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Abstract

Evidence for post-Archaean crustal growth via magma underplating is largely based

on U–Pb dating of zircons from granulite-facies xenoliths. However, whether the

young zircons from such xenoliths are genetically related to magma underplating or

to anatexis remains controversial. The lower-crustal xenoliths carried by igneous

rocks in the Chifeng and Ningcheng (North China Craton) have low SiO2 and high

MgO, indicating that parental melts of their protoliths were of unambiguous mantle

origin. The xenoliths contain abundant magmatic zircons with late-Palaeozoic ages,

and have more radiogenic zircon Hf-isotope compositions and hence younger model

ages than ancient crustal magmas and the “reworking array” of the basement rocks.

Our data suggest that the granulites represent episodic magmatic underplating to

the lower crust of this craton in Phanerozoic time. Considering the observation that

regional lowermost crust (~5 km) is mafic and characterized by Phanerozoic zircons,

this work reports an example of post-Archaean crustal growth via magma

underplating.

1 | INTRODUCTION

Underplating of magmas is an efficient mechanism for generating

lower continental crust (Hacker, Kelemen & Behn, 2015; Hawkes-

worth & Kemp, 2006a; Rudnick, 1995). This has been exemplified by

lower-crustal granulite xenoliths that contain zircons with younger

ages than the exposed basement rocks (Davis, 1997; Moyen et al.,

2017). For example, Phanerozoic zircons (45–220 Ma) have been

reported in granulite xenoliths from the Cenozoic basalts in the Hann-

uoba area of the North China Craton (NCC) (Fan et al., 1998; Liu et al.,

2004; Wei, Zheng, Su, Ma & Griffin, 2015; Zheng et al., 2009). These

ages are obviously younger than those of the rocks of the nearby

exposed Archaean granulite terrane, and have been regarded as strong

evidence for Phanerozoic underplating underneath Archaean cratons.

However, some Archaean zircons are also preserved in the Hannuoba

granulite xenoliths, and the Mesozoic zircons have unradiogenic Hf-

isotope compositions, apparently implying reworking of pre-existing

Archaean lower crust rather than the creation of new crust. This may

suggest an alternative interpretation, i.e. the young zircons were gen-

erated during high-grade metamorphism and crustal anatexis rather

than crystallized in underplated magmas (Jiang & Guo, 2010; Wilde,

Zhou, Nemchin & Sun, 2003). Therefore, deciphering the significance

of young zircons from granulite xenoliths is important to understand-

ing post-Archaean underplating and crustal growth.
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Metamorphic zircons are generally associated with the reworking

process. Magmatic zircons crystallized during anatexis of pre-existing

crust are characterized by unradiogenic Hf-isotope compositions, con-

sistent with those of the basement rocks. In contrast, zircons crystal-

lized from underplated magmas would have Hf-isotope compositions

consistent with the melting depleted or enriched mantle source

(Couzini�e et al., 2016), which generally is distinct from the basement

rocks. In this work, integrated studies of internal structure, U–Pb and

Hf-isotope analyses were carried out on zircons from lower-crustal

xenoliths in the early Mesozoic Chifeng and Ningcheng igneous rocks

(Figure 1), ~250–350 km northeast of Hannuoba, with the aim of test-

ing whether the young zircons from these deep-crustal xenoliths

record Phanerozoic underplating beneath the ancient NCC.

2 | GEOLOGICAL SETTING AND SAMPLES

The NCC is one of the oldest Archaean cratons in the world and pre-

serves ≥3.8 Ga crustal remnants (Liu, Nutman, Compston, Wu & Shen,

1992). Crustal growth in the NCC occurred as early as ~4.0–3.9 Ga

and reached its climax at ~2.8–2.5 Ga (Geng, Du & Ren, 2012; Wu,

Zhao, Wilde & Sun, 2005; Zheng et al., 2012). The Archaean crust was

re-worked when the Western and Eastern Blocks amalgamated to

form a united NCC in the late Palaeoproterozoic (~1.9–1.8 Ga) (Geng

et al., 2012; Zheng et al., 2012). This craton was reactivated and lost

much of its lithospheric keel (>100 km) in the Mesozoic (Griffin,

Zhang, O’Reilly & Ryan, 1998; Menzies, Fan & Zhang, 1993). Conse-

quently, Mesozoic igneous rocks with abundant granulite-facies xeno-

liths are widespread (Figure 1) and provide direct samples of the deep

crust of the NCC. The Ningcheng and Chifeng igneous complexes

were emplaced at mid- to lower-crustal depths (~4.9–8.3 kbar; Ma,

Xu, Zheng, Sun et al., 2016) in the early Mesozoic (~227 Ma). The

Ningcheng complex preserves a fractionating system, consisting of

cumulates and residual melts from hydrous mafic magmas, derived

from an enriched mantle (Ma, Xu, Zheng, Sun et al., 2016). Petrogene-

sis of the Chifeng gabbroic diorites is not well constrained, but their

geochemical compositions also suggest an origin from an enriched

mantle source (She et al., 2006). The diorites and gabbroic diorites

carry abundant enclaves, including two-pyroxene granulites, clinopy-

roxene (Cpx) granulites, Cpx-amphibolites and metagabbros. Petrogra-

phy and P–T estimates reveal that they are lower-crustal xenoliths

rather than co-magmatic enclaves (Shao & Wei, 2011). The samples

investigated here include five mafic two-pyroxene (2-Py) granulites

(NC1101, NC1102, NCH1205, CF1108 and CF1202), one Cpx-granu-

lite (CF1211), two Cpx-amphibolites (CF1106 and CF1113) (Table 1)

and two host rocks (NC1140 and CF1114). The xenoliths are angular

to rounded (~8–20 cm in diameter) and contain granoblastic assem-

blages of Cpx, orthopyroxene (Opx) and plagioclase (Pl) with variable

amounts of amphibole (Am) (see Figure S1).

3 | METHODS

Major-element compositions of whole rocks and of minerals were mea-

sured by XRF and EPMA, respectively. Details of the measurement pro-

cedure and data quality are provided in the annotations of Tables S1 and

S2.

All the analyses on zircons were conducted at Guangzhou Insti-

tute of Geochemistry, Chinese Academy of Sciences. Cathodolumi-

nescence (CL) images of zircon were obtained prior to SIMS analysis,

using a Supra 55 Sapphire FE-SEM. SIMS analyses of U–Pb isotopes

of zircon were performed on a Cameca IMS 1280-HR ion micro-

probe following procedures described by Li, Liu, Li, Guo and Cham-

berlain (2009). The O2
� primary ion beam was accelerated at 13 kV,

with an intensity of 10 nA. The ellipsoidal spot is about 20 9 30 lm

in size. Positive secondary ions were extracted with a 10 kV poten-

tial. Calibration of Pb/U ratios is based on an observed linear rela-

tionship between ln(206Pb/238U) and ln(238U16O2/
238U). A common-

Pb correction was applied using the measured 204Pb. Zircon Pleso-

vice was used as an external standard for U–Pb dating, and zircon

standard Qinghu was used to monitor the measurement procedure

and data quality. Zircon Lu–Hf isotope analyses were conducted

using a Neptune Plus MC-ICP-MS in combination with a RESOlution

M-50 laser ablation system, with a beam diameter of 45 lm. Zircon

standard Penglai was used to monitor the measurement procedures

and data quality. All the analytical results are listed in Tables S1–S3.

4 | RESULTS AND INTERPRETATIONS OF
ZIRCON U–PB AND LU–HF DATA

Most zircons from the host rocks (Ningcheng diorite NC1140 and

Chifeng gabbroic diorite CF1114) are euhedral and show oscillatory
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zoning in CL images (Figures S2–S3), indicating crystallization from

magmas. They yield weighted mean 206Pb/238U ages of

227.4 � 2.1 Ma for those from sample NC1140 and

228.2 � 3.1 Ma for those from sample CF1114, respectively, which

are interpreted as the crystallization ages of the plutons. These zir-

cons have a restricted range of Hf-isotope compositions

(eHf(t) = �2.1 to +1.2; Figure 2). Inherited irregular zircon grains with

oscillatory zoning are observed in sample CF1114 and yield a

weighted mean 206Pb/238U age of 261.7 � 2.6 Ma. They have less-

radiogenic Hf-isotope compositions than the Triassic grains

(eHf(t) = �18.5 to �15.1; Figure 2), indicating they are xenocrysts.

CL images of zircons from the mafic xenoliths show core–rim struc-

tures with oscillatorily zoned magmatic cores surrounded by narrow

light and unzoned metamorphic rims (Figures 2, S2 and S3). Ningcheng

zircons: The cores of zircons in NC1102 yield an upper intercept U–Pb

age of ~1856 Ma, and they are surrounded by metamorphic rims of late

Triassic age (~227 Ma). Some grains from this granulite also show core–

mantle–rim structures with magmatic mantles of late Palaeozoic age

(~320 Ma). The Palaeoproterozoic cores have chondrite-like Hf-isotopic

compositions with eHf(t) of �2.7 to +0.2 (Figure 2a). In contrast, the

Phanerozoic mantles and rims have unradiogenic isotopic compositions

with eHf(t) of �13.2 to �7.5 and �23.6 to �19.2, respectively. The zir-

cons in NC1101 and NCH1205 have similar ages, with ~315 Ma cores

and ~223 Ma rims (Figure S2), and the cores and rims have identical Hf

isotopes (eHf(t) = �10.2 to �2.3; Figures 2a and S4). Chifeng zircons: All

the zircon cores from the Chifeng xenoliths have similar ages of

~260 Ma (Figure S3) and eHf(t) values from �21.2 to �4.2 (Figures 2

and S5). Two Neoarchaean (~2518 Ma) inherited cores in CF1202 have

eHf(t) of +1.2 and +4.4. The rims of zircons from Chifeng xenoliths are

generally too narrow for SIMS U–Pb dating.

The morphology and ages of these zircons indicate that the pro-

toliths of these high-grade metamorphic rocks formed at ~1856 Ma

(NC1102), ~315 Ma (NC1101 and NCH1205) and ~260 Ma

(CF1106, CF1108, CF1113, CF1202 and CF1211), and all experi-

enced metamorphism in the late Triassic (ca 230 Ma).

5 | DISCUSSION

5.1 | Petrogenesis of the xenoliths

The Chifeng and Ningcheng granulites and amphibolites are consid-

ered to be lower-crustal xenoliths on the basis of the following

observations:

1. They are angular to rounded and show sharp contacts with the

host plutons (Figure S1).

2. U–Pb dating of zircon cores from these enclaves yields three

main distinct age populations of ~1.85 Ga, ~315 Ma and

~260 Ma, which are significantly older than the emplacement

time of their host igneous rocks (~227 Ma).

3. Zircons from the host plutons and enclaves have different Hf-iso-

tope compositions (Figure 2).

4. The studied xenoliths record equilibration temperatures from 865

to 982°C and pressures from 6.7 to 8.0 kbar, corresponding to

depths of 22–26 km (Table 1).

The lower-crustal xenoliths have basaltic compositions with low

SiO2 (~46.3%–51.3%) and high MgO (~4.4%–7.8%) and Fe2O3

(~9.1%–15.7%), which demonstrates that parental melts of their pro-

toliths were unequivocally derived from an ultramafic mantle rather

than from crustal lithologies (Figure 3). Most zircons in these mafic

lower-crustal xenoliths (except NC1102) are characterized by

Phanerozoic (~321–255 Ma) magmatic cores surrounded by 218–

241 Ma metamorphic/recrystallized rims. Moreover, the Hf isotopes

of the magmatic zircons are consistent with those of contemporary

mantle-derived magmas in the NCC (Figure 2). Thus, we propose

that these mafic rocks represent late-Palaeozoic underplated basaltic

magmas (with or without crustal assimilation) which were later sub-

jected to amphibolite- to granulite-facies metamorphism. Two-pyrox-

ene granulite NC1102 contains zircons with Palaeoproterozoic

(~1,856 Ma) magmatic cores and late Triassic rims. Both the mag-

matic cores and the metamorphic rims have unradiogenic Hf

TABLE 1 Summary of P–T conditions and zircon ages of lower-crustal xenoliths from early Mesozoic plutons in the northern NCC

Samplea Lithology SiO2 (wt%) T-W (°C) T-WB (°C) P-HZ (kbar) Magmatic age Metamorphic age

NC1101 2-Py granulite 50.4 982 924 7.3 ~312 Ma ~224 Ma

NC1102 2-Py granulite 51.2 912 870 7.5 ~1,856 Ma

~320 Ma

~227 Ma

NCH1205 2-Py granulite 48.9 890 865 8.0 ~318 Ma ~233 Ma

CF1106 Cpx-Amphibolite 48.7 ~260 Ma n/a

CF1108 2-Py granulite 49.3 911 875 7.8 ~261 Ma n/a

CF1113 Cpx-Amphibolite 46.3 913 898 6.7 ~260 Ma n/a

CF1202 2-Py granulite 51.0 ~2,518 Mab

~259 Ma

n/a

CF1211 Cpx granulite 50.3 ~258 Ma n/a

SW Granulites T = 807~1,104°C P = 10 kbar

T-W and T-WB: thermometers from Wells (1997) and Wood and Banno (1973), respectively.

P-HZ: barometer from McCarthy and Pati~no Douce (1998).
aNC is Ningcheng; CF is Chifeng; SW is samples from Shao and Wei (2011).
bInherited cores.

MA ET AL. | 213



isotopes (eHf(t) = �2.7 to +0.2 and �23.6 to �19.2, respectively)

that are consistent with those of zircons from the Archaean lower

crust beneath the NCC (Figure S4). These data suggest that the pro-

tolith of this granulite was formed at ~1.85 Ga by reworking of

Archaean crust and suffered further metamorphism in the late Trias-

sic. Rare magmatic mantles with late Palaeozoic ages and less unra-

diogenic Hf isotopes (Figure S4c) suggest the lower crust may also

been affected by the late Palaeozoic thermal event.

5.2 | Significance of unradiogenic zircon Hf-isotopic
compositions

Zircons with Mesozoic ages have been identified in many of the

granulite xenoliths in the NCC and are inferred to be an indicator of

post-Archaean underplating beneath cratons (Zhang et al., 2013). An

alternative petrogenetic model for these xenoliths suggests that the

young zircons (re-)crystallized during high-grade metamorphism and

crustal anatexis/reworking (Jiang & Guo, 2010; Wilde et al., 2003).

This reworking model is mainly built on three lines of evidence: (1)

the morphology of young zircons, suggestive of a metamorphic ori-

gin, (2) the preservation of Precambrian zircon grains and (3) the

unradiogenic Hf isotopes of the late Mesozoic zircons.

As demonstrated in the previous section, only a single sample

from our dataset (NC1102) shows evidence for reworking of Palaeo-

proterozoic lower crust. Other samples from both localities represent

late Palaeozoic/early Mesozoic underplated mafic magmas containing

well-developed, oscillatorily zoned and clearly igneous zircons. The

unradiogenic Hf isotopes of these zircons (Figure 2) did not result

from crustal contamination, because this scenario needs a huge

amount of contamination to reach such negative eHf, such that the

melts would no longer be mafic. Then, these zircons could accord-

ingly be taken as an indicator of crustal reworking. However, this
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hypothesis relies on the paradigm that zircons crystallized during

anatexis of pre-existing ancient crust have unradiogenic Hf-isotope

compositions, whereas zircons crystallized in mantle melts have

radiogenic Hf-isotopes similar to contemporary depleted mantle

(Hawkesworth & Kemp, 2006b; Yang, Wu, Wilde, Belousova &

Griffin, 2008). Recently, the reliability of this paradigm has been

questioned (Laurent & Zeh, 2015; Payne et al., 2016; Vervoort &

Kemp, 2016). Here, we investigate the meaning of the unradiogenic

zircon Hf isotopes of the Ningcheng and Chifeng xenoliths by using

their deviation from the basement rocks rather than from CHUR or

depleted mantle. We have constructed the “reworking array” of the

regional Precambrian basement using the zircon Hf isotopes of gran-

ulite NC1102 (which formed by reworking of Palaeoproterozoic

lower crust, as discussed before) and of ancient lower crust and their

melts (Figures 2 and S6). As shown in Figure 2, except for some

grains from the Chifeng xenoliths, most Phanerozoic magmatic zir-

cons in the studied lower-crustal xenoliths and their host rocks have

more radiogenic Hf isotopes (higher eHf(t) values) than the regional

basement, suggesting that they are unlikely to have been derived by

reworking or assimilation of that basement.

5.3 | Accretion of lower crust by magmatic
underplating

New crust or underplating magmas can be derived not only from

depleted mantle but also from enriched mantle sources. In the latter

case, magmatic zircons could have “crust-like” unradiogenic Hf-iso-

tope composition (e.g. Couzini�e et al., 2016). Phanerozoic mafic mag-

mas, caused by destruction of cratonic lithosphere, were widespread

in the NCC and were largely derived from enriched mantle before

~100 Ma (Huang, Zhong & Xu, 2012; Xu, Li, Pang & He, 2009). The

Hf-isotope compositions of the late Palaeozoic magmatic zircons in

the Ningcheng and Chifeng xenoliths are consistent with those of

zircons crystallized from regional contemporary mafic magmas, which

derived from an enriched mantle that had previously been metasom-

atized by crustal components. Therefore, we argue that the young

(younger than the basement) magmatic zircons from the xenoliths

are genetically related to Phanerozoic magma underplating beneath

the lower crust rather than to anatexis. It has been demonstrated

that the lowermost crust (~5 km) of the northern NCC is mafic and

contains zircons with Phanerozoic ages (e.g. Liu et al., 2001; Wei

et al., 2015; Zhang et al., 2013). Here we demonstrate that the pro-

toliths of these lower-crustal rocks were formed by Phanerozoic

magma underplating. Consequently, such magmatism could represent

significant additions to crustal growth.

Underplated magmas at the base of the crust could be basaltic

in composition and may have reworked the pre-existing ancient

lower crust by heating and rehydration. As shown in Figure 2c,

Phanerozoic magmatic zircons from felsic lower-crustal xenoliths

have Hf isotopes comparable to those of Archaean lower crust

beneath the NCC, but are less radiogenic than those from mafic

xenoliths. Depleted-mantle Hf model ages are used to further eluci-

date the difference between the mafic and felsic xenoliths. In order

to lessen the problem of calculating depleted-mantle model ages

(Payne et al., 2016), 176Lu/177Hf = 0.0151 is assigned to the nomi-

nal protolith source based on the regression through zircons in

granulite NC1102 (Figure S6). It should be noted that these model

ages may not represent the true time of crust generation (Nebel,
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Nebel-Jacobsen, Mezger & Berndt, 2007; Vervoort & Kemp, 2016),

but are useful for examining differences between populations. The

depleted-mantle Hf model ages of magmatic zircons from the

Phanerozoic mafic lower crust define four populations at ~2.4 Ga,

~1.85 Ga, ~1.3 Ga and ~0.7 Ga, which are distinct from the model-

age patterns of both pre-existing Archaean–Proterozoic crust (Fig-

ure 4) and Phanerozoic magmatic zircons from felsic lower-crustal

xenoliths. It is clear that some of the young zircons from mafic

lower-custal xenoliths bear witness to Phanerozoic crustal growth

by magma underplating in the NCC. In contrast, most of the inter-

mediate–felsic granulites with young zircons were generated by

reworking of ancient lower crust via heating, probably from the

underplated mafic magmas.

6 | CONCLUDING REMARKS

1. Protoliths of the Chifeng and Ningcheng lower-crustal xenoliths

represent mantle-derived melts. Although they have unradiogenic

Hf-isotope signatures, zircons from these rocks reflect an

enriched-mantle source rather than reworking of the Precambrian

basement.

2. Lower-crustal xenoliths carried by igneous rocks in the NCC

record episodic Phanerozoic underplating beneath the Archaean

cratons. This work reports an example of post-Archaean crustal

growth via magma underplating.
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