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High-precision calcium isotopic compositions of a set of geological reference materials from the IAG (OU-6), ANRT (UB-N),
MPI-DING, USGS and GSJ, relative to NIST SRM 915a, are reported here. Measurements were performed by thermal
ionisation mass spectrometry (Triton instrument) using a “?Ca—*3Ca double spike. 5**/“°Ca values of selected reference
materials, mainly felsic rocks, are reported for the first time. Felsic rock values of *#/“°Ca ranged from 0.13%o to 1.17%0,
probably implying Ca isotopic fractionation could occur during magma evolution. 3*#/“°Ca values of ultramafic rocks,
ranging from 0.7 4% to 1.51%o, were positively correlated with MgO and negatively with CaO contents, possibly owing to
Ca isotopic fractionation during partial melting. **/“°Ca of intermediate-mafic rocks were around 0.78%0 and displayed
limited variation, suggesting Ca isotopic fractionation is insignificant during magma evolution processes. As expected,
3*4/49Ca of sedimentary and metamorphic rocks varied widely due to complex geological processes.
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Calcium is the most abundant alkaline earth element in
the Earth’s crust (McDonough and Sun 1995, Rudnick and
Gao 2003). It has five stable nuclides, “°Ca (96.941%),
“2Ca (0647%), **Ca (0.135%), *“Ca (2086%), *°Ca
(0.004%) and one radioactive nuclide, “®Ca (0.187%),
which is treated as stable because of its long half-life
(> 6 x 10'8 years). 3*4/4°Ca varies by ca. 6%o in nature
(e.g. DePaolo 2004, Heuser and Eisenhauer 2010, Fantle
and Tipper 2014). In step with analytical advances, results of
Ca isotope ratios have been used to better interpret research
in Earth-surface processes (e.g, Hindshaw et al. 2011, Fantle
et al. 2012, Jacobson et al. 2015), palaeoceanography
(Farkas et al. 20074, b), cosmochemis’rry (e.g., Simon et al.
2009, Simon and DePaolo 2010), archaeology (eg.
Jochum et al 2006, Reynord et al 2008, 2010, 2011),
biomedicine (e.g, Heuser and Eisenhauer 2010, Morgan
et al 2011, 2012) and mantle evolution (e.g., Huang et al
2010, Kang et al. 2016).

High-precision and high-accuracy measurements are
required for the use of Ca isotopes as a proxy based on the
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limited Ca isotopic fractionation in natural rocks. Up to now,
nearly all Ca isotope ratio measurements have been carried
out with thermal ionisation mass spectrometry (TIMS) (e.g.
Russell et al 1978, Skulan et al 1997, Heuser et al 2002,
Fantle and DePaolo 2005, 2007, Amini et al. 2009, Simon
and DePaolo 2010, Lehn et al 2013, Feng et al. 2017) and
multi-collector inductively coupled plasma-mass spectrometry
(MCICP-MS) (e.g, Fietzke et al. 2004, Wieser et al. 2004,
Schiller et al. 2012, Tacail et al. 2016). In a similar way to
other isotopes, such as Li, Fe and Nd (Anbar et al. 2000,
Pistiner and Henderson 2003, Wakaki and Tanaka 2012),
large Ca isotopic fractionation could occur during chemical
purification processes (possibly up to 4%o) and mass deter-
mination (e.g, Russell and Papanastassiou 1978, Zhu et al
2016). To correct such fractionations, a o|oub|e-spike tech-
nique is common|y Gdop'red with TIMS. Russell et al (1978)
first published reliable measurements for Ca isotopes using
TIMS with a “°Ca—*8Ca double spike. After this, *Ca—*3Ca
and “?Ca~**Ca double spikes were also developed in many
different laboratories (e.g, Heuser et al. 2002, Hippler et al.
2003, Kasemann et al. 2005, Bshm et al 2006, Farkas et al.
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2007q, b, Amini et al. 2008, 2009, Schmitt et al. 2009,
Teichert et al. 2009, Holmden and Bé|0nger 2010, Huang
et al 2010, 2011, Cobert et al. 2011, Miller et al. 2011,
Lehn et al. 2013, Zhu et al. 2016).

Calcium stable isotope ratios are commonly reported in
conventional 3-notation relative to values for the reference
material NIST SRM 915a. They can be reported as 844
49Ca or §**2Ca, while §***?Ca can be transformed fo
344/40Ca by multiplying by a factor of 2099 (Fantle and
Tipper 2014). 3*“°Ca can be calculated (Eisenhauer
et al 2004, Coplen 2011) as:

§44/40Cq = [(44C0/40CO)somp|e/(44CO/4OCO)SRM 9150 — ]
(M

Previous studies have reported Cai isotopic compositions of
many geological reference materials (e.g, Rehkémper and
Hofmann 1997, Amini et al. 2009, Wombacher et al. 2009,
Schiller et al. 2012, Magna et al 2015, Feng et al 2017, He
et alin press), but most focus on ultramafic and intermediate-
mafic rocks. 3*4/“°Ca values of felsic rocks have been
infrequenﬂy reporTed (Valdes et al 2014, He et al. in press),
but such data could provide new insight into Ca isotopic
fractionation during magma evolution. In this study, thirty-five
reference materials with greatly varied compositions from
different producers were analysed by TIMS using the
42Ca-*3Ca double-spike technique. The reference materials
analysed include the commonly used NIST SRM 915a and
IAPSO seawater, OU-6 (Penthyn slate from the IAG), serpen-
tinite UB-N (from the Association Nationale de la Recherche
Technique, ANRT) and MPI-DING glasses GOR128-G,
GOR132-G, KI2-G, ML3B-G, T1-G, StHs6/80-G and
ATHO-G. Other materials analysed, from the USGS and GSJ,
include basalts (BIR-1, BCR-1, BCR-2, BHVO-2, JB-2), dicbase
(W-2), diorite (DNC-1), andesite (AGV-1, AGV-2, JA-2), thyolite
(RGM-1, JR-2), latite (QLO-1a), granodiorite (GSP-1, GSP-2,
JG-1a), granite (G-2,JG-2), carbonatite (COQ-1), manganese
nodule (NOD-A-1, NOD-P-1), shale (SGR-1), stream sediment
(JSD-1) and mica schist (SDC-1). Our aim was to provide high-
precision Ca isotopic compositions for a suite of geological
reference materials, and enrich the existing knowledge of the
behaviour of Ca isotopes in different geological processes.

Experimental procedure

All chemical experiments were carried out in a class 100
clean laboratory environment at the State Key Laboratory of
Isotope  Geochemistry (SKLaBIG), Guangzhou  Institute of
Geochemistry (GIG), Chinese Academy of Sciences (CAS).
Acids used in chemical procedure were double-distilled; AG

MP-50 (100-200 mesh) resin was carefully precleaned in
6 mol 17" HCl and high-purity (18 MQ cm resistivity) water
repeatedly; Teflon® beakers and columns were heated in
the presence of the following concentrated acids diluted in
1:1 ratios HNO3, HCl and HNO3, sequenﬁo”y. For further
experimenfo| details see Liv et al (2015) and Zhu et al.
(2016).

Sample preparation and digestion

MPIDING glass samples were firstly powdered to a
grain size of < 0075 mm in an agate mortar. For all silicate
samples, 20-50 mg of rock powders were weighed into
7 ml PFA beakers (Savillex®). They were digested at 120 °C
with 2 ml of a 3:1 mixture of HF (22 mol 17') and HNO3
(15 mol 17') over a period of at least 1 week Sample
solutions were then evaporated to dryness at 100 °C.
Following this, they were treated with concentrated HNO3
once and 3 mol 1" HCl several fimes to ensure that
samples were totally dissolved. Finally, these samples were
redissolved in 2 ml of 3 mol 1" HCl.

About 5 mg of carbonatite COQ-1 was weighed into a
7 ml Savillex® beaker, and then dissolved in 2 ml of
3 mol 17" HCl over 4 h at room temperature. This was then
treated with concentrated HNO3 and 3 mol 17" HCl, and
finally redissolved in 2 ml of 3 mol 17" HCl.

Spiking

The *?Ca—**Ca double spike was made of *?Ca and
43Ca pure carbonates from the Isoflex Company with
certificate compositions (Table 1). These two carbonates
were carefully weighed to make a mixed #2Ca/*3Ca ratio
close to 5; they were then dissolved together with 10% v/v
HNO3. The composition of the double spike was calibrated
by multiple measurements of the spiked and unspiked NIST
SRM 9150 and IAPSO seawater on a Trifon thermal
ionisation mass spectrometer. Detailed double-spike infor-
mation is provided in Table 1.

An aliquot of each sample solution containing 50 pg Ca
was mixed with an appropriate amount of *?Ca-**Ca
double-spike solution. The optimal sample/spike ratio was
calculated to 4OC05C,m|O|9:42Cospi|<e =7 (v etal 2016)
consistent with previous studies (Russell et al. 1978, Holmden
and Bélanger 2010). The mixture solution was mixed well
and refluxed in 3 mol 17" HCl in capped beakers over 2 h
before being evaporated to dryness and conditioned with
concentrated HCl twice. Finally, the mixture was dissolved in
005 ml of 1.6 mol 1" HCl for column chemistry.
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Table 1.
Calcium spike compositions
42Ca single spike 43Ca single spike 42Ca -*3Ca double spike
Abundance (%) Abundance (%) mol mol!
“OCa 2.56 530 “0Ca/*?Ca 0.037014
“2Ca 96.8 0.18 “2Ca/*?Ca 1.000000
+Ca 0.11 90.0 “3Ca/*2Ca 0.180745
“4Ca 0.51 4.44 44Ca/*?Ca 0014127
4Ca 001 001 4Ca/*?Ca 0.000012
“8Ca 0.02 008 “8Ca/*?Ca 0.000366

Chemical purification

Calcium  purification  was  performed in Savillex®
microcolumns (0.64 cm ID x 9 cm heighf, 30 ml reser-
voir) pocked with T ml of Bio-Rad AG MP-50 cation resin.
The chemical procedure is detailed in Table 2. Briefly,
samples were loaded to preconditioned (with 5 ml of
1.6 mol 17" HCI) resin, then matrices were eluted with
1695 ml of 1.6 mol 17" HCl, and Ca was collected with
27 ml of 1.6 mol 17" HCl After the Ca cut was
evaporated to dryness, it was treated with concentrated
HNO3 several times and finally redissolved it with 10 pl
10% v/v HNOgz for TIMS analysis. For quality control
purposes, each batch of samples, at least one reference
material (eg, IAPSO seawater, BHVO-2, efc) and one
blank were processed simultaneously; sometimes, a sam-
ple duplicate was also added info the batch sequence.
The precut and postcut solutions were collected and
measured using ICP-AES to check the recovery (which was
above 99%).

TIMS determination
Calcium isotope ratios were determined with a Triton

TIMS instrument at SKLaBIG, GIG, CAS. About 1 pl solution
containing 5 pg Ca was loaded carefully onto the centre of

Table 2.
Calcium purification scheme

Step Reagent |Volume (ml)[ Comment
1. Cleaning 8 mol 17" HNO3 30
H,O 5
6 mol 17" HCl 60
H,O 5
2. Condition 1.6 mol 17" HCI 5
3. Load sample | 1.6 mol 1" HCI 0.05 Precut collection
4. Remove matrix | 1.6 mol 1" HCI 1695 Precut collection
5. Collect Ca 1.6 mol 17 HCl 27
6. Cleaning 6 mol 17" HCl 10 Postcut collection

the out-degassed single Ta (99.995%) filament. To minimise
the multi-reservoir effect (Hart and Zindler 1989, Fantle and
Bullen 2009, Lehn and Jacobson 2015, Zhu et al 2016),
the sample spot on the filament should be as small as
possible. After the sample was loaded, a droplet of 1 pl
activator (10% v/v HzPO.4) was carefully added to cover the
sample spot.

Two measurement sequences of cup configuration
were adopted because of the wide mass range of Ca
isofopes (40-48). The first sequence was 40Cq, 4K, 42Cq,
*3Ca and *“Ca; the second was “*Ca, **Ca and “®Ca
(Figure 1). The *'K signal was monitored fo correct isobaric
interference of “°K on “°Ca using the rafio of infensities of
49K/*"K such that it was equal to 17384 x 107, Other
elemental isobars (eg, “®Ti", 845", 852", 8852") and
molecular isobars (eg, 2*Mg'°O*, 2°Mg'80*, Z/Al'°O",
285i160") were not detected in this study. Amplifier rotation
was applied to minimise the effect of difference in amplifier
gains. The intensity of “°Ca was increased to 15V, and
each run contained sixteen blocks and thiteen cycles. The
integrafion time of the first sequence was 4 s for each
peak, while the second was 16 s due to the low infensities
of “8Ca. Instrument fractionation was corrected by the
42Ca-*3Ca double-spike technique through an  iterative
algorithm with an exponential law adapted from Heuser
et al (2002). If a single measurement result deviated from
the exponential law, which could be caused by the multi-
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Figure 1. Cup configuration for Ca isotopic measure-
ment. In the first sequence (S1), *°Ca, #'K, #2Ca, *3Ca
and **Ca were collected. In the second sequence (52),
43Ca, **Ca and *2Ca were collected.

© 2017 The Authors. Geostandards and Geoanalytical Research © 2017 International Association of Geoanalysts 677



GEOST,

=S

ANDARDS and
. GEOANALYTICAL
RESEARCH

reservoir mixing effect (Hart and Zindler 1989, Fantle and
Bullen 2009, Zhu etal 2016), then a data qu<:1|ity
identification model was utilised to estimate the quality of
data (Zhu et al. 2016).

Generally, the total procedural blanks were 20-70 ng,
which were negligible compared with 50 pg Ca loaded
into the column. The longterm mean and intermediate
precision of independent measurements over a period of
four years for §*4“°Ca of NIST SRM 915a and IAPSO
seawater were 0.01 £ 0.06%o (two standard deviations, 2s,
n=351) and 1.82 + 0.12%0 (25, n = 199), respectively
(Figure 2).

Results

The §*/“°Ca values of geological reference materials
and published data are listed in Table 3. Among these, ten
of the thirty-five reference materials are reported for the first
time for Ca isotopes. Overall, Ca isotopic compositions of
most samples measured were in agreement with previous
data (Table 3; Jochum et al 2006, Amini et al 2009,
Wombacher et al. 2009, Schiller et al 2012, Colla et al.
2013, Valdes et al 2014, Feng et al 2017, He et al in
press) except some MPI-DING g|oss samples (Table 3). Of
the igneous rocks, §*“*°Ca values of ultramdfic rocks
ranged from 074 £ 0.13%0 (n=3) to 1.59 = 0.16%o
(n = 3), infermediate-mafic rocks showed a limited variation
with an average value of 0.78 + 0.14%o (n = 47) and felsic
rocks varied from 0.13 + 0.11%o (n = 5) to 1.17 = 0.07%o
(n = 3) (Table 3). 3**“°Ca values of sedimentary rocks
ranged from 0.47 +008% (n=28) to 1.14 = 0.11%0
(h=23), and metamorphic rocks from 0.45 = 0.07%o
(n=3) 10 093 £ 0.12%o (n = 2).

N
o

IAPSO seawater = 1.82 + 0.12%o (2s, n = 199)

N
o

N
(%)

[
)

NIST SRM 915a = 0.01 + 0.06%o (2s, n = 351)

8Iwmca(sm 915q) (%)
o

(
0
*
v,
O

Figure 2. Long-term (> 4 years) §**/#°Ca measure-
ments of NIST SRM 915a and IAPSO seawater. These

two reference materials exhibited no drift.

Discussion

No difference in §*4/°Ca with different double-
spike pairs

42CO—43CO,

2Ca-*Ca and *3Ca-*Caq, are commonly used for

Three  double-spike  pairs,  namely

isotope ratio measurements with TIMS. Compared  with
42Ca-"8Ca and “*Ca-*8Ca pairs, Gopalan et al. (2006)
suggested that *2Ca-*Ca pair could minimise measure-
ment uncertainties caused by rapid fluctuation of instru-
mental mass bias and produce more accurate mass bias
correction. Lehn and Jacobson (2015) proposed that the
42Ca-*3Ca pair provides the most precise analysis of 544/
“OCa because of the small average mass difference
between *?Ca/**Ca and *°Ca/**Ca. However, within
current measurement procedure and possible precision
limits, our data and literature data show negligible
difference with different double-spike pairs. For example,
the seawater reference material, which has been widely
analysed with different double-spike pairs in different
laboratories, displayed limited variations (Table 4). More-
over, 3*4/49Ca values of reference materials (such as BIR-1,
BCR-2, BHVO-2, W-2, AGV-2, COQ-1 and SGR-1b)
obtained with three different pairs also showed unde-
tectable deviations (Table 3; Amini et ol 2009, Wom-
bacher et al 2009, Magna et al. 2015, Feng et al. 2017,
He et ol in press).

The precision of the double-spike technique is mainly
controlled by two factors, the composition of double spike
and the proportion in which the double spike and sample
are mixed. Rudge et al (2009) provided MATLAB codes
that can calculate the optimal double-spike compositions.
Figure 3 illustrates the standard deviation of the mean (2SE)
of 3*4/49Ca with different double-spike pairs at the optimal
composition (take “?Ca—*3Ca double spike for example, the
optimum composition is 50% “?Ca and 50% “*Ca).
However, as indicated by Fantle and Bullen (2009),
measurement precisions are not ultimately limited by dou-
ble-spike pairs, but by the instrumentation. Typically, internal
precision during measurement was better than the external
precision. Theoretically, as shown in Figure 3, under proper
sample/spike ratios, most of the precisions in §*“°Ca
obtained from all the three double-spike pairs are less than
0.06%o, which is close to the repeatability precision but
lower than intermediate precisions (~ 0.12%o) of the mea-
surement results obtained by TIMS or MCICP-MS. Hence, it
is reasonable that no differences were detected within these
three pairs. Therefore, different double-spike pairs should
cause limited biases on the measurement of Ca isotopic

compositions.
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Table 4.

844/49Ca of seawater obtained with different double-spike pairs in different laboratories

Laboratory Reference 344749Ca (%) Uncertainty Type® Double spike
IFM-GEOMAR Amini et al. (2008) 1.86 004 2SE 43Ca-*8Ca
IFM-GEOMAR Amini et al. (2009) 1.82 0.03 2SE “3Ca-*8Ca
IFM-GEOMAR Bshm et al. (2006) 1.83 0.10 2SE 43Ca-*8Ca
IFM-GEOMAR Farkas et al. (2007a) 1.86 0.15 2s 43Ca-*8Ca
IFM-GEOMAR Maller et al. (2011) 195 026 2s 43Ca-*8Ca
IFM-GEOMAR Teichert et al. (2009) 177 0.03 2SE “3Ca-*8Ca
IFM-GEOMAR Hippler et al. (2003) 1.82 0.13 2s “3Ca—*8Ca
Harvard University Huang et al. (2010) 1.90 0.12 2s “3Ca-*8Ca
Harvard University Huang et al. (2011) 1.90 0.03 2SE “3Ca—*8Ca
Carleton University Farkas et al. (2007b) 1.86 0.20 2s 43Ca-*8Cq
Bern Hippler et al. (2003) 201 0.19 2SE “3Ca—*8Ca
Strasbourg Hippler et al. (2003) 1.89 0.17 2s “3Ca-*8Ca
Bristol Kasemann et al. (2005) 1.96 0.12 2s 3Ca-*8Ca
Beijing, CUG He et al. (in press) 1.89 0.18 2s 43Ca-*8Ca
Berkeley Skulan et al. (1997) 211 0.18 2s “2Ca-48Ca
Berkeley Fantle and DePaolo (2005) 195 0.1 2s “2Cq-*8Ca
Berkeley Fantle and DePaolo (2007) 202 0.08 2s “2Ca-48Ca
Berkeley Fantle and DePaolo (2007) 2.05 0.07 2s 42Ca-*8Ca
Wuhan, CUG Feng et al. (2017) 1.88 0.14 2s “2Ca-48Ca
Saskatchewan Amini et al. (2009) 1.89 - - #2Ca-*Ca
LHyGeS Cobert et al. (2011) 191 0.10 2s 42Ca-*3Ca
Saskatchewan Holmden and Bélanger (2010) 1.86 005 2s *2Ca-*3Ca
Saskatchewan Schmitt et al. (2009) 1.80 0.20 2s 2Ca-*3Ca
Northwestern University | Lehn et al. (2013) 1.87 0.04 2s 42Ca-*3Ca
Guangzhou, SKLaBIG | This study 1.82 0.12 2s 42Ca-43Ca

All data were normalised to NIST SRM 915a as reference. Statistical uncertainty reported as 2s (2 standard deviations) or 2SE (2 standard error).

MPI-DING reference glasses: homogeneous or
heterogeneous?

Homogeneity is a fundamental requirement for refer-
ence materials (ISO Guide 34 2009). Previous studies
demonstrate that MPI-DING glasses are homogeneous for
most element and isotope systems (Jochum et al. 2000,
2006, Amini et al. 2009). To check whether Ca isotopes
in MPI-DING glasses are homogeneously distributed, we
analysed seven of these glasses. As illustrated in Figure 4,
344/40Cq of four MPI-DING glasses, KL2-G, ML3B-G, T1-
G and StHs6/80-G, were consistent with the results
reported by Amini et al (2009) and Jochum et al. (2006)
within both 2s and (2SE = 2s/+/n). Based on 2s preci-
sions, 5*““9Ca values of GOR128-G, GOR132-G and
ATHO-G statistically overlap with published data (Fig-
ure 4a). However, under precisions expressed as 2SE,
3*449Ca values of these measurement results are signif-
icantly higher than previous data (Figure 4b) (Jochum
et al 2006, Amini et al 2009). Besides, §“*°Ca of
BM90/21-G (peridotite) reported by Amini et al (2009)
was lower than that reported by Jochum et al (2006)
(Figure 4b). This inconsistency might be attributed to
measurement bias and/or sample heterogeneity.

The precision of the measurement results for Cr, Cu, Zn,
Sn, Bi, (the noble metals) Ir, Pt, Au, and Li and Pb isofopes in
MPI-DING glasses (Jochum et al 2006) have lower preci-
sion values, which can be attributed to sample heferogeneity.
For the two komatiites samples, GOR128-G and GOR132-
G, a few fragments were observed due to quench crystalli-
sation (Jochum et al. 2000, 2006). The quench crystallisation
of the MPIDING glasses is the probable cause of the
discrepancy in the Ca isotope ratio measurement results.
Therefore, we suggest that careful consideration should be
taken when MPI-DING glasses are applied as laboratory

reference materials for quality control for Car isotopes.

Calcium isotopic fractionation of felsic, ultramafic
and intermediate-mafic rocks

The igneous rocks demonstrated significant variability in
Ca isotope compositions (Table 3, Figure 5), indicating that
Ca isofopic fractionation could occur at high temperatures,
as suggested by previous studies (Huang et al. 2010, Kang
et al. 2016).

Felsic rocks showed a wide variation in §*“9Cq
ranging from 0.13%0 to 1.17%. (Table 3). Radiogenic

682 © 2017 The Authors. Geostandards and Geoanalytical Research © 2017 International Association of Geoanalysts
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“9Ca enrichment from “°K decay probably has an
important effect on the Ca isotopic composition. A nonlin-
ear relationship was observed between §*/“°Ca and
K/Ca ratio (Figure 6), indicating that Ca isotopic fraction-
ation was not simply controlled by the K/Ca value. The
age of the rock is also important. Based on the calculation
by Fantle and Tipper (2014), §*4“°Ca could be lower
by 0.3%o for a rock aged 1 Ga with K/Ca = 5. When the
K/Ca rafio increases to 10, 3*“9Ca could decrease by
06%o. In the case of a rock aged > 1 Ga with

K/Ca = 20, 8***°Ca could decrease by more than
1.0%0 (Fantle and Tipper 2014). So it seems that the
K/Ca ratio and age of the rock could explain the large
§%4/49Cq difference (~ 1.04%o) in felsic rocks. However,
among these felsic rocks, GSP-1 displayed the lowest
§44*0Ca (013 + 0.11%0, n = 6), with only a moderate
K/Ca ratio of 321, which cannot be explained by
radiogenic “°Ca enrichment. Therefore, we suggest that
Ca isofopic fractionation during magma evolution should
not be ignored and more work needs to be carried out.

© 2017 The Authors. Geostandards and Geoanalytical Research © 2017 International Association of Geoanalysts 683
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3*4*9Ca valves of ultramafic rocks varied from
0.74%0 to 1.59%0 (Table 3), implying that Ca isotopic
fractionation occurred during magma evolution. As illus-
trated in Figure 7, CaO was negoﬁve|y correlated with,
while MgO was positively correlated  with  §44/49Cq,
consistent with previous results reported by Amini et al
(2009). Such relationships could be explained by partial
melting of mantle peridofites. Experimental meliing studies
on anhydrous melting of peridofites indicate that CaO
decreases and MgO increases with progressive melt
extraction in the residue (Green 1973). Clinopyroxenes
(cpx), orthopyroxenes (opx) and olivine (ol) are the main
minerals of the ultramafic rocks. Previous studies demon-
strate that heavier Ca isotopes prefer to enrich in ol and
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Figure 6. 3**/#°Ca vs. K/Ca in felsic rocks. No corre-
lation was displayed between them, indicating that
49K decay is not the only factor that causes various Ca

isotopic compositions.

opx rather than cpx because of the stronger Ca~O bonds
in ol and opx (eg, Huang etal 2010, Kang et al
2016). Moreover, cpx is consumed more rapidly than ol
and opx in the residue during mantle melting (e.g, Green
1973, Jaques and Green 1980, Hirose and Kushiro
1993). Therefore, 3*“°Ca of the refractory residue
should be correlated negatively with CaO and positively
with MgO. This is in agreement with practical observations
that dunite has the highest §*4/“°Ca values (Table 3),
which is the most refractory rock composed of ~ 90%

olivine.

Unlike felsic and ultramafic rocks, intermediate-mafic
rocks displayed limited variability in Ca isotopic compositions
with an average §*4“°Ca of 078 + 0.14%o, despite of
wide ranges of CaO and MgO contents in these rocks
(Figure 7). Variations of CaO and MgO contents are
indicative of the breakdown and/or removal of Ca-bearing
and Mg-bearing minerals during partial melting or fractional
crystallisation. Limited Ca isotopic variation of intermediate-
mafic rocks indicates insignificant isofopic fractionation
during magma differentiation.

Calcium isotopic fractionation of sedimentary and
metamorphic rocks

As shown in Table 3 and Figure 5, §*4/#°Ca values of
sedimentary and metamorphic rocks displayed large vari-
ations, indicating fractionation of Ca isotopes may also
occur during low- temperature and metamorphic processes.
Two manganese nodules, NOD-A-1 and NOD-P-1, dis-
played distinctive Ca isofopic  compositions  with
114 £011% (n=3) and 074 £0.10% (n=13),

684 © 2017 The Authors. Geostandards and Geoanalytical Research © 2017 International Association of Geoanalysts
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respectively, implying two different sedimentary environ-
ments. For the metamorphic rocks, §*49Cq of OU-6 (slate,
0.69 + 0.04%o, n = 3) is higher than that of SDC-1 (mica
schist, 0.45 + 0.07%o, n = 3). As the metamorphic grode of
schist is greater than that of slate, our data might imply that
the 844“°Cqa value was lowered during metamorphism.
UB-N (serpenfinite) exhibited o §%“°Ca value of
093 £ 0.12%o (n = 2), slightly lower than the peridotite
(~ 1.1%0, Table 3), indicoﬁng 5*/“°Cq could decrease
during serpentinisation, which is in line with the findings of
John et al (2012).

Conclusions

High-precision 3*4/4°Ca values obtained by thermal
ionisation mass spectrometry (Trifon insfrument) are reporTed
for thirty-five reference materials of various compositions,
using a “?Ca—"*Ca double spike. §*/“°Ca values for most
reference materials were consistent with previously published
data. Large variations in §*4“°Ca were observed in felsic
and ultramafic rocks. Moreover, §**/“°Ca values of ultra-
mafic rocks were correlated with Ca and Mg, possibly owing
to the partial melting of mantle peridotites. On the other
hand, 844/40C0 of intermediate-mafic rocks showed limited
variability. For sedimentary and metamorphic rocks, they also
showed large Ca isotopic variations. It is also notable that no
measurable 34“°Ca deviations were observed when
different double-spike pairs (*?Ca-*8Ca, **Ca-*8Ca and
#2Ca-*3Ca) were adopted for mass correction, suggesting
that double-spike pairs should have litfle effect on the
measurement of 3*4/“°Ca due fo the limitation of the current
analytical precisions.
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