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A B S T R A C T

Environmental magnetism has been widely used as a rapid, cost-effective, and non-destructive method in various
fields including sediment source identification. Nineteen surface sediments from ten transects in the Pearl River
Estuary (PRE) and its adjacent seas were studied for magnetic measurements. Combined with mineral analysis
for representative samples, magnetic implications for provenance are discussed. The results indicate that con-
centration-dependent magnetic parameters decrease gradually and change sharply between the PRE and its
adjacent waters. The magnetic mineral assemblage is basically consistent at all sites, i.e. consisting of magnetite
and hematite. However, the grain size of magnetite particles is clearly different probably due to different ma-
terial sources. Magnetic parameters allow separating the sediments from the PRE and its adjacent seas into three
groups, more distinctively than deduced from clay mineral analysis. These new findings indicate that magnetic
properties of surface sediments bring complementary information of material source as well as marine geology.

1. Introduction

The study on provenance in the estuary-ocean area is not only an
important field of sedimentology, but also directly related with the
marine geological problems such as characteristics of seabed, marine
evolution, ocean currents, etc. The South China Sea (SCS) is one of the
typical largest margin seas. Its northern part receives sediments from
various sources including the Pearl River (PR), the Red River, the
Taiwan Island, and the Luzon Island (Liu et al., 2008). The contribution
of these different sources to the sediments in the SCS has attracted
much attention. Many researchers have attempted to identify the se-
diment provenances of the northern SCS using sedimentological, geo-
chemical, and mineralogical methods (Shao et al., 2000; Zhang et al.,
2002; Tang et al., 2009; Cai et al., 2010; Li et al., 2011; Yan et al., 2012;
X.F. Zhang et al., 2012). Shao et al. (2009) analyzed Nd isotopic
compositions of recent sediments in the northern SCS and found that
materials from the PR mainly influence the southwestern area of the
Lingdingyang to Dongsha Island. Ge et al. (2010) suggested that kao-
linite within the northern SCS sediments mostly came from the PR,
while illite and chlorite are sourced from the Changjiang River and the

Taiwan Island. Z.F. Liu et al. (2007) analyzed clay minerals of surface
sediments from the PR drainage basin and discussed their contribution
to the SCS. They found that the clay mineral assemblage of the PR se-
diments dominantly consists of kaolinite, with less chlorite and illite,
and very scarce smectite. They concluded that “the maximum con-
tribution of clay minerals from the PR is 72% in the northern margin
and only 15% in the northern slope of the South China Sea”. Liu et al.
(2010a) confirmed the clay mineral assemblage as an indicator of the
PR input and suggested that materials from the PR were predominantly
distributed in the area between the PR estuary and northeast of Hainan
Island.

Magnetic methods have been widely used for researching paleo-
environmental evolution as well as modern environmental pollution
due to its fast, economical and non-destructive application (Thompson
and Oldfield, 1986; Evans et al., 1997; Maher, 2007; Su et al., 2015).
Magnetic properties of marine sediments often provide reliable in-
formation on environmental change (Kumar et al., 2005; Sangode et al.,
2007; Yang et al., 2008; Zheng et al., 2010). In particular magnetic
concentration parameters such as magnetic susceptibility (MS) have
become a kind of basic data for marine sediment research (Evans and
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Heller, 2003; Yim et al., 2004; Ghilardi et al., 2008; Mohamed et al.,
2011). Identifying sediment provenances is one important application
of magnetic measurements (Yu and Oldfield, 1989; Hatfield and Maher,
2009; Lyons et al., 2012; Larrasoaña et al., 2015). Though interpreta-
tion of magnetic features of marine sediments is complex due to various
influencing factors such as terrigenous input and diagenesis of magnetic
minerals, magnetic characteristics of marine surface sediments can be
regarded as an effective means for identification of sediment prove-
nance (Walden et al., 1997; Rotman et al., 2008; Nguyen et al., 2016).

Recently, magnetic data has been used to identify the origin of
surface sediments in the SCS (Liu et al., 2010b). Many previous re-
searches indicated that magnetic response to climate differed at dif-
ferent region of the SCS due to difference in magnetic properties of
different sources and transportation pathways (Liu et al., 2003; Wang
et al., 2009, 2010; Liu et al., 2010c). However, investigation of mag-
netic property and its provenance implication for estuary-ocean area
along the SCS margin has not yet been reported but is clearly important
for the magnetic-based paleo-environmental reconstruction and geolo-
gical evolution of the SCS. The main purpose of our study is to in-
vestigate the similarities and differences of magnetic characteristics of
surface sediments collected from the Pearl River Estuary (PRE) and its
adjacent seas. Combing magnetic characteristics and mineral analysis,
we aim to discuss the significance and effectiveness of magnetic
methods to trace provenance features in the study area and thus pro-
vide a valuable tool for sediment source tracing of estuary-ocean else-
where.

2. Materials and methods

2.1. Site characteristics

The Pearl River estuary (PRE) and its adjacent sea waters were se-
lected as the study area of the present study. The PRE is in the warm
and humid subtropical area of South China. The average annual rainfall
and total runoff of the PR drainage area are 1600 to 2300 mm and
345.78 billion m3, respectively. Though the suspended sand con-
centration of the PR is relatively low, the PRE annually discharges
about 64 million tons of suspended sediments and more than 0.1 bil-
lion tons of total sediments into the SCS from its eight outlets. The PR
suspended sediments are the main material source of the study area
(Mo and Chen, 1986; Lan, 1996; Long, 1997). However, recent studies
indicated that the sediment source of the study area differs at different
water depths (Zhou et al., 1991). The eastern four outlets named
Humen, Jiaomen, Hongqimen and Hengmen pour waters into a
trumpet-shaped estuary called Lingdingyang, which is referred to the
PRE in the present study (Fig. 1). The unique topographic features of
the PRE are formed under the interaction of river runoff, tidal current,
geological structure and geographical factors (Song and Ruan, 1986).
The runoff from the East River and North River and part of the runoff
from the West River discharge into the SCS through the mentioned four
gates. Meanwhile, the Pacific Ocean tidal wave enters into the SCS
through the Bashi strait and then spreads across each entrance of the
PR. Naturally, two deep grooves in the East and West and three shoals
in the East, middle and west were formed within the Lingdingyang
waters. Due to the effects of differences in sediment source amount and
dynamic conditions, a development pattern characterized with rapid
expansion of Western shoal, constriction of the west groove, northwest-
southeast elongation of the central shoal, little water depth changes and
slight constriction of the East groove, and basically stable of the eastern
shoal has been formed (Dong, 1986).

According to the results of hydrological survey of the PRE coastal
area, the hydrological characteristics of this area is the result of the two
main dynamic factors of runoff and tidal current as well as the influence
of other factors, such as the outlet flow system and the wind field. The
east wind and east or north wind dominates the PRE coastal area during
flood and dry seasons, respectively. The maximum wind speed of this

area is 4.0 to 9.9 m/s (Mo and Yan, 1986). The reciprocating flow
dominates the thalassic area and coastal current and rotational flow
interacts at the waters between the bay mouth and the 20 m water
depth isobaths. At the Lingdingyang waters, a strong tidal current and a
significant influence of runoff affects the eastern and western areas,
respectively (Department of Coastal Hydrology, 1986). According to the
result s of sediment test of the Lingdingyang closed area, total deposi-
tion dominates this area at both flood and dry seasons (Yang, 1986). Mo
and Chen (1986) suggested that the main sedimentary characteristics of
the PRE was that the particles ranged from relatively coarse, fine, and
gradually coarse from estuary, coastal shallow water area, to the outer
waters.

2.2. Sampling

Nineteen surface sampling stations with 14 in the estuary and 5 in
the shelf were selected for the present study (Fig. 1). According to
previous mineral analysis performed by Z.F. Liu et al. (2007, 2008),
sediments at sampling sites A9 and A8 mostly come from the Pearl
River (52%), and some smaller fractions from Taiwan (29%) and Luzon
(19%). The contribution of the PR, Taiwan, and Luzon to the area of
sampling sites A7, A6, and A5 are 31%, 23%, and 46%, respectively.
The samples from the PRE were collected in autumn 2010 by using
grabbers. Sediments from the adjacent sea were collected in summer
2009, using a box corer. The samples are distributed from the shallow
estuary with 2 m water depth to the outer shelf with water depth up to
102 m. All samples were freeze dried before performing measurements.

2.3. Mineral and magnetic analysis

Mineral analysis is a widely used method for provenance identifi-
cation in the study area. In our study, mineral composition analysis was
performed for nine representative samples using a BRUKER D8
ADVANCE X-ray diffractometer (XRD), Cu (monochrome).

A suite of mineral magnetic analyses were performed for all samples
in order to determine magnetic concentration and magnetic grain size
(i.e. magnetic domain state). Magnetic susceptibility (MS) and tem-
perature variation of MS (κ-T curves) were measured at the Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences. All other
magnetic measurements were performed at the Department of
Geosciences, University of Tuebingen.

Low (976 Hz) and high (15,616 Hz) frequency MS (mass-specific χlf

and χhf, respectively) were measured using a Kappabridge MFK1-FA
(AGICO). Frequency dependent MS was calculated from the expression
χfd (%) = [(χlf − χhf) / χlf] × 100. Variation of MS with temperature
(κ-T curves) was measured using CS4/CSL high and low temperature
units attached to the MFK1-FA for both bulk samples and magnetic
extracts of representative samples. Anhysteretic remanent magnetiza-
tion (ARM), expressed as susceptibility of ARM (χARM) in this paper,
was imparted with an AF peak field of 100 mT and a DC biasing field of
0.1 mT using a 2G Enterprises 755 cryogenic magnetometer with at-
tached degausser system. Stepwise thermal demagnetization of triaxial
isothermal remanent magnetization (IRM) (applied fields 1.0 T, 0.3 T,
and 0.1 T) and alternating field (AF) demagnetization were performed
using the 2G magnetometer with the degausser. Hysteresis parameters,
which are helpful to identify the type and particle size of magnetic
minerals (Day et al., 1977; Dunlop 2002; Zang et al., 2010), were
measured using a MicroMag 2900 AGM, with a maximum applied field
of 0.6 T. Isothermal remanent magnetization (IRM) acquisition curves
with twenty-five steps up to 2500 mT were acquired using a MMPM9
pulse magnetizer and a Molspin Minispin magnetometer. Then IRM was
measured at backfields of 100 mT and 300 mT, respectively. The IRM at
an applied field of 2500 mT was regarded as saturation IRM (SIRM).
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3. Results

3.1. Magnetic mineralogy

The shape of the κ-T curves is similar for all PRE sediments but
differs clearly for the SEA sediments (Fig. 2). There are several inter-
esting features in the κ-T curves of the PRE samples. First, the heating
curves of the PRE bulk samples dramatically increase above ~300 °C
and decay toward the Curie temperature of magnetite at about 580 °C,
with cooling curves running at a much higher level. This indicates the
production of new magnetite by the reaction of hematite and organic
matter or clay minerals (C.X. Zhang et al., 2012). In the PRE extracts,
new formation of magnetite is much less, as one expects because of the
lower content of non-ferrimagnetic materials. Second, the κ values al-
ready start to increase from room temperature, which is likely an effect
of the original presence of small-sized magnetite in a single-domain
(SD) or small pseudo-SD (PSD) domain state. Third, the small decrease
of κ from about 250 to 300 °C for the PRE bulk samples could be due to
greigite. This bump is not present in the κ-T curves of magnetic extracts
from the PRE, possibly because of selective separation. The magnetic
extracts of SEA samples additionally show a small decrease between
about 300 to 400 °C, probably due to some maghemite that transforms
into hematite (Liu et al., 2005; Jelenska et al., 2010). An important
feature of the SEA samples is the clear κ signal above 580 °C with a
Curie temperature around 680 °C, in both bulk samples and magnetic
extracts, evidencing the presence of hematite. The occurrence of a he-
matite signal in κ-T curves suggests a very large proportion of hematite
in these samples.

Cumulative log-Gaussian (CLG) analysis of IRM acquisition curves is
widely used for magnetic composition analysis (Kruiver et al., 2001;
Heslop et al., 2002; Gong et al., 2009; Ouyang et al., 2015). The results
of the gradient acquisition plot (GAP) analysis for the PRE and SEA
sediments are illustrated in Fig. 3. According to the results the magnetic
composition consists of magnetite (component 1; C1) and some hema-
tite (component 2; C2) for both the PRE and SEA sediments (Fig. 3a).

The SIRM variations of magnetite and hematite indicate a decreasing
magnetite and hematite concentration from the PRE to its adjacent seas
(Fig. 3b). The gradually increasing B1/2 and relatively stable DP of
magnetite suggest the grain size tends to be on average finer. The
varying B1/2 and DP patterns of hematite indicate a variable grain size
distribution of hematite.

3.2. Magnetic granularity

The Day plot (Day et al., 1977; Dunlop, 2002), is regarded as an
effective method for magnetic domain identification when the magne-
tite is the dominating ferrimagnetic mineral. The domain state of the
measured samples is illustrated in Fig. 4. From the modified Day plot
(Dunlop, 2002), it is indicated that magnetite in the PRE samples are
more MD-like than in the SEA samples. Although A8 and A9 are located
within the SEA area, some samples from these sites are still more similar
to the PRE samples (Fig. 4).

3.3. Clay mineral composition

Mineral analysis has been a widely used method for provenance
identification in the study area. The XRD results indicate that the mi-
neral composition of the PRE differs clearly from the SEA sediments
(Fig. 5). Calcite as well as relatively high contents of illite and chlorite
was found to be dominant within the SEA sediments, while kaolinite
was scarcely identified. However, sediments from the PRE show a very
different mineral composition. They are characterized by the absence of
calcite, but relatively high contents of kaolinite and low contribution of
illite and chlorite. These mineral analysis results indicate that the
source of the PRE and the SEA sediments may be very different. The
semi-quantitative analysis of the XRD results indicates that the con-
centration of chlorite and the ratio of quartz to feldspar are clearly
different between the PRE and the SEA sediments (Fig. 5a). The PRE
and SEA sediments can be separated through the triangular plot of clay
mineral composition (Fig. 5b).

Fig. 1. Study area (including bathymetric lines) and sampling sites. The sampling codes represent the ten cross-sections. A5–9 are termed SEA sites, the others PRE sites.
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3.4. Variation of magnetic properties from the PRE to its adjacent outer sea

Fig. 6 shows the variation of discriminative magnetic parameters
from the PRE toward the adjacent waters. From the PRE to the sea, the
concentration parameters χ, χARM, and SIRM gradually decrease, and
drop sharply between the PRE and the outer sea. Values of χ and SIRM
of the PRE surface sediments are five and four times higher than those
of surface sediments from waters outside of the PRE, respectively
(Fig. 6). The gradual increase of Bc reveals that magnetic minerals get
harder from the PRE to the SEA (Fig. 6). Except the sampling site SB3,
the relative contribution of magnetite/hematite within sediments re-
flected by the ratio of SIRM(c1)/SIRM(c2) (from CLG analysis) showed a
decrease from the PRE to sampling sites A9 and A8, then followed by a
sharp increase with water depth over 50 m (Fig. 6). The frequency
dependent magnetic susceptibility χfd% is relatively stable within the
sediments with water depth below 50 m, and then gradually increases.
The χARM/χ and χARM/SIRM ratios, reflecting magnetic particle size,
also show a significant fining of magnetic particle sizes from the PRE to
its adjacent sea. These results are consistent with the results of the se-
dimentary characteristics survey for the PRE (Mo and Chen, 1986).

4. Discussion

4.1. Controls of magnetic properties

With increasing water depth, magnetic concentration values de-
crease significantly due to the decreasing sediment deposition. A sig-
nificant negative correlation between log (χlf) and water depth is ob-
served (Fig. 7). The reason for this relationship is complex as water
depth can reflect many influencing factors such as sedimentary en-
vironment, sediment influx, sediments particle size, etc.

A significant positive linear correlation exists between χlf and SIRM
for all samples (Fig. 8a) indicating that the variation of these two
parameters is largely controlled by a common type of magnetic mi-
nerals. A significant negative correlation exists between χlf and B1/2 of
component 1 (magnetite) when all samples are included. This correla-
tion disappears when the sediment samples are separated into two
groups i.e., the PRE and SEA samples (Fig. 8b). These results indicate
that the difference of magnetic properties between the PRE and SEA
sediments is mainly controlled by the concentration of soft magnetic
minerals, predominantly magnetite, and a fining of magnetic grain size
in this fraction. These results exactly correspond to the sediment
characteristics of the PRE and its outer waters (Mo and Chen, 1986).

The relationship between χlf and χfd (%) shows a clear difference

Fig. 2. Typical thermomagnetic (κ-T) curves measured in argon atmosphere for samples from a) the PRE, and b) SEA sediments. The left and right figures are for bulk samples and
magnetic extracts, respectively. Solid and dashed lines represent heating and cooling curves, respectively. The small inserts show enlargements of heating curves in specific temperature
intervals.
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between sediments from the PRE and its adjacent waters. The χfd (%)
values are scattered but on average higher in the PRE sediments than
that in the SEA sediments. A significant positive linear correlation be-
tween χlf and χfd (%) exists for the SEA sediments (Fig. 9a). The linear
correlation of χ and χfd in the SEA samples indicates that higher χ
values are partly caused by a larger fraction of superparamagnetic (SP)
particles. Although the average χfd (%) value is higher in PRE sedi-
ments, no obvious correlation is found for these samples. The two trend
lines of the clear positive linear correlation between χlf and χARM for

both PRE and SEA samples are not parallel (Fig. 9b). Overall, these
results indicate that the size distribution of the magnetic particles in the
PRE sediments differs from the one in the SEA sediments, which may
imply different sources for the sediments in the PRE and its adjacent
seas.

4.2. Source significance of magnetic properties

As discussed above both concentration and particle size of magnetic
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minerals play a significant role for the sediment magnetic properties.
The IRM parameters, the χARM/SIRM ratio and χfd (%) reveal the var-
iation of particle size and relative contents of magnetic minerals.
Sediments collected from the PRE and its adjacent seas can be obviously
separated by the scatter plot of B1/2 of component 1 and χARM/SIRM
(Fig. 10a). Since sediment deposition dominates the Lingdingyang
closed area (Yang, 1986) and sediment particles change from relatively
coarse, fine, and gradually coarse from estuary, coastal shallow water
area, to the outer waters (Mo and Chen, 1986), sediments from the PRE
are represented by a higher soft mineral content and coarser magnetic
particles, but also by a larger ultrafine SP fraction. As suggested by
Hilton (1987), the main magnetic carriers within the PRE sediments
should originate from coarse-grained ferrimagnetic mineral input from
the Pearl River. The SP fraction may arise from soil in the catchment.
These SP particles are probably largely dissolved in the SEA sediments
(Leslie et al., 1990; Grison et al., 2011; Ouyang et al., 2015).

Many previous studies suggested that magnetic measurements are
an effective method for identifying sediment sources (Jenkins et al.,
2002; Hounslow and Morton, 2004). Recently, some new magnetic
parameters were established for provenance research. For example,
Q.S. Liu et al. (2007) proposed the concept and application of the L-
ratio. Variable L-ratio values were regarded to reflect changes in the
provenance or other factors that influence the properties or relative
proportions of hematite. However, more study proved that the ratio
(HIRM/[0.5 × (SIRM + IRM−100 mT)]) was a suitable substitute for
the L-ratio. The samples can be separated into three groups from the
scatter plot of SIRM of component 2 and HIRM/[0.5 × (SIRM
+ IRM−100 mT)] (Fig. 10b). This finding provides an effective method
for the study of the provenance of estuarine and offshore sediments, and
it is of great significance to the study of marine geology. The PRE se-
diments are characterized by relatively high SIRM of component 2 and
HIRM/[0.5 × (SIRM + IRM−100 mT)]. The ratio HIRM/[0.5 × (SIRM

+ IRM−100 mT)] value of sediments from sampling sites A8 and A9 was
basically consistent with the PRE, indicating the source of this group is
the same as for the PRE, i.e. mainly from the PR basin. These results are
similar to the results of mineral analysis for this region performed by
Liu et al. (2008). However, compared with the PRE, sediments from the
sampling sites A8 and A9 have relatively lower SIRM of component 2.
The HIRM/[0.5 × (SIRM + IRM−100 mT)] values for sediments from
sampling sites A5, A6, and A7 are obviously different from the men-
tioned two groups, indicating a different sediment source. Moreover,
the results of principle component analysis of B1/2 of component 1,
SIRM(C1)/SIRM(C2), and χlf indicate that the PRE and A8, A9 sediments
are accounted for by PC1 and sediments from sampling sites A5, A6,
and A7 are contributed for by PC2 (Fig. 10c). Sampling sites A5, A6,
and A7 were located on the N Shelf as described by Liu et al. (2008).
According to Liu et al. (2008), the sediments of this area came from
three sources, including the Pearl River, Taiwan, and Luzon. At the
same time, different contributions of these three sources to A5, A6, and
A7 can explain the obvious difference among these three sampling sites.

5. Conclusions

Together with mineral analyses, the rock magnetic investigation
conducted in this study relates the magnetic properties of the estuary
and its adjacent sea sediments to their provenance. The following
conclusions can be deduced:

1) Magnetite and hematite coexist within the sediments from both the
PRE and its adjacent seas. Though no obvious difference exists in the
composition of the magnetic minerals between the PRE and its ad-
jacent seas, the grain size of magnetite particles in the PRE sedi-
ments is coarser than in the adjacent sea sediments, but also an
ultrafine SP fraction is observed. From the PRE to its adjacent seas,
magnetic parameters reflected by magnetic mineral concentration
decrease gradually and change sharply between the PRE and the sea.
The parameter ratios related to magnetic particle size indicate that
magnetic particles in the MD to PSD range are getting finer from the
PRE to its adjacent seas, while the SP fraction is largely dissolved.

2) Though sediments collected from the sampling sites A8, A9 were
classified to the SEA due to the triangle plot of clay mineral com-
position, the scatter plot SIRM of component 2 and HIRM/
[0.5 × (SIRM + IRM−100 mT)] and principle component analysis
results of B1/2 of component 1, SIRM(C1)/SIRM(C2), and χlf indicate
that the sediments at these two sites had partially the same source as
the PRE sediments. Therefore, the implication of magnetic para-
meters for provenance is clearer than the clay mineral analysis.
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