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The Luojiahe Cu deposit in the Zhongtiaoshan region is located in the southernmargin of the North China Craton.
The orebodies are hosted in the mafic volcanic-sedimentary sequences of the metamorphosed (greenschist-fa-
cies) Neoarchean Songjiashan Group. The Luojiahe Cu mineralization can be divided into the primary
volcanogenicmassive sulfide (VMS)mineralization stage (Stage I, bandedor stockwork ores) and the subsequent
metamorphic remobilization stage (Stage II, coarse-vein ores).
Three types of quartz selected for fluid inclusion (FI) studies were collected from the Stage I banded (Q1) and
stockwork (Q2) ores and Stage II coarse-vein (Q3) ores. Four types of FIs were identified: (1) liquid-rich FIs (L-
type), (2) pure vapor and vapor-rich FIs (V-type), (3) daughter mineral-bearing FIs (S-type), and (4) CH4-H2O
FIs (C-type). Systematical microthermometric and H-O isotopic studies show that the Stage I ore-forming fluids
consist predominantly of high salinity evolved seawater (125–220 °C; 23.9–27.9 wt.% NaCl equiv.) and some
magmatic-hydrothermal fluids (249–339 °C; 34.5–42.2wt.% NaCl equiv.). The two fluid end-members are repre-
sented by the L-type FIs in Q1 and the S- and V-type FIs in Q2. The temperature- and salinity variation trends of
the L-type FIs inQ1 indicate amixing process between the hot evolved seawater and cold seawater at Stage I. Fur-
thermore, the V- and S-type FI coexistence in Q2 and their microthermometric data suggest that fluid unmixing
has occurred in original magmatic fluids at Stage I. In contrast, the Stage II ore-forming fluids consist of CH4-rich
metamorphic fluids (192–350 °C; 10.6–43.2 wt.% NaCl equiv.). Carbon isotopic analysis of the Stage II calcite
(−4.58 to −10.83‰) and graphite (−32.01 to −39.16‰) in the ore-hosting chlorite schist indicates that the
metamorphic ore-forming fluids had exchanged carbon isotope with graphite. The generation of CH4 may have
resulted from the interaction betweenH2O (released bymetamorphic devolatilization) and graphite. The contin-
uous consumption of H2O in the hydrothermal fluid system may have increased the fluid salinity and triggered
fluid unmixing in the CH4-NaCl-H2O system. In addition, the VMS metallogenic environment is generally favor-
able for microbial communities. It is considered that the graphite at Luojiahe may have been derived from sedi-
mentary organicmatter formed in seafloor hydrothermal vent systems, as also supported by carbon isotopic data.
We propose that at Stage I, the main mineralization may have been resulted from 1) fluid mixing of hot evolved
seawater and cold seawater in the near-surface environment; and 2) fluid unmixing caused by the percolation of
magmatic fluids into syn-volcanic faults, forming the stockwork ores. At Stage II, the interaction between H2O
and graphite may have resulted in the reduction of ore-forming fluids and Cu precipitation, and fluid unmixing
in the CH4-NaCl-H2O system may have further promoted the Cu mineralization.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Since the first discovery of active hydrothermal vents at the
Galapagos Rift in 1977 (Corliss et al., 1979), the study on ore-forming
fluids of volcanogenic massive sulfide deposits (VMS) has expanded
(Ripley and Ohmoto, 1977; Spooner and Bray, 1977; de Ronde, 1995;
Bodnar et al., 2014). Fluid inclusions (FIs) trapped in hydrothermalmin-
erals provide the best available way for constraining the physical and
chemical conditions of ore-forming fluids in fossilized hydrothermal
systems (Bodnar et al., 2014). By comparing the modern vent fluid
data with FI data from fossilized hydrothermal systems, the composi-
tions and physical nature of the ore-forming fluids, VMS mineralization
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processes and secular changes of seawater compositions throughout the
Earth's history, are becoming better documented (e.g., Ohmoto et al.,
1983; de Ronde, 1995; de Ronde et al., 1997; Franklin et al., 2005;
Huston et al., 2010; Bodnar et al., 2014).

The Archean greenstone-hosted VMS deposits are the oldest VMS
deposits and account for ca. 8% of the global VMS-hostedmetal resource
(Mercier-Langevin et al., 2014). However, FI studies on these ancient
VMS deposits are still rare (de Ronde et al., 1997; Bodnar et al., 2014),
because most of these deposits were remobilized by subsequent meta-
morphism (Marshall and Gilligan, 1993; Tornos et al., 2015). The origin
of the ore-forming fluids entrapped in the VMS deposits is highly con-
troversial (Ripley and Ohmoto, 1977; Broman, 1987; Hall, 1989; Giles
and Marshall, 1994; de Ronde et al., 1997; Lowe and Byerly, 2003;
Moura, 2005; Bradshaw et al., 2008; Xu et al., 2011), especially regard-
ing the preservation of primary FIs, sources of metamorphic carbonic
fluids (CO2 or CH4), and the roles of both primary vent fluids and meta-
morphic hydrothermal fluid systems in the mineralization (Xu et al.,
2011).

The Luojiahe Cu deposit is hosted in the Archean greenstone ter-
ranes in the Zhongtiaoshan region (hereafter referred to as ZTS), in
the southern margin of the North China Craton (Li, 1986). This de-
posit was argued to be a Neoarchean VMS deposit that was subse-
quently modified by deformation and metamorphism during the
Zhongtiao Movement (ca. 1.85 Ga) (Zhen and Xi, 1990; Zhen et
al., 1993; Huang et al., 2001; Jiang et al., 2013). Detailed FI study
is essential to constrain the origin and evolution of the Luojiahe
ore-forming fluids. In this paper, based on detailed field and petro-
graphic observations and FI analyses, we identified primary FIs in
the banded VMS ores and first detected significant CH4 in the hy-
drothermal quartz veins of the metamorphic mineralization stage.
The fluid sources and evolution of the two metallogenic stages
were discussed on the basis of FI systematics and C-H-O isotopes.
Our study also provides new insight into the understanding of the
original submarine hydrothermal processes and the possible role
of CH4 in the metamorphic overprinting on the Archean VMS
deposits.
Fig. 1. Regional geological map of the Zhongtiaoshan area. (A). Tectonic framework of the Nor
Regional geology of the Zhongtiaoshan area. I-Songjiashan Group; II-Jiangxian Group; III-Zhon
2. Regional geology

The ZTS is located in the southern segment of the Trans-North China
Orogen (Fig. 1A), along which the discrete Eastern and Western Blocks
amalgamated to form the North China Craton (Zhao et al., 2001, 2002a;
Liu et al., 2012). The Neoarchean to the Late Paleoproterozoic ZTS ore de-
posits contain a total endowment of ca. 400 Mt. Cu metal (Xu, 2010).
Archean rock units in this region consist mainly of low-grade granite-
greenstone terranes (2.7–2.5 Ga), including granitoids (Sushui complex)
and meta-mafic volcanic-sedimentary sequences (Songjiashan Group)
(Sun and Hu, 1993; Feng and Wang, 2008; Zhao et al., 2008; Liu et al.,
2012). Paleoproterozoic rock units include (from the oldest to the youn-
gest) the Jiangxian (2.2–2.1 Ga), Zhongtiao (2.06–1.9 Ga) and
Danshanshi Groups (~1.85 Ga) (Sun and Hu, 1993; Bai, 1997; Zhen and
Wu, 2007; Liu et al., 2012; Fig. 1B). They contain mainly schist and
quartzite, with variable amount of intercalated carbonates and
metavolcanic rocks (Bai, 1997; Liu et al., 2012). These rock units had ex-
perienced greenschist- to low amphibolite-facies metamorphism led by
the Eastern and Western Blocks collision (~1.85 Ga) (Liu et al., 2012),
and are unconformably overlain by the unmetamorphosed Xiyanghe
Group andesitic volcanic rocks (~1.78 Ga) (Chen et al., 1992; Zhao
et al., 2002b; He et al., 2009), which is widely exposed in the eastern
ZTS (Fig. 1B). The Songjiashan Group, exposed as several inliers (such
as Tongshan, Wangwu, Luojiahe inliers) within the overlying Xiyanghe
Group (Fig. 1B), is the host of the Luojiahe and Huping Cu deposits.

The ZTS is extensively deformed, with the basement-cutting SE- or
SW-trending faults being the host structures of many stratiform Cu de-
posits, e.g., at Luojiahe, Huping, Tongkuangyu, Hujiayu and Bizigou (Sun
et al., 1995; Fig.1B).

3. Ore deposit geology

3.1. Wall rocks

The Luojiahe Cu deposit is hosted in metamorphosed mafic
volcanic-sedimentary rocks of the Neoarchean Songjiashan Group,
th China Craton and the location of Zhongtiaoshan (modified after Zhao et al., 2001). (B).
gtiao Group; IV-Dashanshi Group; V-Xiyanghe Group (modified after Sun and Hu, 1993).

Image of Fig. 1


Fig. 2. Geological map of the Luojiahe Cu deposit (modified after Zhen et al., 1993).
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which is exposed in the inliers of the younger andesite of the
Xiyanghe Group (Gu et al., 1993; Sun and Hu, 1993; Fig. 2). The
Songjiashan Group at Luojiahe consists of chlorite schist, spilite and
marble (Figs. 3, 4B, and C). The major orebodies are hosted in
Fig. 3. Geological profile of the Luojiahe No. 1 expl
graphite-bearing chlorite schist. At Luojiahe, trondhjemite (zircon
U-Pb: 2471 ± 25 Ma; Zhao et al., 2016) was widely found
intruding into the lowermost spilites and chlorite schist (Figs. 3, 4A,
and D).
oration line (modified after Zhen et al., 1993).

Image of Fig. 2
Image of Fig. 3


Fig. 4. Field photos of the Luojiahe Cumineralization and host rocks: (A). Trondhjemite intruded the Songjiashan Group chlorite schist. (B). The Songjiashan Group chlorite schist (C). The
Songjiashan Group spilite. (D). Trondhjemite intruded the splite below the orebodies. (E). Stage I banded mineralization in the chlorite schist. (F). Stage I stockwork ores in the lower
orebodies. (G) and (H) Stage II thick ore-bearing quartz veins crosscut the graphite-bearing chlorite schist.
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3.2. Structures

The regional SE-trending normal fault were suggested to have
uplifted and exposed the Songjiashan Group rocks at Luojiahe, which
are in turn crosscut by three SE-trending parallel faults (namely the
F1, F2, and F3) (Fig. 2). The wave-like ductile shears related to the
later faulting in the chlorite schist control most of the ore body
emplacement.

Image of Fig. 4
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3.3. Orebodies

The Luojiahe Cu deposit (resource: 260,000 t Cu metal @ 1.11% Cu
(average grade) (Zhen et al., 1993) conain three ore belts, i.e., the No. I
(Yingziling), No. II (Yangshukeng) and No. III (Huituao) (Zhen et al.,
1993; Huang et al., 2001; Fig. 2). The orebodies are commonly
stratabound lensoidal in shape. Ore Belt No. I contain 57 orebodies,
among which the largest Orebody No. 1 (800 m long, 750 m wide and
14 m thick) has an average Cu grade of 1.09% and accounts for 83.7%
of the ore belt's metal reserve. Ore Belt No. II contains six orebodies,
among which Orebody No. 25 (420 m long, 600 m wide and 22.5 m
thick) has an average Cu grade of 1.07% and accounts for 94% of the
ore belt's reserve. Only Ore Belt No. I is now in operation, whereas the
other two are still under exploration.

3.4. Mineralization and alteration

The wall rocks of the Luojiahe Cu deposit were extensively altered
and contain various secondary minerals, e.g., chlorite (dominant),
quartz, sericite, calcite, albite, graphite and tourmaline. The intense
chlorite alteration had obliterated much of the original wall rock tex-
tures. The alteration sequence and zonation are unclear, partly attribut-
ed to the intense regionalmetamorphic overprinting (Zhen et al., 1993).

The mineralization observed in the Luojiahe copper deposit can be
divided into the primary VMS stage (Stage I) and the secondary meta-
morphic remobilization stage (Stage II):

Stage I mineralization is characterized by disseminated-, banded-,
massive- and stockwork sulfides in chlorite schist (Fig. 4E). Metallic
minerals include mainly chalcopyrite and pyrite with accessory
Fig. 5. Photomicrographs of the Luojiahe Cu ore textures and mineral assemblage: (A). Quartz
Euhedral zoned tourmaline in Stage I chalcopyrite-quartz veinlets. (C). Stage I barren-ore qua
host rocks. (E) and (F). Stage II chalcopyrite-quartz veins crosscut graphite-bearing chlorite sc
(H). Exsolution texture of chalcopyrite and bornite. (I) Emulsion texture of chalcopyrite an
tourmarine; Cal = calcite; Gr = graphite; Py = pyrite; Bn = bornite; Sp = sphalerite.
sphalerite, bornite and minor cobaltite. Non-metallic minerals include
mainly quartz, calcite, albite and tourmaline (Mg-Fe-series). In the
banded ores, the quartz-sulfide veinlets (b0.8 cm wide) and chlorite
schists occur at interbedding (Fig. 5A). Tourmaline is locally present as
isolated euhedral grains in chalcopyrite-quartz veinlets (Fig. 5B). The
stockwork ores, occurring in the lower orebodies, have irregular bound-
aries with the host rocks (Figs. 4F and 5C).

Stage II mineralization is characterized by more continuous and
thicker (2 to 50 cm wide) sulfide-quartz-calcite veins (cf. the Stage I
ones) (Fig. 4G and H), which contain chalcopyrite, pyrite, pyrrhotite,
bornite, sphalerite, quartz and calcite (Fig. 5D). Quartz in the veins oc-
curs as coarse-grained aggregate and coexists with chalcopyrite (Fig.
5E and F). Exsolution (among chalcopyrite and bornite) and emulsion
(among chalcopyrite and sphalerite) textures are ubiquitous (Fig. 5H
and I). Pyrite is replaced by chalcopyrite and occurs as islands in chalco-
pyrite (Fig. 5G). Different from Stage I, the Stage II mineralization is
mainly hosted in graphite-rich chlorite schist, and the Stage II ore
veins commonly crosscut the host rocks (Fig. 5F).

4. Sampling and analytical methods

4.1. Sample description

In this study, 120 samples were collected from the Exploration
Tunnels No. 460 and No. 360 (in Orebody No. 1). Eighty-five (39
polished) thin sections were examined by transmitted- and reflected
light microscopy. Fifty-five doubly polished sections for the different
ore types were prepared for FI analyses, amongwhich 25 were selected
for microthermometry and laser Raman spectroscopy.
-sulfide veinlets and chlorite schists occur at interbedding in the Stage I banded ores. (B).
rtz stockwork in the lowest orebodies. (D). Stage II chalcopyrite-calcite veins crosscut the
hist and chlorite schist, respectively. (G) Pyrite partially replaced by Stage II chalcopyrite.
d sphalerite. Abbreviations: Chl = chlorite; Qtz = quartz; Ccp = chalcopyrite; Tur =

Image of Fig. 5
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Quartz samples were classified into three groups (Q1 to Q3) based
on their field occurrence and morphological characteristics:

1) Q1 quartz is from the Stage I banded ores, and occurs as euhedral
grains in chalcopyrite.

2) Q2 quartz is from the Stage I stockwork ores (Figs. 4F and 5C).
3) Q3 quartz is from the Stage II coarse sulfide-quartz-calcite veins (Fig.

5E and F).

Four Q2 and Q3 quartz samples were selected for the hydrogen and
oxygen isotopic analyses. Detailed microscopic work was conducted to
avoid the incorporation of secondary inclusions.

The calcite from the Stage II coarse sulfide-quartz-calcite veins was
analyzed for its carbon and oxygen isotopic compositions. Four graphite
samples from the graphite-rich chlorite schist were collected for the or-
ganic carbon isotope analysis.

4.2. Microthermometry

Microthermometry study was carried out using a Linkam TS 600
Heating-Freezing System at the Key Laboratory of Mineralogy and
Metallogeny, Chinese Academy of Sciences (hereafter referred to as
KLMMCAS). Thermocouples were calibrated at −196 to 600 °C using
synthetic FIs. The precision of temperaturemeasurement is ±0.1 °C be-
tween−100 and 25 °C,±1 °C between 25 and 400 °C, and±2 °C above
400 °C. The heating rate was generally 0.2 to 5 °C/min during
the analysis, but reduced to 0.1 °C/min near the freezing point, and 0.2
to 0.5 °C/min near the homogenization temperature to record the
phase transformation process accurately.

4.3. Laser Raman microspectroscopy

Vapor and solid compositions of individual FIs were measured
using the Horiba Xplora laser Raman microspectroscopy at
KLMMCAS. An Ar+ ion laser operating at 44 mW was used to pro-
duce an excitation wavelength of 532 nm line. The scanning range
of spectra was set between 100 and 4000 cm−1 with an accumula-
tion time of 10 s for each scan. The spectral resolution was
0.65 cm−1. The Raman shift of a monocrystalline silicon piece was
measured to be 520.7 cm−1 before the analysis.

4.4. Fluid inclusion references

Salinities of the halite daughter mineral-bearing FIs were estimated
based on the temperatures of bubble dissolution and homogenization
(Lecumberri-Sanchez et al., 2012). As for the FIs with eutectic tempera-
tures below−21.2 °C (with themost of−52 °C), the fluid system is ap-
proximated by the H2O-NaCl-CaCl2 system. Salinities of these FIs were
calculated by using the equations of Chi and Ni (2007). Salinities of
the CH4-rich FIs could not be calculated because no complete
microthermometric data were acquired.

4.5. Carbon and oxygen isotopes

The calcite samples were crushed to 60mesh and handpicked under
a binocularmicroscope, and then crushed to 200mesh for themeasure-
ment. Carbon and oxygen isotopic compositions were measured on an
Isoprime 100 Isotopic Ratio Mass Spectrometer coupled with Multi-
Flow in KLMMCAS. About 0.1 mg powder sample was loaded in a sam-
ple vial and reacted with 100% H3PO4 at 90 °C for N2 h, then CO2 was
dried andmeasured by IRMS. Carbon and oxygen isotopic compositions
were written to VPDB with unit of per mil, carbon and oxygen isotopic
values were corrected by NBS19, the precisions were both better than
0.15 per mil.

The graphite was crushed to 200 mesh for organic carbon isotopic
analyses. Carbon content and carbon isotopic composition in total or-
ganic carbon (TOC) were measured with an Isoprime 100 Isotopic
Ratio Mass Spectrometer coupled with Pyro cube Elemental Analyzer
in State Kay Lab of Isotope Geochemistry, GIG, CAS. Powder samples
were loaded in a tin boat and combusted at 920 °C with flush O2 and
CuO, then CO2 was dried and separated by column and measured by
TCD and IRMS for carbon content and isotopic composition, respective-
ly. Carbon isotopic compositions were written to VPDB with unit of per
mil, whereas the carbon isotopic values were corrected by IAEA-CH3
and IAEA-CH7. The precisionwas 2% for TOC content and 0.15‰ for car-
bon isotopic composition, respectively.

4.6. Hydrogen and oxygen isotopes

Quartz grainswere extracted from crushed andwashed sample frag-
ments, and purified by hand picking under a binocular microscope. The
hydrogen and oxygen isotopes were analyzed on a Finnigan MAT253
mass spectrometer in the Analytical Laboratory, Beijing Research
Institute of Uranium Geology. Oxygen was liberated from quartz by re-
action with BrF5 (Clayton et al., 1972) and converted to CO2 on a plati-
num-coated carbon rod. Water from FIs in quartz was released by
heating the samples in an induction furnace. Then the water would
react with glassy carbon to generate hydrogen (Liu et al., 2013). All
data were normalized with V-SMOW standards with analytical preci-
sions better than ±0.2‰ and ±1‰ for δ18O and δD, respectively.

5. Results

5.1. Fluid inclusion petrography

5.1.1. Fluid inclusion types
Primary FIs have generally negative crystal- or elliptical shapes,

and occur in clusters or as isolated/randomly distributed FIs in
quartz. Four primary FI types were identified based on their phases
at room temperature (Roedder, 1984; Lu et al., 2004), phase transi-
tions during total homogenization and laser Raman spectroscopy.
These FI types were summarized in Table 1 and described in the fol-
lowing sections.

1) L-type (liquid-rich) FIs: They (5 to 23 μm in size) contain 10 to
35 vol.% vapor phases, with both the liquid- and vapor phases com-
prising primarily H2O. They are commonly irregular or negative
crystal in shape (Fig. 6A and G), occurring in clusters or scattered
in quartz.

2) V-type (pure vapor or vapor-rich) FIs: They consist primarily of pure
vapor (some with b30 vol.% liquid) and comprise mainly H2O. They
are mainly elliptical and range in size from 8 to 20 μm (Fig. 6C). V-
type FIs are randomly distributed and coexist with S-type FIs (Fig.
6H).

3) S-type (daughter mineral-bearing) FIs: They occur in negative crys-
tal or elliptical shapes, and contain 10 to 30 vol% of vapor. These FIs
(5 to 30 μm in size) contain abundant daughterminerals, such as ha-
lite, sylvite, calcite and opaque minerals (Fig. 6B, E, H, and I). The FIs
are distributed randomly or in clusters (Fig. 6H and I).

4) C-type (CH4-rich) FIs: As identified by the Laser Raman spectroscopy
and microthermometry, these FIs consist mainly of CH4 vapor phase
(N75% vol.%) and H2O liquid phase. They are generally 5 to 25 μm in
size and have negative crystal or elliptical shapes (Fig. 6F). These FIs
occur as isolated FIs or in clusters (Fig. 6I), and commonly coexist
with S-type FIs in Q3.

5.1.2. Occurrence and temporal relationship of fluid inclusions
Our study shows that the Stages I and II FIs are significantly different

in their types, assemblages and compositions.

1) Q1: FIs in quartz from the banded ores are rare because most quartz
was recrystallized during the subsequent deformation and meta-
morphism. However, Q1 from the banded ores remained unstrained
because they are inside the sulfides (Fig. 7A and B). Systematic



Table 1
Overview of fluid inclusion types of the Luojiahe Cu deposit.

Type Fluid phases Daughter minerals Size (μm) Vol.% Shape Occurrence

L VH2O + LH2O 5–23 10–35 Irregular or negative crystal In clusters or scattered
V VH2O or VH2O + LH2O 8–20 N70 Elliptical Randomly distributions
S VH2O + LH2O Halite, sylvite, calcite, opaque metal minerals 5–30 10–30 Negative crystal or elliptical Randomly distributions or in clusters
C VCH4 or VCH4 + LH2O 5–25 N75 Negative crystal or elliptical Isolated or in clusters

Abbreviations: VCH4: CH4 vapor; VH2O: H2O vapor; LH2O: H2O liquid; vol.%: the volume proportion of the vapor phase.
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petrographic observation shows that L-type FIs, as disseminations or
in clusters, are predominant in Q1 (Figs. 6G and 7C).

2) Q2: FIs are mainly of S- and V-type, which coexist mainly in clusters
(Fig. 6H). Halite is the only daughter mineral identified.

3) Q3: The abundant FIs consist primarily of S- (dominant), C- and L-
type. The daughter minerals identified include mainly halite, calcite
and opaque minerals, with several daughter mineral types
coexisting in one single S-type FI present in some occasions (Fig.
6E). C-type FIs are also widespread and commonly coexist with S-
type FIs (Fig. 6I). L-type FIs occur in disseminations.
Fig. 6. Photomicrographs of the Luojiahe fluid inclusions (FIs). (A). Stage I L-type FIwith VH2O an
and LH2O. (D). Stage II L-type FI with VH2O and LH2O. (E). Stage II S-type FI with halite and calcit
Stage I L-type FIs in Q1. (H). Stage I V- and S-type FIs coexist in Q2. (I). Stage II C- and S-type FIs
vapor; VH2O = H2O vapor; LH2O = H2O liquid; Hal = halite; Cal = calcite; Ccp = chalcopyrite
5.2. Microthermometric results

Results of the FI microthermometric analyses are listed in Table 2
and illustrated in Figs. 8 and 9. Microthermometric features of the vari-
ous types of FIs were described below.

1) L-type FIs: They are highly common in both Stages I and II. For those
in Q1 (Stage I), the eutectic temperatures range from −62.4 to
−51 °C. Most of the data cluster around −52 °C, and thus the
CaCl2-NaCl-H2O system was chosen to estimate the salinity (Oakes
d LH2O. (B). Stage I S-type FIwith a halite daughtermineral. (C). Stage I V-type FI with VH2O

e daughter minerals. (F). Stage II C-type FI with VcH4 and LH2O. (G). Randomly distributed
coexist in Q3. The upper left photo taken under reflected light. Abbreviations: VcH4= CH4

.

Image of Fig. 6


Fig. 7. Photomicrographs of the Stage I unstrained quartz grains (Q1) and their FIs. (A) and
(B). Q1 in chalcopyrite with straight grain boundary. (C). L-type FIs in Q1. Abbreviations:
Qtz = dolomite; Ccp = chalcopyrite.

Table 2
Microthermometric data of fluid inclusions in the Luojiahe Cu deposit.

Stage Quartz type Inclusion type Number Tm,CH4 (°C) ThCH4 (°

I Stage Q1 L 62
Q2 V 11
Q2 S 56

II Stage Q3 S 74
Q3 C 36 −182.5 to −182.9 −89.5 to
Q3 L 26

Tm,CH4 (°C): melting temperature of CH4; ThCH4 (°C): partial homogenization temperature of
final homogenization temperature.
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et al., 1990; Chi andNi, 2007). Icemelting temperatures of the L-type
FIs vary from −37.5 to −23.6 °C, with corresponding salinities of
23.9–27.9wt.%NaCl equiv. (Fig. 8A and B). The total homogenization
to liquid occurred at 125 to 220 °C. In contrast, the L-type FIs of Q3
(Stage II) have eutectic temperatures varying from −21.2 to
−20.8 °C, representing a NaCl-H2O system. The different systems
between the L-type FIs in Q1 and Q3 indicate that they were derived
from different fluid sources. The L-type FIs in Q3 have ice melting
temperatures of −12.1 to −7.1 °C, and salinities of 10.6–15.9 wt.%
NaCl equiv. (Fig. 8C and D). The L-type FIs in Q3 have higher homog-
enization temperatures (192–305 °C) than their Q1 counterparts.

2) V-type FIs: The V-type inclusions in Q2 have eutectic
temperatures of −21.2 to −20.6 °C, ice melting temperatures of
−4.3 to −1.2 °C, and salinities of 2.1 to 6.9 wt.% NaCl equiv. Their
homogenization temperatures vary from 265 to 363 °C. Only a few
successful runs were obtained, and most of the V-type FIs with
high vapor/liquid ratios decrepitated during heating.

3) S-type FIs: S-type inclusions in Q2 usually homogenized by halite
disappearance (rarely by vapor bubble disappearance) at 249–
339 °C, with corresponding salinities of 34.5–42.2 wt.% NaCl equiv.
(Fig. 8A and B). All the S-type FIs in Q3 homogenized by halite disap-
pearance at 225–350 °C, with corresponding salinities of 34–
43.2 wt.% NaCl equiv. (Fig. 8C and D).

4) C-type FIs: When cooled below−100 °C, C-type FIs in Q3 nucleated
a vapor bubble and all phases were frozen at−182.5 to −182.9 °C.
These FIs partially homogenize to liquid at−89.5 to−95.8 °C (Fig.
9). Given that the critical point temperature of CH4 is −82.6 °C,
the fluid composition is predominated by CH4 (Buruss, 1981;
Ramboz et al., 1985; Fan et al., 2000). Minor gases of other types
may be present, but theywere not detected in the laser Raman spec-
troscopy analysis (Fig. 11B). The C-type FIs with large bubble vol-
umes decrepitated at 261–355 °C, and thus their homogenization
temperatures could not be obtained.
5.3. Laser Raman spectroscopy analysis

Laser Raman spectroscopy analysis shows that the vapor phase com-
positions of C-type FIs are primarily CH4 (2914 cm−1; Fig. 11B), consis-
tent with the microthermometric results (Fig. 9). H2O is the dominant
vapor phase composition for all V-, S- and L-type FIs (Fig. 11A and D).
Calcite (1083 cm−1; Fig. 11C) daughter mineral was identified in the
S-type FIs from Q3.

5.4. Carbon and oxygen isotopes

Carbon and oxygen isotopic data of this study and compiled from
Zhen et al. (1993)were presented in Table 3 and Fig. 12. The Stage II cal-
cite shows an elongated data distribution in the C-O isotope diagram
(Fig. 12). The δ18OV-SMOW values exhibit a relatively narrow range
(10.75 to 12.20‰), indicating a relatively uniform oxygen isotopic com-
position, whereas the δ13CV-PDB values exhibit a considerably wider
range (−4.58 to −10.83‰). Most of the data points fall within the
C) Ti (°C) Tm,ice (°C) Th (°C) Salinity (wt.% NaCl)

−62.4 to −51 −37.5 to −23.6 125–220 23.9–27.9
−21.2 to −20.6 −4.3 to −1.2 265–363 2.1–6.9

249–339 34.5–42.2
225–350 34–43.2

−95.8
−21.2 to −20.8 −12.1 to −7.1 192–305 10.6–15.9

CH4; Ti (°C): first ice-melting temperature; Tm,ice (°C): temperature of ice point; Th (°C):

Image of Fig. 7


Fig. 8. Histograms of salinities and homogenization temperatures for the Stages I and II FIs.
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field of the Besshi mafic volcanogenic hydrothermal carbonate (Biondi
et al., 2013).

Organic carbon isotopic analysis for graphite shows that the
δ13CV-PDB values vary from −32.01 to −39.16‰. Organic carbon isoto-
pic data of this study and those in the previous literatures are presented
in Fig. 13.
5.5. Hydrogen and oxygen isotopes

Hydrogen and oxygen isotopic compositions of four Q2 and Q3
quartz samples were listed in Table 4. The δ18OH2O were calculated
using the equation 1000lnαquartz–H2O = 3.38 × 106 T−2 − 3.40
(Clayton et al., 1972). The average temperatures of the Q2 and Q3 FIs
are 279 °C and 307 °C, respectively. The δ18O of quartz is of 11 to
11.7‰, corresponding to δ18OH2O of 3.3 to 5.0‰. The δDH2O varies
from −42 to −64.7‰.
Fig. 9. Histogram of the partial homogenization temperatures of C-type FIs. Photomicrograph
nucleated a vapor bubble and all phases were frozen at −182.8 °C. It homogenized partially to
6. Discussion

6.1. Primary fluid compositions and characteristics of VMS mineralization

6.1.1. Preservation of primary fluid inclusions
The preservation of primary FIs in metamorphosed VMS deposits is

highly controversial (Ripley and Ohmoto, 1977; Broman, 1987; Hall,
1989; Giles and Marshall, 1994; de Ronde et al., 1997; Lowe and
Byerly, 2003; Moura, 2005; Bradshaw et al., 2008; Xu et al., 2011).
Ripley and Ohmoto (1977) first reported that primary FIs in the Raul
VMS Cu deposit (Peru) underwent amphibolite-facies metamorphism.
Many subsequent studies also supported that primary FIs in metamor-
phosed VMS deposits could be preserved, e.g., at the Skellefete
metallogenic province (northern Sweden) (Broman, 1987), Barberton
greenstone belt (South Africa) (de Ronde et al., 1997), and the Gacun
VMS deposit (China) (Hou et al., 2001), yet such conclusion was also
disputed by many others (Hall, 1989; Giles and Marshall, 1994;
s show the microthermometric process of a representative C-type FI in Q3. The C-type FI
liquid at−90.9 °C.

Image of Fig. 8
Image of Fig. 9


Fig. 10.Homogenization temperatures vs. salinities diagram for the Stages I and II FIs. (A).
S- and V-type FIs in Q2 have similar homogenization temperatures, showing fluid
unmixing features. Their salinities have a relatively narrow range despite the decrease of
the homogenization temperatures, suggesting a mixing between hot evolved seawater
and cold seawater. (B). Homogenization temperatures vs. salinities diagram for the
Stage II S- and L-type FIs.
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Marshall et al., 2000), which argued that all the FIs in metamorphosed
VMS deposits should have been (post)-metamorphic (Marshall et al.,
2000).

Moura (2005) recently reported the presence of both primary
exhalative fluids (in massive sulfide ores) and metamorphogenic fluids
(in stockwork ores) at the Neves Corvo VMS deposits (Iberian Pyrite
Belt). Our study on the Luojiahe FIs also shows that the quartz grains
(Q1) in the banded ore sulfides can also preserve primary FIs (Fig. 7C).
Actually, asmost of the quartz grains in the banded ores were recrystal-
lized during subsequent deformation and metamorphism, the majority
of primary inclusions have been eliminated. However, Q1 remained un-
strained because the ductile nature of the hosting-sulfides can take up
the strain during metamorphism (Fig. 7A and B). Thus, Q1 can preserve
the primary fluid inclusions.

6.1.2. High salinity evolved seawater

6.1.2.1. H2O-NaCl-CaCl2 fluid system. Recent crushing/leaching analyses
of VMS fluid composition confirmed the presence of Ca2+ (Graupner
et al., 2001). Geochemical experiments also showed that seawater-ba-
salt interaction could produce Cu-rich Na-Ca-Cl solution (Bischoff and
Dickson, 1975), thus it is well accepted that the VMS fluids consist of a
H2O-NaCl-CaCl2 system (Steele-MacInnis et al., 2011; Bodnar et al.,
2014).
The eutectic temperatures (ca.−52 °C) of the L-type FIs in Q1 dem-
onstrated that the ore-forming fluid system was a H2O-NaCl-CaCl2 sys-
tem. In fact, it was associated with the spilite located in the bottom of
the orebodies (Fig. 3). Given that spilite was supposed to be altered
and weakly metamorphosed basalt, they played an important role in
the mass balance of Ca and Na in the rocks and hydrothermal systems
(Staudigel, 2014). Thus, the H2O-NaCl-CaCl2 fluid system of the L-type
FIs in Q1 could represent the evolved seawater that reacted with origi-
nal basalt at Stage I.

6.1.2.2. High salinity and low temperature fluid system. As shown in the
Figs. 8B and 10A, the Stage I L-type FIs have significantly higher salinity
(23.9–27.9 wt.% NaCl equiv.) than typical VMS deposits (3.0–10 wt.%
NaCl equiv.; Hou et al., 2008). This may have been led by:

1) The long-lived cratonic bodies are absent in the Archean, whichmay
have prevented the evaporite deposition and thus the brine
preservation in sedimentary basins (Knauth, 2005). As a conse-
quence, Archean seawater was almost three times more saline
thanmodern seawater (Knauth, 2005;Huston et al., 2010). Available
FI data also indicate that the ore-forming fluids of some Archean and
Proterozoic VMS deposits have salinity of 6–24 wt.% NaCl equiv.
(Huston et al., 2010).

2) Magmatic-hydrothermal activities may further increase the fluid
salinity (e.g., Millenbach, 27–47 wt.% NaCl equiv.: Lao, 1982;
Mattagami Lake, 20–35 wt.% NaCl equiv.: Costa et al., 1983; see
Section 6.1.3; Fig. 10A).

The L-type FIs in Q1 have relatively low homogenization tempera-
ture (125 to 220 °C), consistent with typical VMS deposits (100–360 °
C) (Bodnar et al., 2014). Their salinities have a relatively narrow range
despite the decrease of the homogenization temperatures (Fig. 10A),
which may represent a mixing between the hot evolved seawater and
cold seawater in the near-surface environment (Fig. 10A; Franklin
et al., 2005; Hou et al., 2008). The mixing can change the temperature
and pH of the ore-forming fluids, leading to the Stage I metal
precipitation.

6.1.3. Magmatic fluids and fluid unmixing
The VMS hydrothermal fluid system comprises a variable mix of

evolved seawater (dominant) and magmatic fluids (Franklin et al.,
1981; Huston et al., 2010). In some cases, magmatic degassing releases
high temperature, saline and metal-rich fluids into the seafloor hydro-
thermal systems, and play an important role in the VMS metallogeny
(e.g., Costa et al., 1983; Yang and Scott, 1996; Shanks, 2001; Yang and
Scott, 2005; Hou et al., 2008; Chen et al., 2015; Seewald et al., 2015).

Our study shows that the compositions (H2O-NaCl system) and FI
assemblages (S-type and V-type FIs) of Q2 are totally different from
Q1 (H2O-NaCl-CaCl2 system and L-type FIs). Different from the evolved
seawater represented by FIs in Q1, the FIs in Q2 may signify the partic-
ipation ofmagmaticfluids in the Stage Imineralization, as evidenced by:

1) High temperature (249–339 °C; Fig. 8A) and salinity (34.5–42.2wt.%
NaCl equiv.; Fig. 8B) of the S-type FIs in Q2 are consistent with a
magmatic origin (Yang and Scott, 1996; Franklin et al., 2005; Hou
et al., 2008).

2) The sample fromQ2has hydrogen andoxygen isotopic compositions
extremely close to themagmatic water box (Fig. 14), suggesting that
the fluids were possibly predominantly magmatic.

3) The S-type and V-type FIs in Q2 have highly similar homogenization
temperature ranges, but are very different in terms of their salinity
ranges and ways of homogenization (Fig. 10A). The coexistence of
the two Q2 FI types suggests that the fluid systemmay have experi-
enced local unmixing (Fig. 6H), which may have been caused by the
pressure fluctuation during the upward migration of magmatic
fluids along syn-volcanic fractures (Vanko, 1988; Zaw et al., 1994;

Image of Fig. 10


Fig. 11. The laser Raman spectra of FIs. (A). H2O-spectra of the vapor in a L-type FI fromQ1. (B). CH4-spectra of the vapor in a C-type FI fromQ3. (C). Calcite-spectra of the daughtermineral
in a S-type FI from Q3. (D). H2O-spectra of the vapor in a V-type FI from Q2.
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Moura, 2005), leading to the stockwork ore formation (Hou et al.,
2008).

As mentioned in Section 6.1.2.2, ascending of the high salinity mag-
matic fluids may contribute to the elevated salinity of the shallow
evolved seawater (Fig. 10A).

6.2. Sources of CH4-rich fluids and their role in Stage II mineralization

6.2.1. Sources of CH4-rich fluids
The widespread CH4-rich FIs (C-type) in Q3 indicate that CH4 may

have been important in the Stage II Cu mineralization. CH4-rich FIs
werewidely reported in different ore deposit types, e.g., Archean green-
stone-hosted Au deposits (Naden and Shepherd, 1989; Fan et al., 2000;
Polito et al., 2001), reduced porphyry Cu deposits (Shen et al., 2010; Cao
et al., 2014a, 2014b), sediment-hosted stratiform Cu deposits
Table 3
Carbon and oxygen isotopes from the Luojiahe copper deposit. δ18OV-SMOW(‰) = 1.03091
× δ18OV-PDB(‰) + 30.91, according to Coplen et al. (1983).

Sample δ18O VPDB δ13C VPDB δ18OV-SMOW Reference

Mineralized calcite of the II stage
14LJK6-1 −18.66 −4.58 11.67 This study
LJH6-1 −18.32 −6.03 12.02 This study
LJH4-7 −18.15 −6.66 12.20 This study
13LJH1-1 −19.55 −10.83 10.75 This study
L600-1 −17.32 −5.92 12.66 Zhen et al. (1993)

Barren ore-bearing calcite in spilite
LY-72 −17.74 −1.36 12.24 Zhen et al. (1993)

Barren ore-bearing calcite in chlorite schist
LY-349 −19.07 −0.96 10.91 Zhen et al. (1993)

Graphite in chlorite schist
13LJK2-5 −37.50 This study
LJK2-1 −32.17 This study
LJK2-1b −32.01 This study
LJK2-4 −39.16 This study
(McGowan et al., 2003), and epithermal Au-Ag deposits (Albinson et
al., 2001). Although CH4 was detected in both fossilized VMS systems
and modern submarine hydrothermal vents (Lilley et al., 1993; Hou et
al., 2008), the reports about FIs containing CH4 as a discrete and signif-
icant phase in VMS systems are still rare.

In general, CO2 is the dominant volatile component of ore-forming
fluids in metamorphosed VMS deposits (Inverno and Solomon, 2001;
Chen et al., 2007; Bradshaw et al., 2008; Xu et al., 2011), whose genera-
tion was interpreted to be caused by metamorphic devolatilization of
the host rocks (Cartwright and Oliver, 2000). Sowhy the significant vol-
atile of metamorphic ore-forming fluids in the Luojiahe deposit is CH4
Fig. 12. Carbon- and oxygen isotopic compositions of the Luojiahe Cu deposit. Fields of
magmatic carbonate and Besshi mafic volcanogenic hydrothermal carbonate are from
Biondi et al. (2013); Precambrian- and Phanerozoic limestone data are from Bell and
Simonetti (2010); Organic carbon data are from Longstaffe (1989).

Image of Fig. 11
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Fig. 14. Hydrogen- and oxygen isotopic compositions of the Luojiahe Cu deposit. Fields of
primary magmatic waters and metamorphic waters are from Taylor (1974).

Fig. 13.Organic carbon isotopic compositions of the Luojiahe graphite. The carbon isotopic
data of the Pilbara sediments, Isua BIF and BIF on Akilia island are from Mojzsis et al.
(1996). The data of marine carbonate, marine bicarbonite, atmospheric CO2, dissolved
CO2, and methanogenic bacteria are from Schidlowski (2001). Field of organic carbon is
from Longstaffe (1989).
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rather than CO2? More importantly, as the ore-hosting chlorite schist
contains abundant graphite, the equilibria between devolatilization-re-
leased H2O and graphite may have controlled the oxygen fugacity (fO2)
of the graphite-rich strata (French, 1966; Frost, 1979). Furthermore, the
compositions of metamorphic C-H-O fluids are sensitive to tempera-
ture- and fO2 changes (Holloway, 1981; Crawford and Hollister, 1986).
Thus, the presence of graphite in the wall rocks may have significantly
influenced themetamorphic fluid compositions. Based on experimental
evidence and geological conditions, Holloway (1984) pointed out that
at below 300 °C (or up to 400 °C in highly saline systems), metamor-
phism of graphite-bearing rocks would produce CH4-H2O rather than
CO2-H2O fluids. Based on our Luojiahe FI and stable isotopic data, we
propose that the CH4 was resulted from the interaction between the
metamorphic ore-forming fluids and the graphite in the chlorite schist,
as illustrated by the following equation (Bottrell et al., 1988):

C þ 2H2O ¼ CH4 þ 2½O�: ð1Þ

[O] in reaction (1) denotes chemically bound oxygen rather than
free O2 in the fluid phase. This oxygen can be partly balanced by the re-
action with graphite to produce CO2, but the temperature conditions
and the presence of graphite would constrain the CO2 development in
the fluids (Holloway, 1984). Regarding the absence of CO2, the presence
of calcite in S-type FIs and in themineralized veins/alteredwall-rocks at
Luojiahe (Figs. 5D and 6E), the liberated CO2 and [O] may be confined in
calcite by reacting with Ca in the metamorphic ore-forming fluids
(Bottrell et al., 1988):

CaðaqÞ þ CO2 þ ½O� ¼ CaCO3: ð2Þ
Table 4
Hydrogen and oxygen isotopes for quartz from the Luojiahe copper deposit. δ18OH2O (‰)
values are calculated according to Clayton et al. (1972).

Sample Vein type Th (°C) δ18Oquartz δ18OH2O δ18DH2O

LJK1-9 Q2 307 11.7 5.1 −51.7
14LJK6-3 Q3 279 11.3 3.6 −44.8
13LJH5-2 Q3 279 11.0 3.3 −64.7
LJA1-1 Q3 279 11.2 3.5 −42.0

Abbreviation: Th: average homogenization temperature of every vein type.
We thus propose that the CH4 enrichment was due to the reactions
with the graphite (Fig. 15), as evidenced by:

1) Themicrothermometric results show that the S- and L-type FIs in Q3
have homogenization temperatures of 192 to 350 °C, with corre-
sponding salinities of 10.6–43.2 wt.% NaCl equiv. (Figs. 8C, D, and
10B). The temperatures are comparable with greenschist-facies
metamorphism at Luojiahe (Zhen et al., 1993). These temperatures
and salinities are also consistent with the formation of the CH4-
H2O system (below 400 °C; salt-rich systems) (Holloway, 1984)
mentioned earlier.

2) Hydrogen and oxygen isotopic results show that the Q3 fluids were
likely to be metamorphic (Fig. 14). Metamorphic water can be pro-
duced by metamorphic devolatilization of mafic-ultramafic rocks,
which have reacted with low-medium temperature hydrothermal
fluids following their formation (Cartwright and Oliver, 2000).
Thus, as one of the two reactants in the reaction (1), H2O may have
been derived from metamorphic devolatilization of the Luojiahe
spilite and chlorite schist.

3) The Stage II calcite has a considerably wide range of carbon isotopic
compositions (−4.58 to −10.83‰), with the lowest value
(−10.83‰) probably reflecting an organic carbon source (Fig. 12).
Given that the carbon isotopic fractionation between minerals and
fluids does not depend significantly on temperature (O'Neil et al.,
1969), the C-O isotopic trend in Fig. 12 may have been led by
the mixing of different carbon isotope sources. By contrast, the
δ13CV-PDB of graphite in the Luojiahe chlorite schist is of −32.01 to
−39.16‰ (Table 3), indicating clearly an organic origin (Fig. 13).
Thus, we propose that the metamorphic ore-forming fluids may
have exchanged carbon isotopes with the graphite.

6.2.2. Metallogenic role of CH4-rich fluids at Stage II
With reaction (1) proceeding, the ore-forming fluids at Luojiahe

may have been reduced by graphite, and the fluid system's fO2 buffered
by reaction (1). Thus, the equilibration between the metamorphic ore-
forming fluids and graphite is crucial to the Stage II mineralization. As
CH4 was released into the fluid phase, the CH4-NaCl-H2O fluid system
was formed. However, this system was unstable because the presence
of NaCl would significantly increase the range of CH4-H2O immiscibility
by expanding the compositional range of fluid unmixing and raising the
temperature of the consolute point (Takenouchi and Kennedy, 1964;
Naumov et al., 1974; Gehrig et al., 1979; Crawford and Hollister,
1986). Accompanied by the H2O consumption in the ore-forming fluids
by reaction (1), the fluids would become even more saline. Finally, CH4

saturation in the fluid systemwould result in the occurrence of two im-
misciblefluid phases: CH4-richfluid andNaCl brine. This can explain the
coexistence of C- and S-type FIs in Q3 (Fig. 6I). In addition, the CH4

Image of Fig. 14
Image of Fig. 13


Fig. 15. Model of the redox reactions and fluid mineralization mechanism at Stage II.
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escape may have triggered changes in the physicochemical conditions
of the ore-forming fluids, further promoting the Stage II mineralization.

6.3. Origins of graphite and microbial generation in VMS systems

As aforementioned, the occurrence of abundant graphite in the
Luojiahe chlorite schist is critical to the Stage II mineralization, and
thus the origin of graphite is worthy to explore. In many Archean sedi-
mentary strata, biogenic graphite has commonly δ13CV-PDB of below
−19‰ (Fig. 13). Carbon isotopic analysis shows that the δ13CV-PDB

values of our graphite samples fall in the range of−40 to−10‰, largely
indicative of biogenic carbon sources (Mojzsis et al., 1996; Rosing, 1999;
Schidlowski, 2001). The Luojiahe carbon isotopic data also fall in the
Akilia island BIF field (Fig. 13), which was interpreted to represent the
possible earliest life on Earth (Mojzsis et al., 1996).

Nevertheless, the conclusion on graphite derived from organic mat-
ter is ambiguous only on the basis of carbon isotopic values
(Schidlowski, 2001; Brasier et al., 2002; van Zuilen et al., 2003;
Bernard and Papineau, 2014). We propose that graphite in the Luojiahe
copper depositwas derived fromoriginal sedimentary organicmatter in
seafloor hydrothermal vent systems. The evidence is as follows:

1) The Archean VMS systems were favorable for the thriving of micro-
bial communities, as demonstrated by the abundant microfossils
(thermophilic chemotropic prokaryotes) in the Paleoarchean (ca.
3235 Ma) VMS deposit in the Pilbara Craton (West Australia)
(Rasmussen, 2000). McCollom (2000) suggested that the biomass
generated in seafloor hydrothermal systems is ca. 1000 times more
than normal seafloor environment, due mainly to the near-continu-
ous supply of nutrients andmetals essential for microbial growth by
the hydrothermal fluids (Seyfried et al., 2015; Westall et al., 2015).
Furthermore, the Fe-rich basaltic (e.g., with Fe-rich spilite) environ-
ment in the Archean ocean also promoted the development of sul-
fate-reducing microbes (Crowe et al., 2014; Ueno, 2014). For the
Luojiahe case, such biomass accumulated during the VMS minerali-
zation may have transformed into graphite in the subsequent
metamorphism.

2) The calculations by Katsev and Crowe (2015) suggest that the buried
fraction of deposited organic carbon may have been 6–40 times
higher in Precambrian anoxic oceans than today. The Precambrian
anoxic oceans preserved organic carbon better, as also supported
by the common existence of graphite in many Archean greenstone
belts (Springer, 1985).

3) Thermodynamic equilibria show that the graphite 13C/12C increases
with increasing metamorphic grade (Schidlowski, 2001), and meta-
morphic overprinting always pushes up δ13CV-PDB to more positive
values (Buseck and Beyssac, 2014). The lowermost δ13CV-PDB values
of graphite are consequently the least exchanged and most original
(Schidlowski, 2001). Therefore, the relatively low δ13CV-PDB
(−32.01 to −39.16‰) of the Luojiahe graphite was unlikely to be
resulted from metamorphic overprint.

6.4. Mechanism of fluid mineralization

A series of Neoarchean greenstone-hosted VMS Cu deposits were re-
cently discovered in the Wutai Greenstone Belt (Trans-North China
Orogen) (Li et al., 2004; Polat et al., 2005; Niu et al., 2009). The Wutai
VMS deposits were spatially associated withmafic volcanic-sedimenta-
ry sequences and were modified by subsequent metamorphism (Li et
al., 2004). The ore-forming environment, mineralization characteristics
and formation ages of the Wutai VMS Cu deposits are comparable with
the Luojiahe Cu deposit in the ZTS. The Luojiahe copper deposit also ex-
perienced two mineralization stages, including primary VMS minerali-
zation (Stage I) and metamorphic remobilization (Stage II). Here, we
propose a newmodel of the hydrothermal fluid evolution and mineral-
ization for the Luojiahe Cu deposit.

At Stage I, the heating of the underlying syn-volcanic magmas in-
duced the interaction between themodified seawater and the upper ba-
salt, producing a Cu-rich H2O-NaCl-CaCl2 hydrothermal fluid system.
With the heated Cu-bearing fluids migrating upwards along syn-volca-
nic faults onto the seafloor or into the shallow and permeable
volcaniclastic rocks, fluid mixing between the hot evolved seawater
and cold seawater may have occurred. This may have changed the tem-
perature and pH of the ore-forming fluids and precipitated the metals.
Organic activities in near-surface environment may have participated
to fix chalcophile elements into the sulfides (Franklin et al., 2005). In ad-
dition, high temperature and salinity fluidsmay have yielded during the
fluid unmixing, caused possibly by the pressure fluctuation during the
magmaticfluid percolation along fractures. The originalmagmaticfluids
may have separated into a low density vapor phase and a high salinity
liquid phase, resulting in the formation of stockwork ores.

At Stage II, the primary VMS ores were remobilized by metamor-
phism during the Zhongtiao Movement. Massive metamorphic water
may have been produced by metamorphic devolatilization of the ore-
hosting spilite and chlorite schist. With the metamorphic ore-forming
fluids migrating into graphite-rich chlorite schist, the graphite-H2O in-
teraction may have reduced the ore-forming fluids, released CH4 into
the fluid phase and precipitated Cu (Fig. 15). With the consumption of
H2O in the hydrothermal fluid system, the consequent salinity increase
may have led to CH4 saturation in the CH4-NaCl-H2O fluid system (Fig.
15), and the subsequent fluid unmixing may further promote the
Stage II mineralization.

7. Conclusions

1. The Luojiahe Cu deposit underwent two mineralization stages, i.e.,
primary VMS mineralization (Stage I) and metamorphic remobiliza-
tion (Stage II). The Stage I ore-forming fluids consist predominantly

Image of Fig. 15
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of evolved seawater (125–220 °C; 23.9–27.9 wt.% NaCl equiv.) and
minor magmatic fluids (249–339 °C; 34.5–42.2 wt.% NaCl equiv.).

2. The main Stage I mineralization may have led by 1) fluid mixing of
heated evolved seawater and cold seawater in the near-surface envi-
ronment; and 2) fluid unmixing led by magmatic fluids percolating
into syn-volcanic faults, forming the stockwork ores.

3. The Stage II ore-forming fluids comprise CH4-rich metamorphic
fluids (192–350 °C; 10.6–43.2 wt.% NaCl equiv.).

4. The graphite-H2O interaction may have generated CH4, reduced the
ore-forming fluids and precipitated Cu (Stage II). The consequent
H2O consumption in the hydrothermal fluid system increased the
fluid salinity and may have triggered the fluid unmixing in the CH4-
NaCl-H2O system, further enhancing the Stage II Cu mineralization.

5. Graphite in the Luojiahe Cudepositmayhave been derived from sed-
imentary organic matter formed in the seafloor hydrothermal vent
system.
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