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ABSTRACT: The indigenous microorganisms responsible for
degrading phenanthrene (PHE) in polycyclic aromatic hydro-
carbons (PAHs)-contaminated wastewater were identified by
DNA-based stable isotope probing (DNA-SIP). In addition to the
well-known PHE degraders Acinetobacter and Sphingobium,
Kouleothrix and Sandaracinobacter were found, for the first time,
to be directly responsible for indigenous PHE biodegradation.
Additionally, a novel PHE degrader, Acinetobacter tandoii sp. LJ-5,
was identified by DNA-SIP and direct cultivation. This is the first
report and reference to A. tandoii involved in the bioremediation
of PAHs-contaminated water. A PAH-RHDα gene involved in
PHE metabolism was detected in the heavy fraction of 13C
treatment, but the amplification of PAH-RHDα gene failed in A.
tandoii LJ-5. Instead, the strain contained catechol 1,2-dioxygenase and the alpha/beta subunits of protocatechuate 3,4-
dioxygenase, indicating use of the β-ketoadipate pathway to degrade PHE and related aromatic compounds. These findings add
to our current knowledge on microorganisms degrading PHE by combining cultivation-dependent and cultivation-independent
approaches and provide deeper insight into the diversity of indigenous PHE-degrading communities.

1. INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are a group of
hydrophobic organic compounds with fused aromatic rings that
are generated from natural and anthropogenic processes and
pose a serious threat to the health of all organisms.1,2 Because
of their high toxicity, mutagenicity and carcinogenicity, the
United States Environmental Protection Agency has classified
PAHs as priority pollutants since the 1970s.3 Bioremediation
has proven to be a cost-effective and environmentally friendly
alternative to remove PAHs from contaminated sites.4,5

Considerable effort based on traditional cultivation-depend-
ent approaches has focused on isolating and identifying
cultivable PAHs degraders to explore the fate of PAHs.
Hitherto, many microorganisms capable of degrading PAHs
have been isolated and evaluated, most of which belong to the
genera Paenibacillus,6 Burkholderia,7 Stenotrophomonas,8 Acine-
tobacter,9 Alcaligenes,10 Mycobacterium,11 Arthrobacter,12 Flavo-
bacterium,12 Aeromonas,12 Vibrio,12 Bacillus,13 Micrococcus,13

Nocardioides,13 Marinobacter,13 Pseudomonas,14 Cyclotrophicus,15

Sphingomonas,16 Tistrella,16 and Collimonas.17 Cultivation-based
approaches provide clues about PAHs degraders and
degradation pathways. Furthermore, functional genes associ-
ated with PAHs degradation, such as PAH-ring hydroxylating

dioxygenases (PAH-RHDs)18,19 and PAH-ring cleaving dioxy-
genases (PAH-RCDs, including catechol dioxygenase
[CAT]20,21 and protocatechuate dioxygenase [PACH]22−24),
have been identified. However, it is difficult to obtain all the
PAHs-degrading isolates in nature as the majority of microbes
are uncultivable,25 and this method greatly underestimates
prokaryotic diversity.26 In addition, cultivation-based method
fails to explain the complex interactions among individuals
within microbial communities in their native environment.27

Cultivation-independent methods, which can be used to
effectively evaluate the prokaryotic diversity of complex
systems,28,29 have been used to evaluate microbial degradation
of PAHs.30−33 High-throughput methods have revolutionized
the ability to investigate deeper into the microbial communities
in environmental samples by providing higher resolution of
microbial taxa compared with conventional cloning techni-
ques.34 However, these methods suffer from the inaccurate
identification of the metabolic or functional features of the
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targeted microorganisms.34 Stable-isotope probing (SIP) is a
cultivation-independent technique that circumvents the re-
quirement of distinguishing microorganisms to assess metabolic
responses and links identity to function.35 It has been
successfully used in environmental samples by feeding
microbial communities stable isotope-labeled substrates (13C
or 15N) to label the intracellular components (DNA, RNA, or
proteins) and allowing the separation and characterization of
the targeted but hidden functional microorganisms according to
buoyant density, particularly those not amenable to cultiva-
tion.17 To date, SIP has been used to identify a large number of
PAHs-degrading bacteria.27,32,33,36

Phenanthrene (PHE) is a PAHs model compound used in
biodegradation studies due to its ubiquity in nature and fused-
ring angular structure.13,17 A number of PAHs degraders have
been identified in real-world habitats, such as soil or seawater,
using DNA-SIP.27,31,36−38 However, only a few investigators
have successfully isolated the microbes belonging to the SIP-
identified microorganisms,31 leaving the gap of revealing their
metabolic characteristics and exploring the functional pop-
ulations actually responsible for pollutant degradation in situ. In
the present study, DNA-SIP was applied to wastewater samples
to link the indigenous bacterial taxa with their PHE
biodegradation phenotypes. The PHE-degrading bacteria in
wastewater microcosm were successfully characterized using
DNA-SIP and the high-throughput sequencing was applied for
more complete understanding of the bacterial communities
contributing to PHE degradation. Additionally, a representative
active PHE degrader (Acinetobacter tandoii LJ-5) was
successfully isolated from the indigenous wastewater microbial
community with a cultivation-based method in parallel. To
explore the environmental significance of this strain, we focused
on the functional genes encoding the alpha subunit of PAH-
RHD (PAH-RHDα) and PAH-RCD (CAT and PACH)
involved in PHE metabolism, by analyzing relevant sequences
amplified from the 13C-DNA-enriched fraction and A. tandoii
LJ-5 DNA. We hope to provide novel information on the
bioremediation of PAHs-contaminated wastewater, and poten-
tially soils and sediments using a reliable theoretical basis.

2. MATERIALS AND METHODS

2.1. Sample Collection. Water sample (∼10 L) was
collected from untreated industrial wastewater at an oil refinery
(37°49′N, 118°25′E; altitude, 37.49 m) located in Shandong
Province, China, in September 2015. This wastewater was not
yet handled with onsite wastewater treatment systems and
directly discharged. After transport to the laboratory at 4 °C, a
portion of the samples was stored at −20 °C for subsequent
DNA extraction. The remaining samples were immediately
stored at 4 °C within 24 h before PHE degradation and SIP
experiments. The PAHs identified in the wastewater are listed
in Supporting Information (SI) Table S1 (determined using gas
chromatography−mass spectrometry as described below).

2.2. SIP Experiment. 2.2.1. SIP Microcosms. The micro-
cosm was constructed in a 150 mL serum bottle containing 50
mL of wastewater sample. Unlabeled PHE (99%; Cambridge
Isotope Laboratories, Inc., Tewksbury, MA) or 13C-labeled
PHE (13C14−PHE, 99%; Cambridge Isotope Laboratories, Inc.,
Tewksbury, MA) at a final concentration of 10 mg/L was added
to a bottle with a rubber stopper and an aluminum cap using a
gastight syringe. Microcosms without PHE were used as the
non-PHE control. The treatments with unlabeled PHE in filter-
sterilized wastewater were used as the sterile control, which
confirmed whether PHE degradation was attributed to
biological activities in the biotic treatments. Each treatment
was conducted in triplicates. All the microcosms were incubated
in the dark with shaking at 120 rpm and room temperature
(∼25 °C). The serum bottles were opened each day for
approximately 1 h in sterile hood to maintain the ambient
oxygen level, as there was little loss of PAHs at the background
concentrations in the sterile controls (data not shown). From
the analysis of residual PHE on day 3 and day 6, all the PHE
was completely degraded on day 6 (data not shown), and the
samples were therefore taken on day 3 from each treatment for
PHE analysis and DNA extraction.

2.2.2. Nucleic Acid Extraction and Ultracentrifugation.
After centrifuging 50 mL of each water sample from the 12C-
PHE and 13C-PHE treatments, total nucleic acids were
extracted from the resulting cell pellets using the PowerSoil
DNA Isolation Kit (MO BIO, Carlsbad, CA) according to the
manufacturer’s instructions.39 DNA content was quantified

Table 1. Primers Used for the PCR of 16S rRNA, PAH-RHD and PAH-RCD Gene

target primer sequence (5′-3′)
16S rRNAs 515f GTGCCAGCMGCCGCGGTAA

806r AACGCACGCTAGCCGGACTACVSGGGTATCTAAT
27f AGAGTTTGATCCTGGCTCAG
1492r GGTTACCTTGTTACGACTT

PAH-RHD 610f GAGATGCATACCACGTKGGTTGGA
911r AGCTGTTGTTCGGGAAGAYWGTGCMGTT
641f CGGCGCCGACAAYTTYGTNGG
933r GGGGAACACGGTGCCRTGDATRAA

PAH-RCD CAT1f ATGTCGATACCGCACAAGGA
CAT1r TGCACGACGACGATCAACT
CAT2f CGCGACGACGATCTACTTCA
CAT2r CTGCAACTGGTCCTGTCGAT
PACH1f ACGCACAACGCAATACCGAT
PACH1r ACGACCACGCAAAGTGATGT
PACH2f TGAAACTCCATCTCAAACAGGTG
PACH2r ACTGTTTCGTCTTCGCCTTGT
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using the ND-2,000 UV−vis spectrophotometer (NanoDrop
Technologies, Wilmington, DE).
Approximately 5 μg DNA was added to Quick-Seal

polyallomer tubes (13 × 51 mm, 5.1 mL; Beckman Coulter,
Pasadena, CA) and mixed with Tris-EDTA (pH 8.0)-CsCl
solution at a final buoyant density (BD) of ∼1.77 g/mL. The
BD was determined using a digital refractometer (model
AR200; Leica Microsystems Inc., Buffalo Grove, IL). After
balancing, the tubes were heat sealed and transferred to an
ultracentrifuge (Optima L-100XP, Beckman Coulter) at
45 000g (20 °C) for 48 h. Subsequently, DNA in the tube
was fractioned (400 μL each) and collected using a fraction
recovery system (Beckman Coulter). After the BD measure-
ments, the DNA fractions were purified using the method
described by Sun et al.40 The relationships between BD and the
fraction number or DNA concentration are listed in SI Figure
S1 and Figure S2, respectively.
2.2.3. High-Throughput Sequencing and Computational

Analyses. Sequencing was conducted using an Illumina MiSeq
sequencer with the standard pipeline and generated paired-end
reads of 250 bp. The V4 hypervariable region of bacterial 16S
rRNA in fractions derived from the 12C-PHE and 13C-PHE
microcosms was amplified using the 515f/806r primer set
(Table 1), with a sample-specific 12-bp barcode added to the
reverse primer as described by Liu et al.41 Reads were filtered if
they contained primer mismatches, uncorrectable barcodes or
ambiguous bases. Then, the qualified sequences were analyzed
using the MOTHUR software package.42,43 Sequences were
assigned using an operational taxonomic unit (OTU)-based
method to generate microbiome profiles.44−46 OTU assign-
ment based on 97% cutoff and the total number of 20503
sequences were used for subsampling in the present study.
The relative abundance of each OTU was determined as

described previously.40 In total, 4186 OTUs were detected in
all samples, and those with the top 100 relative abundances
were selected for analysis. Bacteria represented by OTUs that
were enriched in the heavy fractions from 13C-PHE treatments
compared with 12C-PHE treatments were involved in PHE
degradation. Finally, four OTUs (OTU_4, OTU_50, OTU_57,
and OTU_73) were selected and aligned to Acinetobacter spp.,
Sphingobium spp., Kouleothrix spp. and Sandaracinobacter spp.
(accession numbers: KX364043−KX364046), respectively,
using the Greengenes database (version 13.8).47,48 The
phylogenetic information from the sequences was analyzed
using the Basic Local Alignment Search Tool algorithm
(National Center for Biotechnology Information, Bethesda,
MD, USA) and MEGA ver. 4.0.49

2.3. Isolation of PHE Degraders by Enrichment and
Cultivation. Raw wastewater (5 mL) was added to 50 mL
minimal medium (MM) (SI Table S2, pH 7.0) with 1000 mg/L
PHE (MM-P) as the carbon source. After a 25 °C incubation
for 7 days, 5 mL of the culture medium were subcultured in 50
mL fresh MM-P medium and incubated under the same
conditions for another 7 days. After three sequential rounds of
enrichment, the enriched population was serially diluted and
spread on MM-P agar. The plates were incubated at 25 °C for 4
days. In total, 10 colonies were isolated, purified by
recultivation and identified. The growth curves were con-
structed, and the PHE degradation efficiencies of the isolated
strain were evaluated in MM supplemented with different
concentrations of PHE (100−1000 mg/L) in the dark for 7
days on a 180 rpm shaking plate at 30 °C. PHE degradation
was determined using the method described in Section 2.5.

After extraction of genomic DNA, the 16S rRNA gene
sequence was amplified by polymerase chain reaction (PCR)
using the 27f and 1492r bacterial universal primers (Table 1).50

The PCR products were gel-purified using a gel extraction kit
(D2500-01; Omega Biotek, Norcross, GA), followed by cloning
and sequencing as described by Li et al.51 In addition, the
morphological and physiological characteristics, GC content
and DNA−DNA hybridization of the isolated strain were
determined using previously described methods.51 Growth
conditions under different pH, temperature and salinity were
set up following previously reported methods.51 In order to
obtain the optimal growth curve and PHE degrading efficiency
of the isolated strain, cell counts were adjusted to
approximately 1 × 107 colony forming units/mL at the
beginning of the experiment using the dilution plate counting
method.52 Cell growth was evaluated by measuring the optical
density of the culture at 600 nm (OD600) after incubation for
18 h. Sterile controls without cells were also established. All
tests were performed in triplicates, using the same standard and
incubation conditions as those used for the microcosm
experiment.

2.4. Detection of PAH-RHD and PAH-RCD Genes. The
PAH-RHDα gene in the heavy DNA fraction was investigated
using two primer sets in Gram positive and Gram negative
(GN) degraders, 641f/933r53 and 610f/911r,53 respectively
(Table 1). Gradient PCR was performed at annealing
temperatures of 52−62 °C.54 However, only the PAH-RHDα

GN primer set produced a specific amplicon and was selected
for this study. The amplification reactions were conducted
according to previous methods.54 The PAH-RCD genes (CAT
and PACH) were amplified using the CAT1f/CAT1r, CAT2f/
CAT2r, PACH 1f/PACH1r, and PACH 2f/PACH2r primer
pairs listed in Table 1. All specific primer sets were designed
based on published sequences of A. tandoii DSM 14970T

(GenBank assembly accession number: GCA_000400735.1)
using Primer Premier 5.0 software. The CAT1f/CAT1r and
CAT2f/CAT2r primer pairs were used to target two different
types of CATA. The PCR program for these two primer sets
was as follows: 3 min at 95 °C; 32 cycles of 95 °C for 30 s, 52
°C for 30 s, and 72 °C for 55 s; final extension at 72 °C for 5
min. The PACH 1f/PACH1r and PACH 2f/PACH2r primer
pairs were used to target the alpha and beta subunits of PACH,
respectively. The PCR program for PACH 1f/PACH1r and
PACH 2f/PACH2r was as follows: 3 min at 95 °C; 32 cycles of
95 °C for 30 s, 52 °C for 30 s and 72 °C for 40 s; final
extension at 72 °C for 5 min. The PCR products were gel-
purified using a gel extraction kit (D2500-01; Omega Biotek,
Norcross, GA), followed by cloning and sequencing as
described by Song et al.55 The phylogenetic dendrograms
were prepared using the method described above.
The partial PAH-RHD and PAH-RCD gene sequences

obtained are available in GenBank with the following accession
numbers: KX364042 for PAH-RHD, KX364048 and
KX364049 for CATA and KX364050 and KX364051 for
PACH. The GenBank accession number for the 16S rRNA
gene obtained from isolated A. tandoii is KU168603.

2.5. PHE Analysis. The PHE concentrations in each
microcosm treatment were analyzed on days 0 and 3 as follows.
The water sample was spiked with 1000 ng deuterated PAHs as
a surrogate standard and was extracted twice with dichloro-
methane (DCM). The extracted organic phase was concen-
trated to approximately 0.5 mL after solvent exchange with
hexane and then purified using a silica gel/alumina column (8
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mm i.d.) filled with anhydrous Na2SO4 (1 cm), neutral silica gel
(3 cm, 3% deactivated) and neutral alumina (3 cm, 3%
deactivated) from top to bottom, using 15 mL hexane/DCM
(1:1, v/v) as the eluent. After concentrating the eluent to
approximately 50 μL using a gentle stream of N2, 1000 ng
hexamethylbenzene were added as an internal standard to all
samples before the instrumental analysis. The components of
deuterated PAHs, standards and internal standard are listed in
SI Table S3.
PHE was analyzed by gas chromatography (model 7890;

Agilent Technologies, Santa Clara, CA), using a capillary
column (DB-5MS; 30 m × 0.25 mm, 0.25 μm) and a mass
spectrometric detector (model 5975; Agilent) as described by
Jiang et al.17

3. RESULTS

3.1. PHE Biodegradation in Wastewater. PHE biode-
gradation in the 12C-PHE and 13C-PHE microcosms is shown
in SI Table S4. The recovery rates of PHE during the extraction
procedure were 70−85% in this study. The PHE concentration
in the sterile treatment exhibited less decreases than those in
the biotic treatments. Residual PHE was 11−13% and 12−13%
in the 12C-PHE and 13C-PHE microcosms, respectively,
suggesting that PHE biodegradation occurred in the biotic
treatments. No significant difference (p > 0.05) was observed
between the 12C-PHE and 13C-PHE treatments, consistent with
our previous study.55

3.2. Bacteria Involved in PHE Degradation As
Revealed by DNA-SIP. DNA extracted from the 12C-PHE

and 13C-PHE microcosms was subjected to ultracentrifugation
and fractionation, followed by high-throughput sequencing of
each fraction. The relative abundance of the total 16S rRNA
defined by the phylum, family and genus showed slight
difference in the indigenous microbial communities between
the samples from the 12C-PHE and 13C-PHE treatments (SI
Figure S3).
The indigenous microorganisms responsible for 13C

assimilation were detected by assessing the relative abundances
of specific OTUs in the 12C-PHE and 13C-PHE samples from
each fraction. The results indicated that OTU_4 at a higher BD
(>1.7209 g/mL) was enriched only in the 13C-PHE sample, but
not in the 12C-PHE sample (Figure 1). Additionally, the relative
abundances of OTU_50, OTU_73 and OTU_57 at higher BDs
(>1.7209, > 1.7296 and 1.7122−1.7481 g/mL, respectively)
were also higher in the 13C-PHE samples than those in the 12C-
PHE samples. Comparing to the relative abundances of
OTU_4, OTU_50, OTU_57, and OTU_73 in the same
fractions of 12C-PHE sample (0.13%, 0.03%, 0.04%, and 0.06%,
respectively), the higher abundance in the heavy fractions from
13C-PHE sample (0.43%, 0.20%, 0.15%, and 0.44%, respec-
tively) indicated that microorganisms represented by OTU_4,
OTU_50, OTU_73, and OTU_57 played a primary role in
PHE degradation.
Figure 2 shows phylogenetic information for the PHE

degraders represented by the above OTUs. OTU_4 belonging
to the genus Acinetobacter (phylum Proteobacteria, class
Gammaproteobacteria, order Pseudomonadales, family Morax-
ellaceae) shared 100% similarity to partial 16S rRNA gene

Figure 1. Shift tendency of OTU_4, OTU_50, OTU_73, and OTU_57 fragments. The relative abundance of the OTU_4, OTU_50, OTU_73, and
OTU_57 fragments is in the fractions of different buoyant density (BD) of DNA extracted from the wastewater amended with either 12C- or 13C-
labeled PHE.
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sequence with strains A. tandoii DSM 14970T (KE007359),
Acinetobacter parvus DSM 16617T (AIEB01000124), Acineto-
bacter beijerinckii CIP 110307T (APQL01000005), Acinetobacter
tjernbergiae DSM 14971T (ARFU01000016), and Acinetobacter

hemolyticus CIP 64.3T (APQQ01000002) and formed a
subclade with a high bootstrap value of 97. OTU_50 and
OTU_73 were assigned to the genera Sphingobium and
Sandaracinobacter within the same family Sphingomonadaceae

Figure 2. Phylogenetic tree of identified OTUs responsible for PHE degradation. Neighbor-joining tree based on 16S rRNA gene sequences showing
the phylogenetic position of the bacteria corresponding OTU_4, OTU_50, OTU_57, OTU_73 and their representatives of some other related taxa.
Bootstrap values (expressed as percentages of 1200 replications) > 50% are shown at the branch points. Bar 0.05 substitutions per nucleotide
position.

Figure 3. Phylogenetic analysis of ofamplified PAH-RHDα GN gene based on the amino acid sequences from heavy fraction in 13C-PHE microcosm.
PAH-RHDα gene shows 97% similarity with Delf tia acidovorans Eh2-1 clone 5 phnAc gene.
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(phylum Proteobacteria, class Alphaproteobacteria, order Sphin-
gomonadales), and they shared 100% similarity with Sphin-
gobium jiangsuense BA-3T (HM748834) and 99% similarity
with Sandaracinobacter sibiricus RB16-17T (Y10678), respec-
tively. OTU_57 was classified in the genus Kouleothrix (phylum
Chlorof lexi, class Chlorof lexi, order Roseif lexales, family
Kouleothrixaceae) and shared 97% similarity with Kouleothrix
aurantiaca SCM-E (AB079641.2) and formed a subclade with a
high bootstrap value of 100.
3.3. Presence of the PAH-RHDα Genes in the SIP

Fractions. The PAH-RHDα genes from GN bacteria were
analyzed in the heavy fractions of 13C-PHE treatment (marked
with a star in Figure 1). In the present study, only one type of
the PAH-RHDα gene was detected, and showed 97% similarity
with the PAH-RHDα (PhnAc) gene of Delf tia acidovorans Eh2-
1 clone 5 (AY367788.1) (Figure 3).
3.4. Isolation and Characterization of PHE-Degrading

Bacteria. We isolated PHE degraders from wastewater to
characterize the bacteria corresponding to the four SIP-
identified OTUs. Of all PHE-degrading isolates that belonged
to the genus Agromyces, Stenotrophomonas, Acinetobacter, and
Pseudomonas, only one bacterial strain, named Acinetobacter
tandoii LJ-5, was identified in the contaminated wastewater
samples after PHE enrichment. The partial 16S rRNA gene of
this strain shared 100% similarity with the OTU_4 sequence
and therefore belonged to the representative of the active PHE
degraders linked to OTU_4. However, no strains belonging to
the other three SIP-identified OTUs was successfully isolated
from wastewater.
A. tandoii LJ-5 is a GN, rod-shaped, obligate aerobe lacking

flagella, with a size of (0.7−1.0) × (1.0−1.5) μm (Figure 4).
The A. tandoii LJ-5 colonies were circular, smooth, convex, and
white pigmented with a colony diameter of 0.5−2.0 mm after
growth on MM-P agar plates at 30 °C for 48 h. A. tandoii LJ-5
grew under different conditions, including 0−3% (w/v) salinity
(optimum 0%), pH 5.0−9.0 (optimum pH 7.0) and temper-
atures of 25−40 °C (optimum 30 °C) (SI Figure S4). The
metabolic characteristics of A. tandoii LJ-5 are listed in SI Table
S5. A. tandoii LJ-5 has the highest nearly full 16S rRNA gene
sequence similarity to that of A. tandoii DSM 14970T

(KE007359) (98.7%), whereas its similarity levels to other
Acinetobacter strains are <97.0%. A. tandoii LJ-5 belongs to the
genus Acinetobacter according to the neighbor-joining (SI
Figure S5) phylogenetic dendrograms based on 16S rRNA gene
sequences, and it forms a subclade with A. tandoii DSM 14970T.
The GC content of A. tandoii LJ-5 is 41.0 mol %, within the

range of other Acinetobacter spp. (38.1−54.7 mol %). The
DNA−DNA hybridization value for A. tandoii LJ-5 with A.
tandoii DSM 14970T is 90.11 ± 0.8%, which is significantly
above the threshold value of 70% in the phylogenetic definition
of a species.56 Taken together, these results indicate that A.
tandoii LJ-5 belongs to the species A. tandoii.
As shown in SI Figure S6, A. tandoii LJ-5 grew well in MM-P

with PHE concentrations of 100−1000 mg/L under optimal
growing conditions (pH 7.0 and 30 °C), suggesting strong
tolerance of A. tandoii LJ-5 to high PHE concentrations. More
than 60% of the PHE was biodegraded within 7 days at all PHE
concentrations. Enrichment of Acinetobacter (OTU_4) was
detected in the 13C-PHE treatment, indicating that A. tandoii
LJ-5 is a major indigenous PHE degrader.

3.5. Presence of PHE Metabolism-Related Genes in A.
tandoii LJ-5. To further explore the environmental significance
of A. tandoii LJ-5, we evaluated its functional genes involved in
PHE metabolism. Although one PAH-RHDα GN gene was
detected in the heavy fraction of the 13C-PHE sample, no PAH-
RHDα gene was successfully amplified from A. tandoii LJ-5
using the same primer set. However, the genes encoding
CATA-1 and CATA-2 and the alpha and beta subunits of
PACH-1 and PACH-2 were identified in A. tandoii LJ-5 in this
study.
The CATA-1 (KX364048) and CATA-2 (KX364049)

translated amino acid sequences showed high homology with
those of CATA from Acinetobacter junii (WP_004961950.1,
92%) and Acinetobacter schindleri (WP 004809441.1. 93%),
respectively, as illustrated in SI Figure S7a. SI Figure S7b shows
the high homologies of A. tandoii LJ-5 PACH-1 (KX364050)
and PACH-2 (KX364051) at the amino acid level compared
with the alpha subunit of PACH from Acinetobacter bouvetii
DSM 14963 (WP_005011151.1, 99%) and the beta subunit of
PACH from Acinetobacter johnsonii XBB1 (WP_058952216.1,
99%) and Bacillus mycoides (WP_044740784.1, 99%).

4. DISCUSSION
Some studies have successfully applied DNA-SIP in the
detection of indigenous microorganisms involved in PHE
biodegradation.27,36−38 Our study employed DNA-SIP and
identified four OTUs directly responsible for indigenous PHE
biodegradation, such as the phylotypes affiliated with
Acinetobacter, Sphingobium, Kouleothrix, and Sandaracinobacter
from PAHs-contaminated wastewater. Here, only rare species
were enriched in the heavy fraction of 13C-PHE microcosms,
showing the low abundance of functional PHE degraders in

Figure 4. (a) Isolated A. tandoii LJ-5 colonies on MM-P agar plate; (b) Transmission electron micrograph of A. tandoii LJ-5 cells. Bar, 500 nm (left)
and 1000 nm (right).
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water samples. Nevertheless, the results from SIP experiment
confirm their roles in metabolizing PHE and it is the strong
evidence for their primary roles in PHE metabolism. It should
be noted that the majority of the abundant bacteria, especially
members of the genus Pseudomonas, might play the roles in
degrading other organic pollutants but are not directly linked to
PHE degradation, since many other organic carbons existed in
the wastewater and PHE was only one of them promoting the
rare PHE-degrading species.
The genus Sphingobium was first described by Takeuchi,57

and 41 species in this genus have been isolated and reported
(http://www.bacterio.cict.fr/s/sphingobium.html). Sphin-
gobium is a well-known PAHs-degrading genus in the family
Sphingomonadaceae.57,58 Some strains in this genus metabolize a
wide range of PAHs, such as naphthalene, PHE, anthracene,
fluoranthene, pyrene, and benzo[a]pyrene.59−63 However, no
study has used SIP to demonstrate the PHE-degradation
capacity of indigenous Sphingobium. The genus Sandaracino-
bacter also belongs to the family Sphingomonadaceae. Until now,
only one species (Sandaracinobacter sibiricus) has been isolated
and reported in this genus.64 The phylogenetic analysis of SIP-
identified OTU_73 suggests its close relationship to S. sibiricus
RB16−17T (Figure 2). S. sibiricus is an obligate aerobic
phototrophic bacterium that contains bacteriochlorophyll a,
which is light-harvesting complex II and the reaction center.64

This bacterium tolerates and reduces high levels of tellurite.64

The phototrophic cyanobacteria are reported as suitable
candidates in bioremediation of crude oil due to their strong
growth ability under various conditions. Narro et al. reported
that the cyanobacteria Oscillatoria sp. strain JCM could degrade
naphthalene.65 The other cyanobacterial species Oscillatoria
salina, Aphanocapsu sp., and Plectonema terenbans were found to
degrade crude oil.66 However, they have not been linked
previously to PHE degradation; thus, our present results
provide a strong evidence that some microbes in this genus are
primarily responsible for PHE degradation in wastewater.
The phylogenetic analysis of the indigenous microorganisms

represented by OTU_57 suggested their close relationship to
Kouleothrix aurantiaca SCM-E (Figure 2). K. aurantiaca SCM-E
was first isolated by Kohno from activated industrial waste
sludge.67 The genus Kouleothrix belongs to phylum Chlorof lexi
(family Kouleothrixaceae, class Chlorof lexi), which is one of the
earliest diverging lineages of bacteria and was first defined by
Garrity and Holt in Bergey’s Manual of Systematic Bacteriol-
ogy.68 Class Chlorof lexi is one of at least five major Kouleothrix
subgroups, and all known species in this class have a
multicellular filamentous morphology.69 A number of studies
have indicated that microorganisms in the phylum Chlorof lexi
are closely related to PAHs degradation. Shahi et al. showed
that γ-Proteobacteria, Chlorof lexi, Firmicutes, and δ-Proteobac-
teria were the most dominant bacterial phyla in petroleum-
contaminated soil from a coastal site at an old petroleum sludge
storage pit in Turkey.70 Bacterial species belonging to γ-
Proteobacteria, δ-Proteobacteria, and Chlorof lexi change dramat-
ically after the treatment with PAHs, indicating that PAHs play
key roles in bacterial community diversity.71 Muangchinda et al.
reported that indigenous microbes from the phylum Chlorof lexi
degrade PAHs and provided bioremediation information for
Antarctic soils and sediments,72 although PAHs contaminants
such as PHE and pyrene decreases the abundance of Chlorof lexi
during PAHs remediation.73,74 However, Kouleothrix has not
been linked previously to PHE metabolism; thus, it is unclear
whether these microbes are directly involved in PHE

degradation. Our results provide unequivocal evidence that
some microorganisms in this taxa are primarily responsible for
PHE degradation in the complex indigenous microbial
community of PAHs-contaminated wastewater.
Acinetobacter, belonging to γ-Proteobacteria and to the order

Pseudomonadales, is a GN, nonmotile and strictly aerobic
bacteria. These bacteria are widespread in natural environ-
ments, including hydrocarbon-contaminated sites.75,76 Mem-
bers of Acinetobacter possess versatile metabolic capabilities,
such as pathways for degrading aromatic and hydroxylated
aromatic compounds.77 Since the early days of taxonomic
research, the ability to degrade aromatic compounds has been a
common characteristic used to identify microbes in the genus
Acinetobacter.9,77,78 Hereinto, some strains metabolize PAHs,
such as PHE, acenaphthene and pyrene.79−82 Degradation of
PHE by Acinetobacter has not been identified using DNA-SIP
prior to this study. Our results demonstrate that indigenous
bacterium A. tandoii LJ-5 metabolizes PHE. A. tandoii was first
described by Emma et al. in 2003 but was not previously
associated with PAHs degradation.83 Our results provide A.
tandoii LJ-5 reference data for application in PAHs-contami-
nated wastewater treatment.
The presence of the distinctive PAH-RHDα GN gene in the

heavy DNA fraction from the 13C-PHE microcosm suggests it
may be the functional genes associated with the PHE degrading
strains of either Acinetobacter, Sphingobium, Kouleothrix, or
Sandaracinobacter identified by SIP. Failure to amplify this
PAH-RHDα gene from A. tandoii LJ-5 might be attributed to
(1) incompatibility of the primers used in this study with the
functional genes present in this PHE degrader or (2) a different
PHE degradation mechanism present in A. tandoii LJ-5.
Acinetobacter genes that encode enzymes catabolising aromatic
compounds are enriched in five genomic loci within 25% of the
genome,84 whereas the metabolic genes of other aromatic
compound degraders, such as microbes in the genus
Sphingomonas or Pseudomonas, are scattered throughout their
genome.85,86 The mechanism is unclear, but some preliminary
evidence suggests that syntenic localization of the genes
associated with this metabolic pathway relieves the energy
burden on the transcriptional and translational machinery.87

Metabolism of many aromatic compounds produces the
intermediate metabolites catechol and protocatechuate via the
β-ketoadipate pathway. In the present study, we found that A.
tandoii LJ-5 expresses genes involved in two parallel branches of
the β-ketoadipate (ortho) pathway (CATA and PACH).88 The
enzyme protocatechol 3,4-dioxygenase cleaves the aromatic
ring to form the intermediary protocatechol. It contains the Fe
(III) as a prosthetic group and many subunits α and β form
different quaternary structures (αβ)n, where n is a number
varying between 3 and 12.89 Some microorganisms, such as
Acinetobacter lwof f ii90 and Pseudomonas aeruginosa,23 can
produce PACH for the biodegradation of organic compounds.
The presence of PACH suggests that A. tandoii LJ-5 degrades
PAHs and related aromatic compounds via the ortho-cleavage
pathway for compounds funnelled through protocatechuate
(via PACH).22 Catechol 1,2-dioxygenase involved in ortho-
cleavage pathway is widespread in microorganisms.91 The initial
enzyme of the β-ketoadipic acid pathway is responsible for the
microbial degradation of aromatic compounds, belonging to the
class of enzymes that cleave the aromatic ring to form the
intermediary catechol.92 Successful amplification of CATA also
indicates that A. tandoii LJ-5 metabolizes catechol through the
catechol branch of the ortho-cleavage pathway.93 Previous
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studies have suggested that the CATA route is preferred under
low-contamination conditions.94,95 The presence of ortho-
cleavage for catechol probably helps A. tandoii LJ-5 in
metabolizing PAHs in the present PAHs-contaminated waste-
water.
It is interesting to point out that the beta subunit of PACH

of A. tandoii LJ-5 also groups with those in Bacillus mycoides,
which is a non-Acinetobacter strain. Horizontal gene transfer
(HGT) explains how bacteria acquire DNA from foreign
species beyond the host range of mobile genetic elements or
bacteriophages.96 Our results hinted the occurrence of HGT in
the present PAHs-contaminated wastewater. HGT has been
reported for many genera of bacteria, including Acinetobacter
and Bacillus.96 It is also identified recently as a vital component
in the formation of biofilm.97 However, the extent and role of
HGT by bacteria in natural environment and nutrient-limited
habitats remains to be fully understood.
This is the first study to apply a culture-independent DNA-

SIP technique to identify the bacterial taxa responsible for PHE
degradation in PAHs-contaminated wastewater. The results
provide unequivocal evidence that Acinetobacter, Sphingobium,
Kouleothrix, and Sandaracinobacter are involved in biodegrada-
tion of PHE in wastewater, none of which has been previously
reported as indigenous PHE-degrading microorganisms using
SIP. Sandaracinobacter and Kouleothrix have not been
previously linked to PHE degradation. Moreover, given that
few bacteria linked to PHE metabolism have been isolated from
real-world habitats,31 this study identified A. tandoii LJ-5 as a
PHE degrader by DNA-SIP and revealed its functions by
characterizing the functional PHE metabolic genes and
pathways. This is the first report of the role of A. tandoii in
bioremediation of PAHs-contaminated water. These results
expand our current knowledge on indigenous microorganisms
that degrade PHE by combining both cultivation-dependent
and cultivation-independent approaches.
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