内蒙古自治区 2016 年 PM_{2.5} 时空分布^{*}

张丽华' 冉祥玉' 包玉海' 李志珍' 姜 超²

(1. 内蒙古师范大学 地理科学学院,呼和浩特 010022; 2. 内蒙古工业大学 理学院,呼和浩特 010051)

摘要: 研究了内蒙古自治区 2016 年 $PM_{2.5}$ 浓度时空分布规律及 $PM_{2.5}$ 与其前体物之间的关系。结果表明,内蒙古自治区 $PM_{2.5}$ 浓度具有一定的时空分布特征,并与气象条件、污染物排放及前体物二次转化均有关联。时间上, $PM_{2.5}$ 日浓度变化曲线呈双峰型分布,两个峰值时段分别为 10:00-12:00、23:00-翌日 01:00, $PM_{2.5}$ 月均浓度曲线呈"U"形分布 在 8 月最低; 空间上,内蒙古自治区 $PM_{2.5}$ 浓度由高到低的区域依次为中部、西部、东部; $PM_{2.5}$ 小时浓度与其前体物 NO_2 、 SO_2 小时浓度均为显著正相关,说明前体物对 $PM_{2.5}$ 浓度变化影响显著。研究结论可为内蒙古自治区大气污染环境治理提供参考。

关键词: PM2.5浓度; 时空分布; PM2.5前体物; 相关性分析; 内蒙古自治区

DOI: 10. 13205/j. hjgc. 201812028

THE TEMPORAL AND SPATIAL DISTRIBUTION OF PM_{2.5} IN INNER MONGOLIA AUTONMOUS REGION IN 2016

ZHANG Li-hua¹, RAN Xiang-yu¹, BAO Yu-hai¹, LI Zhi-zhen¹, JIANG Chao²

- (1. College of Geographical Science Inner Mongolia Normal University Hohhot 010022 China;
 - 2. College of Science Inner Mongolia University of Technology Hohhot 010051 China)

Abstract: In this paper, the temporal and spatial distribution of $PM_{2.5}$ concentration in Inner Mongolia Autonomous Region and the relationship between $PM_{2.5}$ and its precursors are studied. The results show that $PM_{2.5}$ concentration has certain temporal and spatial distribution characteristics, and is associated with meteorological conditions, emission of pollutants and secondary transformation of precursors. In temporal, the daily concentration curve of $PM_{2.5}$ is double-peak type with two peak periods of 10:00 am to 12:00 am and 23:00 pm to 1:00 am of the next day; and the monthly average concentration curve of $PM_{2.5}$ is "U" type with the minimum value in August. In spatial, the $PM_{2.5}$ concentrations in different regions of Inner Mongolia decrease in the order of central region, western region and eastern region. Hourly concentration of $PM_{2.5}$ has remarkable positive relation with hourly concentrations of its precursors, i. e. NO_2 , SO_2 , which indicates that precursors have significant impact on $PM_{2.5}$ concentration. The conclusions of this paper can provide important scientific basis for atmospheric pollution control in the Inner Mongolia Autonomous Region.

Keywords: PM_{2.5} concentration; temporal and spatial distribution; precursors of PM_{2.5}; correlation analysis; inner mongolia autonomous region

0 引 言

近年来 随着我国社会经济的快速发展 ,空气污染尤其是 $PM_{2.5}$ 的污染形势严峻。 $PM_{2.5}$ 是空气动力学当量直径 \leq 2.5 μm 的细颗粒物 ,由直接排入空气

收稿日期: 2018 - 02 - 25

中的一次粒子和空气中的 NO_2 、 SO_2 等气态前体物通过化学反应生成的二次粒子组成,已成为评价我国城市空气污染程度的重要指标。其粒径小、相对表面积大、活性强 被人体吸入后易引发呼吸道系统疾病 因而引起社会的广泛关注 [1]。已有大量学者对北京、石家庄、武汉、西安等城市不同时期的 PM_2 ,的化学成分组成、时空变化特征、污染源等方面进行研究,并进一步分析了 PM_2 ,与气象因素、气态前体物、气溶胶等

^{*} 国家自然科学基金重点项目(61631011); 内蒙古自治区高等学校科学技术研究项目重点项目(NJZZ16041); 内蒙古自然科学基金(2016MS0408); 中国国家留学基金资助。

之间的关系[2-6]。 内蒙古自治区是北京乃至全国的北 方生态安全屏障,近几年内蒙古自治区 PM。、污染呈 逐年上升的趋势,但缺乏对其大气污染尤其是全区 PM2.5时空分布的研究。

本文以内蒙古自治区 2016 年的 PM_{2.5}、NO₂、 SO,、O, 小时浓度数据为基础,研究了该区 PM,,, 的时空分布特征将PM。x浓度与气态前体物进行 相关性分析,确定气态前体物对 PM2.5 浓度的影 响,为内蒙古自治区 PM2.5 污染监测及防治提供 参考。

1 材料与方法

1.1 研究区概况

内蒙古自治区(简称内蒙古)地处我国最北端, 位于北纬 37°24′—53°23′,东经 97°10′—126°29′之 间 全区海拔 1000 m 以上,地势西南高、东北低。多 年平均风速为 1.4~5.5 m/s 其中,以春季风速最大, 冬季风速次之。春季平均风速为 2.2~6.5 m/s 大部 地区风速在 4.0 m/s 以上。内蒙古东西方向狭长 气候、 地貌类型多变[7] 同时结合经济发展将站点所在盟市划 分为蒙东、蒙中、蒙西三个地区 如图 1 所示。

图 1 内蒙古盟市及空气质量监测站点位置

Fig. 1 Location of Inner Mongolia cities and air quality monitoring stations

近几年 PM25对内蒙古多个城市造成严重大气污 染 对人类工作活动及身体健康造成重大威胁。例如, 包头市 2016 年 1 3 ,12 月 PM。 浓度最大值分别为 163 ,133 ,181 µg/m³ 通辽市、巴彦淖尔市 2016 年 12 月 PM_{2.5}浓度最大值分别为 176 ,188 μg/m³ 2016 年 11 , 12 月全区超过 PM。524 h 平均一级浓度限值的天数 分别为22 21 天。而内蒙古的生态环境与东北、华北 甚至全国的生态环境紧密相联 因此,对内蒙古 PM, 5 时空分布特征的研究具有重要意义。

1.2 数据来源及研究方法

1.2.1 数据来源

本文选取的 2016 年 1 月 1 日-12 月 31 日 $PM_{2.5}$ 、 NO_2 、 SO_2 、 O_3 等小时浓度数据均来自全国城市 空气质量实时发布平台[8],全天候自动监测空气质 量。内蒙古共设44个空气质量监测站点,站点分布 如图1所示。

1.2.2 研究方法

根据 GB 3095-2012《环境空气质量标准》, PM₂, 24 h 平均一、二级浓度限值分别为 35,75 μg/ m³。本文所选 44 个空气质量监测站点大部分位于 城市,属于标准规定的二类区,执行二级标准。根据 内蒙古的气候条件对 2016 年月份进行划分 3-5 月 为春季 6-8 月为夏季 9-11 月为秋季 ,1 ,2 ,12 月 为冬季。对统计得到的日均浓度值、月均浓度值、季 均浓度值进行污染水平分析。

对内蒙古 PM25浓度的分布采用空间插值中的反距 离加权插值法 进行可视化展示。反距离加权插值法是 一种以相近相似原理为基础、以距离为权重的空间插值 方法。插值精度可以满足研究需要 且视图效果较好。

因本文所使用的数据是随时间连续变化的 ,所以

选择适用于连续变量或等间距变量的皮尔逊相关性分析方法 ,完成内蒙古 $PM_{2.5}$ 小时浓度数据和 NO_2 、 SO_2 、 O_3 小时浓度数据的相关性分析 ,检验前体物对 $PM_{3.5}$ 浓度的影响。

2 结果分析

2.1 内蒙古 PM25时间分布规律

2.1.1 内蒙古 PM2.5 日浓度变化规律

根据各监测站点的 PM25数据得到内蒙古四季及

全年的 $PM_{2.5}$ 日浓度变化曲线 ,如图 2 所示。整体上,全区 $PM_{2.5}$ 日浓度变化曲线呈双峰型分布,峰值分别出现在 10:00-12:00、23:00—翌日 01:00。2 个波峰的呈现与气象条件及污染物排放均有关联,早晚空气温度低 易出现逆温现象,且污染气体排放增多,不利于污染物扩散,导致 $PM_{2.5}$ 浓度升高。随着太阳直射温度升高,大气垂直对流加强,扩散速率加快,下午 $PM_{2.5}$ 浓度值较小,16:00-17:00 达到最低值。

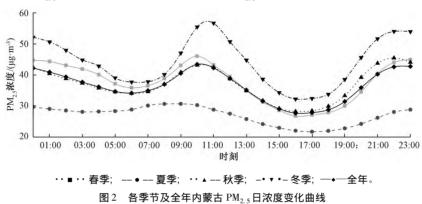


Fig. 2 Daily concentration curve of PM_{2.5} in four seasons and whole year

周末活动、生产强度比工作日小,空气中颗粒物浓度明显降低,产生"周末效应"^[9],节假日也可能具有类似的规律,因此将周末与节假日统称为非工作日,其余日期为工作日。内蒙古四季的工作日与非工作日 $PM_{2.5}$ 日浓度变化曲线如图 3 所示。春、夏、秋季非工作日与工作日的 $PM_{2.5}$ 小时浓度基本持平;冬季非工作日的 $PM_{2.5}$ 小时浓度明显高于工作日,主要因为 2016 年 2 月 8 日为春节,春节前后燃放大量的烟花爆竹,空气中颗粒物浓度升高。因此非工作日的 $PM_{2.5}$ 浓度并未出现与"周末效应"相似的规律。

2.1.2 内蒙古 PM_{2.5}月变化规律

内蒙古 2016 年 $PM_{2.5}$ 月均浓度整体呈 "U"形起伏特征 ,如图 4 所示。 1—4 月中旬及 10 月中旬—12 月为采暖期 燃煤取暖仍是内蒙古大多数地区的主要供暖方式 煤的燃烧产生大量颗粒物。 3 月受采暖期燃煤和春季沙尘天气的双重影响,颗粒物浓度上升, $PM_{2.5}$ 月均浓度值增大; 10—12 月温度骤降 燃煤量增多 $PM_{2.5}$ 月均浓度大幅度升高,最大值出现在 12 月,浓度值为 76. 4 μ g/m³。 4 月中旬—10 月中旬为非采暖期 燃煤排放的颗粒物少 夏季气压降低 垂直对流增强 利于颗粒物的扩散。 $PM_{2.5}$ 月均浓度整体呈下降趋势 8 月 $PM_{2.5}$ 月均浓度值达到最低,浓度值为 24. 6 μ g/m³。 内蒙古 $PM_{2.5}$ 季均浓度值为: 冬季最高

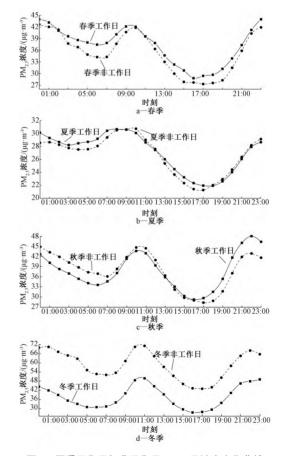
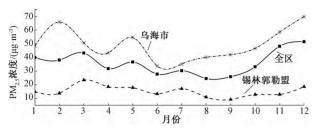
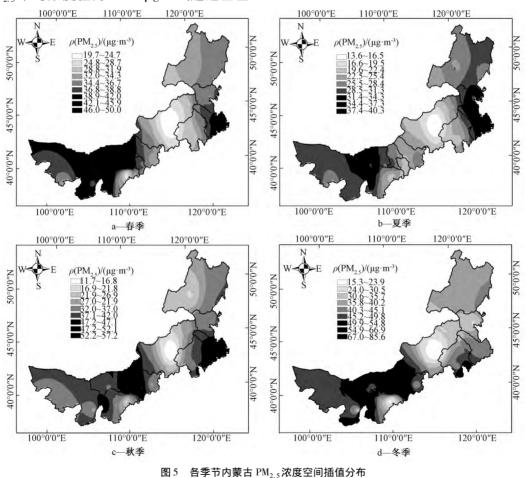



图 3 四季工作日与非工作日 PM_{2.5} 日浓度变化曲线 Fig. 3 Daily concentration curve of PM_{2.5} in four seasons working days and non-working days

全区、乌海市、锡林郭勒盟 PM2.5 月均浓度


Fig. 4 $PM_{2.5}$ monthly average concentration in whole region , Wuhai and Xilingol

为 44. 3 μg/m³ 春秋次之分别为 37. 6 37. 0 μg/m³, 夏季最低为 26.9 μg/m³。

全区 PM2.5 月均浓度值在 7 8 月逐渐走低 8 月 最低,但乌海市的 PM。5月均浓度在7 8 月呈上升趋 势 8 月 PM₂₅平均浓度值为 40.1 μg/m³ ,超过全区 8月 PM_{2.5}平均浓度值 15.8 μg/m³ 如图 4 所示 主要 因为乌海市为重工业城市,大量排放的废气中颗粒物 浓度较高。锡林郭勒盟 PM25月均浓度值均偏低 浓 度值为 9.3~23.5 μg/m³ ,浮动较小 ,是全区 PM_{2.5}浓 度最小的盟市 ,主要是因为锡林郭勒盟以畜牧业为支 柱产业 PM2.5产生源很少。

2.2 内蒙古 PM_{2.5}空间分布规律

运用反距离加权插值法得到内蒙古各季节 PM25 空间浓度分布,为使插值更加精确,另选取内蒙古周 边齐齐哈尔市、白城市、张掖市等10个相邻城市的监 测点进行空间插值。内蒙古四季的 PM25空间浓度分 布如图 5 所示。整体上 ,PM_{2.5}浓度值从大到小排列 的区域顺序为蒙中、蒙西、蒙东,浓度空间梯度变化 明显。

Distribution of spatial interpolation of PM2 5 concentration in four seasons in Inner Mongolia

2.2.1 PM25季节性空间分布特征

蒙东地区的通辽、兴安盟位于辽宁、吉林等重工 业发达省份的西北方向,夏季、秋季盛行的东南风将 颗粒物吹向通辽等地,导致 PM2.5 浓度偏高。蒙西地 区春季 PM。、浓度明显高于蒙东地区,主要是因为蒙 西地区春季扬尘多,而蒙东地区草原面积大,空气中 的颗粒物少。如蒙东地区的锡林郭勒盟春季污染天 数仅 10 d 而蒙中地区的包头市、蒙西地区的巴彦淖 尔市春季污染天数分别为 35 22~d。冬季蒙中地区的 呼和浩特市、包头市 $PM_{2.5}$ 平均浓度值偏高 ,分别为 57. 3 $59.3~\mu g/m^3~$ 比全区冬季 $PM_{2.5}$ 平均浓度值分别 高出 29.3% 、33. 9% 。

2.2.2 PM_{2.5}日变化空间分布特征

蒙西、蒙中、蒙东地区 PM_{2.5} 日浓度变化曲线趋势相近 均呈双峰型分布 如图 6 所示。蒙中的 PM_{2.5}小时浓度峰值均高于蒙西、蒙东 ,且第 1 个高峰时间持续较长 ,比蒙西、蒙东多约 2 h; 蒙东的 PM_{2.5}小时浓度变化幅度比蒙西大 ,该变化趋势与区域地貌类型、气候条件、区域发展有关。

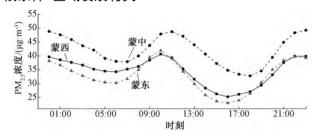


图 6 蒙西、蒙中、蒙东地区 PM_{2.5} 日浓度变化曲线

Fig. 6 Daily concentration curve of ${\rm PM}_{2.5}$ in the western , central , eastern of Inner Mongolia

2.3 PM25与前体物相关性分析

> 表 1 内蒙古 2016 年不同地区 PM_{2.5}小时浓度与 NO₂、SO₂、O₃ 相关系数

Table 1 Correlation coefficients of PM_{2.5}hourly concentration and SO_{2.7}NO_{2.7}O₃ in different regions of Inner Mongolia in 2016

项目	NO_2	SO_2	O_3
PM _{2.5} (蒙西)	0. 772 **	0. 706 **	-0. 765 ***
PM _{2.5} (蒙中)	0.449*	0. 420*	-0.397
PM _{2.5} (蒙东)	0.465*	0. 721 **	-0.515**
PM _{2.5} (全区)	0. 627 **	0. 647 **	-0.579**

注: * 表示 P < 0.05 ,***表示 P < 0.01。

由表 1 可知: 各地区 $PM_{2.5}$ 小时浓度与 NO_2 、 SO_2 小时浓度均呈正相关关系 ,并通过 0.05 水平显著性检验; 全区 $PM_{2.5}$ 小时浓度与 NO_2 、 SO_2 小时浓度相关

系数分别为 0.627、0.647 ,且通过 0.01 水平显著性检验。经验证,前体物浓度对 PM、、浓度影响显著。

3 结论

本文对 2016 年内蒙古的 $PM_{2.5}$ 浓度时空分布进行分析 ,探讨了 $PM_{2.5}$ 与气态前体物的关系 ,结论如下:

- 1) 2016 年内蒙古 PM_{2.5}浓度在时间上分布特征明显: PM_{2.5}日浓度变化曲线呈双峰型分布,两个峰值时段分别为 10: 00—12: 00、23: 00—翌日01: 00, "周末效应"不明显; PM_{2.5}月均浓度呈"U"形分布 8 月最低; PM_{2.5}季均浓度冬季最高,春秋次之,夏季最低。
- 2) 内蒙古 $PM_{2.5}$ 浓度受区域气候与工业发展的影响 整体上呈现蒙中及蒙西中部地区高、蒙东地区较低的分布特征 $PM_{2.5}$ 区域浓度值排序为蒙中 > 蒙西 > 蒙东 最大值为 $42.1\,\mu g/m^3$ 。
- 3) 内蒙古 $PM_{2.5}$ 的前体物 NO_2 、 SO_2 等气态污染物对 PM_2 ,有显著的影响。

参考文献

- [1] 游燕,白志鹏.大气颗粒物暴露与健康效应研究进展[J].生态毒理学报,2012,7(2):123-132.
- [2] 王占山,李云婷,陈添,等. 2013 年北京市 PM_{2.5}的时空分布 [J]. 地理学报,2015,70(1):110-120.
- [3] He K B, Yang F M, Ma Y L, et al. The characteristics of PM_{2.5} in Beijing [J]. Atmospheric Environment, 2001, 35: 4959-4970.
- [4] 张丽华,武捷春,包玉海,等. 武汉市与西安市颗粒物 PM_{10} 、 $PM_{2.5}$ 的污染水平分析[J]. 环境工程,2015,33(3):73-76.
- [5] 张丽华,武捷春,包玉海,等. 西安市 $PM_{2.5}$ 的时空分布特征研究[J]. 环境工程,2016,34(2):87-90,107.
- [6] 杜吴鹏,王跃思,宋涛,等.夏秋季石家庄大气污染变化特征观测研究[J].环境科学,2010,31(7):1409-1416.
- [7] 那音太. 基于 SPI 指数的近 50a 内蒙古地区干旱特征分析 [J]. 干旱区资源与环境,2015,29(5),161-166.
- [8] 中国环境监测总站的全国城市空气质量实时发布平台[DB/OL]. http://106.37.208.233:20035/.
- [9] 雷瑜,张小玲,唐宜西,等. 北京城区 PM_{2.5}及主要污染气体 "周末效应"和"假日效应"研究[J]. 环境科学学报,2015, 35(5): 1520-1528.