上可以利用堆晶矿物的成分 反演与之平衡的熔体成分,但这种方法获得的熔体 的微量元素组成常常会高于实际值(Charlier *et al.*, 2005; Godel *et al.*, 2011; Cawthorn, 2013)。这是由

于岩浆房冷却过程中,堆晶矿物往往会与不相容元 素含量较高的粒间熔体发生反应,即粒间熔体效应 (TLS)(trapped liquid shift effect, Barnes, 1986; Cawthorn *et al.*, 1992)。因此,理论上熔体反演计算 只适用于粒间熔体含量很低的补堆晶岩(Godel *et al.*, 2011)。

尽管如此,我们尝试利用本次计算获得的单斜 辉石中微量元素的分配系数反演白马岩体的熔体 微量元素组成,同样采用公式 $L_i = C_i^{px}/D_i$ 进行计 算。在原始地幔标准化的微量元素配分图解上,计 算出的熔体微量元素配分型式呈右倾趋势,并与峨 眉山高钛玄武岩的全岩微量元素配分型式一致(图 10)。其中,与白马岩体下部带海绵陨铁矿石中单 斜辉石平衡的熔体成分,落入峨眉山高钛玄武岩成 分范围中,这说明峨眉山高钛玄武岩与白马岩体中 与单斜辉石平衡的熔体成分相当,不太可能是进入 浅部岩浆房的岩浆结晶分异之后的残余岩浆形 成的。

值得注意的是,在原始地幔标准化的微量元素 配分图解中,与白马岩体上部带橄榄辉长岩中单斜 辉石平衡的熔体具有显著的 Ti 负异常和弱的 Zr 和 Hf 负异常(图 10),这表明铁钛氧化物的结晶可能 导致了岩浆房上部岩浆 Ti 的亏损,造成单斜辉石强 烈亏损 Ti,但并未造成其 Zr 和 Hf 的亏损。但与下 部带海绵陨铁矿石中单斜辉石平衡的熔体具有明 显的 Zr 和 Hf 负异常(图 10),这可能是计算出的单 斜辉石的 Zr 和 Hf 分配系数要高于天然体系中单斜 辉石的 Zr 和 Hf 分配系数,导致反算出的熔体的 Zr 和 Hf 值偏低。

相比二滩高钛玄武岩的全岩成分,利用白马岩 体海绵陨铁矿石和橄榄辉长岩中单斜辉石计算出 的熔体成分具有较高的 La、Ce 和 HREE 含量,并与 白马岩体橄榄辉长岩普遍较低的 La、Ce、Zr、Hf 和 HREE 含量的特征明显不同(图 10)。影响微量元 素在单斜辉石中分配的因素较多,因此,计算出的 熔体的微量元素绝对含量与真实值之间存在一定 的误差也是正常的。相比之下,二者配分型式的类 似程度比绝对含量具有更重要的意义。计算出的 熔体成分与橄榄辉长岩全岩组成的微量元素配分 型式有明显差异,可能是橄榄辉长岩中堆晶单斜辉 石的比例较高造成的,暗示堆晶岩的全岩微量元素 组成与堆晶矿物和粒间熔体的比例密切相关,全岩 微量元素组成并不能反映其母岩浆成分特征。因 此,堆晶岩的全岩微量元素组成不适用于反演和讨

论岩浆的演化过程。

4.4 峨眉山高钛玄武岩和层状岩体的成因联系

基于之前的研究和上述讨论,我们提出一个简 单的模型来解释峨眉山高钛苦橄岩、高钛玄武岩和 层状岩体的成因联系:大量幔源高钛苦橄质岩浆底 侵到莫霍面,其中一小部分高钛苦橄质岩浆有可能 直接喷出地表,形成现今在大理-丽江一带出露的高 钛苦橄岩;还有一部分高钛苦橄质岩浆侵入到地壳 深部岩浆房发生早期橄榄石、铬铁矿分离结晶作用 及少量硫化物熔离,堆晶的橄榄石等形成类似在攀 西地区出露的阿布郎当超镁铁质岩体(Wang et al., 2014);随后,深部岩浆房中经过分离结晶作用产生 的高钛玄武质岩浆有可能直接喷出地表形成高钛 玄武岩,或侵入到浅部岩浆房形成层状岩体。因 此,高钛玄武岩和层状岩体均是从岩浆成分类似 的、演化的高钛苦橄质岩浆中形成的(Zhou et al., 2013; Wang et al., 2014)。

5 结论

攀西白马层状岩体上部带橄榄辉长岩所表现 的明显 Zr-Hf 负异常与主要堆晶矿物单斜辉石的 Zr 和 Hf 含量低有关,堆晶作用和粒间熔体比例低是造 成层状岩体岩石和铁矿石全岩 Zr-Hf 负异常的主要 原因。利用层状岩体中不同类型矿石和岩石中单 斜辉石的成分,以及计算所获得的单斜辉石-熔体 之间微量元素的分配系数来反演与单斜辉石平衡 的熔体的微量元素组成,其结果表明层状岩体是从 演化的高钛苦橄质岩浆形成的,其母岩浆成分与峨 眉山高钛玄武岩成分类似。因此,高钛玄武岩和白 马岩体分别代表深部岩浆房高钛苦橄质岩浆经分 离结晶作用产生的高钛玄武质岩浆的喷出和侵入 产物。

参考文献 (References):

- 梅厚钧,徐义刚,许继峰,黄小龙,何端臣.2003.攀西古裂谷内龙 帚山玄武岩-碱玄响岩建造.地质学报,77(3):341-358
- Bai Z J , Zhong H , Naldrett A J , Zhu W G , Xu G W. 2012. Whole–rock and mineral composition constraints on the genesis of the Giant Hongge Fe–Ti–V oxide deposit in the Emeishan Large Igneous Province , Southwest China. Economic Geology , 107(3): 507–524
- Barnes S J. 1986. The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contributions to Mineralogy and Petrology ,93(4): 524-531
- Bédard J H. 2014. Parameterizations of calcic clinopyroxene—Melt trace element partition coefficients. Geochemistry, Geophysics, Geosystems, 15(2): 303–336
- Cawthorn R G. 2013. Rare earth element abundances in apatite in the Bushveld Complex—A consequence of the trapped liquid shift effect. Geology, 41(5): 603-606.
- Cawthorn R G , Sander B K , Jones I M. 1992. Evidence for the trapped liquid shift effect in the Mount Ayliff Intrusion , South Africa. Contributions to Mineralogy and Petrology , 111(2): 194–202
- Charlier B , Auwera J V , Duchesne J C. 2005. Geochemistry of cumulates from the Bjerkreim – Sokndal layered intrusion (S. Norway): Part II. REE and the trapped liquid fraction. Lithos , 83 (3-4): 255 -276
- Dare S A S , Barnes S J , Beaudoin G. 2012. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid , Sudbury , Canada: Implications for provenance discrimination. Geochimica et Cosmochimica Acta , 88: 27–50
- Dong H , Xing C M , Wang C Y. 2013. Textures and mineral compositions of the Xinjie layered intrusion , SW China: Implications for the origin of magnetite and fractionation process of Fe-Ti-rich basaltic magmas. Geoscience Frontiers , 4(5): 503-515
- Downes M J. 1974. Sector and oscillatory zoning in calcic augites from M. Etna , Sicily. Contributions to Mineralogy and Petrology , 47(3): 187–196
- Elardo S M , Shearer C K Jr. 2014. Magma chamber dynamics recorded by oscillatory zoning in pyroxene and olivine phenocrysts in basaltic lunar meteorite Northwest Africa 032. American Mineralogist , 99(2 -3): 355-368
- Fedele L , Zanetti A , Morra V , Lustrino M , Melluso L , Vannucci R. 2009. Clinopyroxene/liquid trace element partitioning in natural trachyte – trachyphonolite systems: Insights from Campi Flegrei (southern Italy). Contributions to Mineralogy and Petrology , 158 (3): 337–356
- Forsythe L , Nielsen R , Fisk M. 1994. High-field-strength element partitioning between pyroxene and basaltic to dacitic magmas. Chemical

Geology , 117(1-4): 107-125

- Francis D , Minarik W. 2008. Aluminum-dependent trace element partitioning in clinopyroxene. Contributions to Mineralogy and Petrology , 156(4): 439-451
- Godel B , Barnes S J , Maier W D. 2011. Parental magma composition inferred from trace element in cumulus and intercumulus silicate minerals: An example from the Lower and Lower Critical Zones of the Bushveld Complex , South-Africa. Lithos , 125(1-2): 537-552.
- Green T , Blundy J , Adam J , Yaxley G. 2000. SIMS determination of trace element partition coefficients between garnet , clinopyroxene and hydrousbasaltic liquids at 2 – 7.5 GPa and 1080 – 1200°C. Lithos , 53(3) : 165–187
- Griffin W L , Powell W , Pearson N , O'Reilly S. 2008. GLITTER: Data reduction software for laser ablation ICP-MS. In: Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Canada: Mineralogical Association of Canada , 40: 204–207
- Hart S R , Dunn T. 1993. Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology ,113(1): 1-8.
- Hauri E H , Wagner T P , Grove T L. 1994. Experimental and natural partitioning of Th , U , Pb and other trace elements between garnet , clinopyroxene and basaltic melts. Chemical Geology , 117(1): 149 -166
- Kamenetsky V S , Chung S L , Kamenetsky M B , Kuzmin D V. 2012. Picrites from the emeishan large Igneous Province , SW China: A compositional continuum in primitive magmas and their respective mantle sources. Journal of Petrology , 53(10): 2095-2113
- Klemme S , Günther D , Hametner K , Prowatke S , Zack T. 2006. The partitioning of trace elements between ilmenite , ulvospinel , armalco– lite and silicate melts with implications for the early differentiation of the moon. Chemical Geology , 234(3-4): 251-263
- Liu P P , Zhou M F , Wang C Y , Xing C M , Gao J F. 2014. Open magma chamber processes in the formation of the Permian Baima mafic – ultramafic layered intrusion , SW China. Lithos , 184–187: 194 –208
- McBirney A R. 2002. The Skaergaard layered series. Part VI. Excluded trace elements. Journal of Petrology , 43(3): 535-556
- McCallum I S , Charette M P. 1978. Zr and Nb partition coefficients: Implications for the genesis of mare basalts , KREEP and sea floor basalts. Geochimica et Cosmochimica Acta , 42(6): 859–869
- Namur O, Charlier B, Toplis M J, Higgins M D, Liégeois J P, Auwera J V. 2010. Crystallization sequence and magma chamber processes in the ferrobasaltic sept iles layered intrusion, Canada. Journal of Petrology, 51(6): 1203–1236
- Nimis P. 1995. Clinopyroxenes from plagioclase peridotites (Zabargad Island, Red Sea) and comparison between high – and low-pressure mantle clinopyroxenes. Mineralogy and Petrology, 53(1): 49–61
- Pang K N , Li C S , Zhou M F , Ripley E M. 2009. Mineral compositional constraints on petrogenesis and oxide ore genesis of the late Permian Panzhihua layered gabbroic intrusion , SW China. Lithos , 110(1): 199-214
- Plá Cid J , Nardi L V S , Gisbert P E , Merlet C , Boyer B. 2005. SIMS analyses on trace and rare earth elements in coexisting clinopyroxene and mica from minette mafic enclaves in potassic syenites crystallized

under high pressures. Contributions to Mineralogy and Petrology , $148(\ 6):\ 675{-}688$

- Qi L , Wang C Y , Zhou M F. 2008. Controls on the PGE distribution of Permian Emeishan alkaline and peralkaline volcanic rocks in Longzhoushan , Sichuan Province , SW China. Lithos , 106(3-4): 222 -236
- Rampone E , Bottazzi P , Ottolini L. 1991. Complementary Ti and Zr anomalies in orthopyroxene and clinopyroxene from mantle peridotites. Nature , 354(6354): 518-520
- Shellnutt J G , Zhou M F , Zellmer G F. 2009. The role of Fe-Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: An example from the Permian Baima igneous complex , SW China. Chemical Geology , 259(3-4): 204-217
- Song X Y , Qi H W , Hu R Z , Chen L M , Yu S Y , Zhang J F.2013. Formation of thick stratiform Fe Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China. Geochemistry, Geophysics , Geosystems , 14(3): 712–732
- Vannucci R, Shimizu N, Bottazzi P, Ottolini L, Piccardo G B, Rampone E. 1991. Rare earth and trace element geochemistry of clinopyroxenes from the zabargad peridotit-pyroxenite association. Journal of Petrology, (2): 255-269
- Wang C Y , Zhou M F , Yang S H , Qi L , Sun Y L. 2014. Geochemistry of the Abulangdang intrusion: Cumulates of high-Ti picritic magmas in the Emeishan large igneous province , SW China. Chemical Geology , 378-379: 24-39
- Wood B J , Blundy J D. 1997. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contributions to Mineralogy and Petrology , 129(2-3): 166-181
- Wood B J, Blundy J D. 2003. Trace element partitioning under crustal and uppermost mantle conditions: The influences of ionic radius,

cation charge , pressure , and temperature. In: Holland H D , Turekian K K , eds. Treatise on Geochemistry. Oxford: Elsevier , 395-424

- Xiao L , Xu Y G , Mei H J , Zheng Y F , He B , Pirajno F. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province , SW China: Implications for plume – lithosphere interaction. Earth and Planetary Science Letters , 228(3 -4): 525-546
- Xu Y G , Chung S L , Jahn B M , Wu G Y. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian – Triassic Emeishan flood basalts in southwestern China. Lithos , 58(3-4): 145-168
- Zhang Z C , Mahoney J J , Mao J W , Wang F S. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province , China. Journal of Petrology , 47(10): 1997–2019
- Zhong H , Campbell I H , Zhu W G , Allen C M , Hu R Z , Xie L W , He D F. 2011. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province. Geochimica et Cosmochimica Acta , 75(5): 1374–1395
- Zhou M F , Robinson P T , Lesher C M , Keays R R , Zhang C J , Malpas J. 2005. Geochemistry , petrogenesis and metallogenesis of the Pan– zhihua gabbroic layered intrusion and associated Fe-Ti-V oxide de– posits , Sichuan Province , SW China. Journal of Petrology , 46 (11): 2253–2280
- Zhou M F , Chen W T , Wang C Y , Prevec S A , Liu P P , Howarth G H. 2013. Two stages of immiscible liquid separation in the formation of Panzhihua – type Fe-Ti-V oxide deposits , SW China. Geoscience Frontiers , 4(5): 481–502

(本文责任编辑:龚超颖;英文审校:张兴春)

•亮点速读•

利用洋底地震资料估算进入马里亚纳俯冲带的水通量

俯冲带水迁移是地表水进入地球 深部的主要方式。但是,通过板块俯冲 到底能够带入深部地幔多少水受到多 种因素影响,包括俯冲带板片年龄、俯 冲带几何性质、俯冲带热结构、板块汇 聚速率等。目前关于俯冲带的水循环 仍知之甚少。

最近,华盛顿大学地球与行星科 学系的 Cai C 博士等人收集和分析了 马里亚纳海沟中心周围宽频洋底瑞利 面波地震数据,估算了通过板块俯冲 输入地球深部的水通量。他们的研究 结果表明:板块俯冲带入深部地幔的 水通量是以前估算的4.3倍,而且远大 于目前对地幔输出水通量的估计。由 于大量的长期净水流入地球深处与地 质记录中的海平面稳定性不一致;同 时也没有迹象表明马里亚纳俯冲带的 板块弯曲区在形态和断裂强度与其它 古俯冲带的对应区域对比有很大的不

同。因此,最有可能的解释是以前估 计的地幔输出的水通量被严重低估 了。对大洋中脊和大洋岛屿的地幔输 出水通量的估计可能得到比较好的限 制,但对火山弧和弧后地幔的熔体通 量和水含量估计则没有得到很好约 束。这一发现与传统观点完全不同, 为理解俯冲带的水循环提出了全新 认识。

[以上成果来源于: Cai C , Wiens D A , Shen W , Eimer M , 2018. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. *Nature*, 563, 389-392.]

(张宝华 编译)