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ABSTRACT: Within geomacromolecules, such as kerogen, asphaltene, and solid bitumen, other compounds can be adsorbed
and even occluded as free molecules. The occluded components have been well preserved by the macromolecular structure, and
retain some of the primary geochemical information. In this work we try to probe the geochemical evolution of occluded
hydrocarbons inside geomacromolecules associated with the geomacromolecule evolution from kerogen → asphaltene → solid
bitumen. The results show that occluded hydrocarbons can be transferred steadily from kerogen → asphaltene → solid bitumen.
Later-evolved geomacromolecules not only inherit the occluded hydrocarbons from the former ones, but can also occlude some
new free molecules. Occluded hydrocarbons are subject to a relatively independent thermal evolution, whereas the evolution of
adsorbed molecules is constrained by other factors besides thermal stress. Elucidation of the geochemical evolution of occluded
hydrocarbons inside geomacromolecules will be helpful in oil (bitumen)−source correlation, identification of mixed-source
reservoirs, and characterization of hydrocarbon accumulation and evolution.

1. INTRODUCTION

During geological history, dead organisms successively undergo
the geological processes of sedimentation, diagenesis, cata-
genesis, and metagenesis, accompanied by the occurrence of a
variety of biochemical or chemical reactions and the formation
of geomacromolecules. Fulvic acid, humic acid, and humin
usually form during the deposition of organic matter through
the processes of microbial degradation, polymerization, and
condensation; kerogen is generated through sediment dia-
genesis, and then asphaltene is derived from the kerogen
cracking (Figure 1).1 Solid bitumen can also be formed during
the degradation of kerogen,2 although it is mainly derived from
crude oil evolution processes, including thermal alteration,
deasphalting, or biodegradation.3 Thus, such geomacromole-
cules are the products of sedimentary organic matter in
different evolution stages and contain a significant amount of
geochemical information, making them some of the most
studied objects in many fields, such as biogeochemistry,
environmental geochemistry, and oil/gas geochemistry.
Geomacromolecules generally have high molecular weights

and complex chemical structures (but no regular molecular
formula), and are actually admixtures. Some conceptual
structure models representing the largest possible set of
physicochemical analytical data for geomacromolecules have
previously been used to represent the structures of humic
matter,4−6 kerogen,7,8 and asphaltene.9−11 Specific acids or
alkalis are usually used to isolate humic matter12 and kerogen,8

whereas asphaltene13 and solid bitumen14,15 are obtained by
treatment with appropriate organic solvents.
As representative geomacromolecules from source rock or oil

reservoirs, kerogen, asphaltene, and solid bitumen are
important study objects for the geochemical information
encoded with them. Their macromolecular structures can
adsorb and even occlude other small molecules (e.g.,

biomarkers).16−19 The occluded molecules can be well
preserved by the macromolecular structure and thus prevented
from contact with extraneous reagents, catalysts, microbes, or
surface-derived formation waters flowing through the depos-
it.20−22 Therefore, the occluded fraction can retain primary
organic geochemical information over the geological time.20−22

Besides the free molecules occluded inside the geomacromo-
lecular structure, some biomarkers are covalently bonded to the
geomacromolecular structure so that they retain earlier
geochemical characterization.23−25

In studies on the adsorbed and occluded components of
geomacromolecules, researchers have detected many bio-
markers among the occluded compounds. These biomarkers
have proved to be useful in studies of organic matter with
depleted soluble fractions,17 oil (bitumen)-source correla-
tion,16,26 identification of mixed-source reservoirs,27−29 and
characterization of hydrocarbon accumulation and evolution.19

2. ADSORPTION−OCCLUSION IN
GEOMACROMOLECULES

2.1. Adsorption−Occlusion Phenomena Inside the
Structure of Geomacromolecules. In the extraction of
kerogen using different solvents, such as chloroform, a mixture
of methanol/acetone/chloroform, or a mixture of CS2 and N-
methyl-2-pyrrolidinone, extraction yields typically increase with
increasing polarity of the organic solvents, indicating an
abundance of noncovalent bond interactions between the
organic matter and the kerogen structure.30,31 Asphaltene, from
the oils suffered from serious biodegradation and depleted in n-
alkanes, has been dissolved in toluene and reprecipitated from
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Figure 1. Formation and evolution of geomacromolecules in geological situations. Figure adapted with permission from ref 1. Copyright 1984
Springer-Verlag.

Figure 2. Total ion chromatograms of the n-hexane eluents from the extracts and oxidative degradation products of solid bitumen in Jurassic
Shaximiao Formation of northwestern Sichuan basin, China. (a) the n-hexane extract of solid bitumen; (b) the acetone extract of solid bitumen; (c)
the dichloromethane extract of solid bitumen; (d) the mixture obtained following oxidative degradation treatment of solid bitumen. Figure adapted
with permission from ref 17. Copyright 2012 Science Press. The biomarker assignments are listed in Table 1.
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n-heptane, and then a series of n-alkanes are detected in the
organic phase after the reprecipitation of asphaltene, indicating
that some primary components were trapped within the
asphaltenes32,33 The components present as noncovalently
bonded moieties inside the geomacromolecular structure are
regarded as adsorbed or occluded molecules. To test and verify
the adsorption−occlusion process within the asphaltene
structure, Zhao et al.34 carried out simulation experiments
under high-pressure/high-temperature conditions, using asphal-
tenes from a low-matured crude oil and n-C20D42 as the target
compound; they detected n-C20D42 in the occluded fraction
from the pyrolyzed residue. Cheng et al.17 detected a series of
even-carbon-numbered n-alk-1-enes, n-alkanes, some isopar-
affins, and biomarker compounds from the occluded fraction of
solid bitumen (Figure 2).

2.2. Occluded Components in Geomacromolecules
and Their Release. There is no clear-cut boundary between
adsorbed and occluded fractions within the structures of
geomacromolecules. Generally, components that are easily

extracted from the periphery of the macromolecules by
conventional organic solvents are referred to as the adsorbed
fraction, while components in the core region of the
macromolecular structure that are difficult to extract by
conventional organic solvents are considered as the occluded
fraction.35 Therefore, the occluded components can only be
effectively released if the network structure of the macro-
molecule is destroyed.
Many methods have been used to release occluded

components from geomacromolecules, such as pyrolysis,36−40

hydropyrolysis,23−25,41−43 chemical reduction,21,22 and oxida-
tive degradation.44−48 However, not all of these methods are
suitable for releasing occluded hydrocarbons from geo-
macromolecules. When the former three methods are applied
to treat geomacromolecules, covalently bonded aliphatic chains
in the macromolecule structure may be cleaved, and the
fragments would be indistinguishable from the occluded
hydrocarbons.16,49 Prior study showed some differences in
biomarkers from the extract and the hydropyrolysis products of
asphaltenes, resins, kerogen from the same source rock,41 which
may be partly attributed to the admixture of bonded and
occluded biomarkers from geomacromoleculars. Mild oxidative
degradation of geomacromolecules can avoid these problems,
allowing for reliable isolation of the occluded hydrocarbons,
because the oxidative cracking of any aliphatic components
directly chemically bonded to the macromolecule structure will
bear distinct hallmarks (for example, cleaved as aliphatic acids).
Therefore, the hydrocarbons obtained after the oxidation of
geomacromolecules are not generated by bond cleavage, but are
the occluded components.16,45 Reagents such as H2O2, NaIO4,
RuO4, and so on can be used for mild oxidative degradation of
geomacromolecules.16,49,50

By using the method of mild oxidative degradation with
H2O2/CH3COOH to treat geomacromolecules, many bio-

Table 1. Biomarker Assignments for the Peaks in Figures 2,
4, and 7

peak compound

C16−C34 C16−C34 n-alk-1-ene or n-alkane
C21T, C23T C21, C23 tricyclic terpanes
Ts 22,29,30-trisnorneohopane-II
Tm 22,29,30-trisnorneohopane
C29H C29 17α,21β(H)-30-norhopane
C30H C30 17α,21β(H)-hopane
C31H C31 17α,21β(H) 22S- and 22R- homohopane
C21P pregnane
C27S−C29S C27−C29 regular sterane

Figure 3. Possible location of adsorbed and occluded components inside low-maturity Type I-a kerogen from the Green River shale. The chemical
structure of kerogen (H/C = 1.64, O/C = 0.06, MW = 21187) was modeled according to Behar and Vandenbroucke,65 with minor modifications.
Figure adapted with permission. Copyright 1987 Elsevier.
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markers associated with their parent biomass are detected
among the occluded components of the geomacromolecules,
such as terpanes, steranes, and series of even-carbon-numbered
n-alk-1-enes and n-alkanes.17−19,26−29,46−48

3. EVOLUTION PROPERTY OF OCCLUDED
HYDROCARBONS WITHIN THE STRUCTURE OF
GEOMACROMOLECULES

During the general processes of oil and gas generation and
evolution, kerogens are degraded to produce oils (including
asphaltenes), and asphaltenes can be degraded to form solid
bitumen (Figure 1). In this section, the evolution of occluded
hydrocarbons is investigated within geomacromolecules during
the evolution process of kerogen → asphaltene → solid
bitumen.
3.1. Evidence for Occluded Hydrocarbon Transfer

with Geomacromolecule Evolution. 3.1.1. Geomacromole-
cule Structure and Its Adsorption/Occlusion Capabilities.
Asphaltene is derived from kerogen, and can be viewed as the
soluble fragment of kerogen in crude oils.1 They have a similar
macromolecular structure20 which basically contains an
interconnected network formed by polycyclic aromatic rings,
with some aliphatic chains and heteroatoms covalently bonded
to the aromatic rings as branch chains.51−57 The branch chains
can curl or fold in three-dimensional (3D) space,58,59 and form
a complex 3D structure. Some spaces or cracks, such as the
mobile-phase portion of kerogen60,61 and the microporous
structural units of asphaltene,45,62,63can be found inside this 3D
structure, which can accommodate small molecules. Snowdon
et al.64 suggests that occluded molecules inside asphaltene are
located in minor cyclic structures connected by different
groups, whereas the adsorbed ones are present on the surfaces
of the asphaltene macromolecules (their Figure 1). Similarly,
there are many minor cyclic structures capable of accommodat-
ing occluded molecules within kerogens, such as those from
Green River shale (Figure 3).65

The solid bitumen derived from crude oils (containing
asphaltene) comprises enriched asphaltene components, so its
macromolecular structure should also have microporous
structural units similar to asphaltenes. So kerogen, asphaltene,
and solid bitumen can accommodate small free molecules
within their macromolecular skeletons, because the micro-

porous structural units have been preserved through the
geomacromolecule evolution processes.

3.1.2. Biomarkers Trapped Inside Geomacromolecules. A
lot of biomarkers, such as n-alkanes, terpanes, and steranes,
have been detected within the structures of geomacromole-
cules. The occluded n-alkanes can survive, even when the host
geomacromolecules undergo serious biodegradation altera-
tion.19,26,30,31 This can be attributed to the preservation of
the geomacromolecular structures, which alleviate the trans-
formative effects of later geochemical processes and preserve
the primary organic geochemical information.20−22

Some unusual compounds have been detected in the
occluded fractions of solid bitumen and asphaltenes, such as
bicyclic terpenoid sulfides,26 tricyclic terpenes (C23 tricyclic
terp-12(13)-ene), and hopenes (22,29,30-trisnorhop-17(21)-
ene, C29 18α-30-norneohop-13(18)-ene, and 17α-hop-20(21)-
ene) (Figure 4).66 Some tricyclic terpenes and hopenes have
also been detected in the pyrolysis products of kerogen67,68 and
asphaltenes,69 and the researchers suggested that these
compounds were the original constituents covalent-bonded to
kerogen structures, but neglected that they maybe belong to the
components trapped inside the macromolecules as free
molecules which would be released by hydropyrolysis. Bicyclic
terpenoid sulfide was presumably derived from a thermal
maturation reaction of a carotenoid precursor under anaerobic
conditions.70 Terpenes are usually considered as precursors of
the corresponding terpanes or secondary products from
reactions of terpanes generation in the early stage of
diagenesis.67,71 Therefore, formation of these components will
be earlier than their host geomacromolecules (asphaltene or
solid bitumen). Yang et al.66 suggested that terpene found in
the occluded fractions of the asphaltenes were the thermal
pyrolysis products of kerogens at an early stage of hydrocarbon
generation. Those studies indicate that the occluded hydro-
carbons from later forming geomacromolecules have a close
correlation with their earlier ones.
A series of even-carbon-numbered n-alk-1-enes, are often

detected in the trapped fractions of geomacromolecules
(kerogen, asphaltene, and solid bitumen), but not in the free
or adsorbed fractions.17−19,26−29,34,66 Alkenes are believed to be
generated from the corresponding esters at an early stage of
deposition through concerted reactions at a quite low

Figure 4. Partial m/z 191 mass chromatograms of the n-hexane eluents of different fractions from Well Td2 and Lg7: (a) crude oil; (b) acetone
extract of asphaltene; (c) mixture obtained following oxidative degradation treatment of asphaltene. Figure adapted from ref 66. Copyright 2009
American Chemical Society. The biomarker assignments are listed in Table 1.
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maturation stage, which can be illustrated with the chemical
scheme as follows:72,73

The even-carbon-numbered n-alk-1-enes are assumed to be
degradation products of esters with even-carbon-numbered
linear alkyl chains that are commonly present in organisms,18

but are thermally unstable.35,74,75 Actually, n-alk-1-enes are
frequently found in modern sediments,76 but reports of the
presence of such compounds in crude oil have hitherto been
scarce. Therefore, the n-alk-1-enes released from asphaltene and
solid bitumen are not from the thermal cracking of geo-
macromolecule, but from the occluded fraction of kerogen. The
preserving effect of the geomacromolecule skeleton is helpful
for n-alk-1-enes surviving in the geological environment. The
suggestion of the n-alk-1-ene origin is consistent with the
discoveries that esters and even-carbon-numbered n-alkenes are
present in trapped fractions from humic matter,77−79 which can
be considered as a precursor of kerogen.
Therefore, it seems that the occluded components inside the

geomacromolecular structure can be persistently retained
through the evolution process of kerogen → asphaltene →
solid bitumen, which is illustrated in Figure 5. The two-
dimensional (2D) structure of a Type I kerogen from Green
River shale (Figure 3) is selected as a model to construct the
3D skeleton using the software Materials Studio 7.0 in
Amorphous Cell (kerogen density set at 0.95 g/cm3 for
convenience). The different spheres (C-gray, H-white, O-red,
N-blue, and S-yellow) are interconnected in the 3D space and
represent the kerogen skeleton, while the individual yellow
sticks represent the occluded molecules. A lot of occluded
molecules are seen occupying the microporous structural units
of the raw kerogen. When the kerogen skeleton is cracked to
generate a soluble fragment (e.g., cracking along the blue

dotted line in Figure 5a, the soluble fragment or the precursor
of asphaltene derived from kerogen will contain some occluded
molecules. As the primary or early components, this portion of
occluded molecules will be preserved inside the asphaltene or
solid bitumen with the evolution of fragment → asphaltene →
solid bitumen.

3.1.3. Occluded Compounds of Asphaltene from Ker-
ogenInsight from Stable Carbon Isotope Characteristics.
In previous studies, it has been found that the stable carbon
isotopes of the organic fractions and individual hydrocarbons
occluded inside the asphaltene structure are generally heavier
than those of the adsorbed or free fraction. For instance, the
occluded fractions of asphaltene from the central Tarim Basin,
NW China, were found to have a heavier stable carbon isotope
composition than the free and adsorbed fractions.81 From the
occluded fraction of ZG31 asphaltene, the even-carbon-
numbered n-alk-1-enes proved to be enriched in 13C by up to
3−8‰ compared to the doublet alkanes,27 while the occluded
n-alkanes of asphaltenes were enriched in 13C by more than
2‰, more than the corresponding n-alkanes from oils.28 Maybe
the heavier occluded alkenes are mainly derived from the first
oil charge and the adsorbed alkanes are from a later charge,27 or
the occluded components originated from different source
rocks.28

As a 12C−12C bond will be broken more readily than a
12C−13C bond during kerogen cracking, the oil and gas
products will be enriched in 12C while the residual kerogen
enriched in 13C. Early studies showed that the oil can be
depleted in 13C by up to 1−2‰ compared with the
corresponding source kerogen,82 and thermal maturation can
further fractionate the oils by up to 2−3‰.83 The occluded
compounds of kerogen represent its primary components, and
hence their stable carbon isotope composition might be close
to that of the raw kerogen. Thus, the liquid hydrocarbons
(adsorbed hydrocarbons) derived from the cracking of kerogen
will have a lighter stable carbon isotope distribution than the
occluded hydrocarbons (Figure 6). Of course, the occluded
fraction inside the macromolecular (kerogen and its broken
fragment) may also be thermally cracked. However, the residual

Figure 5. Schematic model showing the primary occluded components being transferred and new components being trapped inside
geomacromolecules during the evolution of kerogen → asphaltene → solid bitumen. (a) Type I-a kerogen from Green River shale (Figure 3) was
selected to model the 3D skeleton using the software Materials Studio 7.0 in Amorphous Cell (kerogen density set at 0.95 g/cm3 for convenience).
The different spheres (C-gray, H-white, O-red, N-blue, and S-yellow) interconnect in the 3D space and represent the skeleton of the macromolecule,
while the individual yellow sticks represent the occluded molecules. (b) Asphaltene aggregation adapted from ref 80. Copyright 2006 American
Chemical Society.
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hydrocarbons from the occluded fraction would also be
enriched in 13C, because the lighter or gaseous hydrocarbons
derived from the raw occluded fraction, such as CH4 and C2H6,
will take away more 12C via C−C bond cleavage. Therefore, the
occluded components will start with a heavier stable carbon
isotope distribution than the liquid oils during kerogen
cracking. Second, the liquid hydrocarbons or oil will be further
fractionated and enriched with 12C during migration from
source rock to reservoir, while the occluded compounds will
not be influenced because they remain trapped inside the
kerogen fragment or asphaltene (Figure 6). Oil migration could
cause fractionation of the stable carbon isotopes of the
individual hydrocarbons, and the fractionation level will be
related to the migrated distance.84 One study reported that
migration could cause the biomarkers of oil samples to
fractionate by more than 1‰.85

Through the aforementioned kerogen thermal degradation
and oil migration processes, it is possible to generate huge
fractionation of the stable carbon isotopes between the
occluded fractions and the free or adsorbed ones. Therefore,
the fact that the occluded fractions contain many earlier
compounds from kerogen and undergo a relatively independent

evolution may be one of the major reasons why the stable
carbon isotopes of occluded compounds from asphaltenes are
heavier than those of the free and adsorbed fractions.

3.1.4. Occluded Compounds in Solid Bitumen from
AsphalteneInsight from an Asphaltene Thermal Simu-
lation Experiment. To test and verify the adsorption−
occlusion within the asphaltene structure, Zhao et al.34 carried
out a simulated experiment using a low-matured asphaltene (Ro

< 0.5%) and deuterated paraffin n-C20D42 as a target compound
under a high pressure of 20 MPa and varying temperatures of
240 °C (held for 72 h), 270 °C (held for 48 h), and 290 °C
(held for 24 h). The occluded components were released by
mild oxidative degradation with H2O2/CH3COOH. In this way,
they detected a series of alkanes in the occluded fraction of the
raw asphaltene and its residues from different simulated
experiments.34 The organic residue from the thermal
degradation of asphaltene could be regarded as solid bitumen,
and the results indicated that occlusion can be found in the
solid bitumen. Thus, the detected n-alkanes trapped inside the
residue after thermal degradation must have been derived from
the occluded fractions of the raw asphaltene. Traditional
biomarkers, such as terpanes and steranes, were also detected in
the occluded fractions of the residues from the thermal
degradation of asphaltene (Figure 7; raw asphaltene and its 240
and 290 °C residues as examples). These biomarkers occluded
inside the residues showed similar distributions to those inside
the raw asphaltene.

3.2. Later-Forming Geomacromolecules Subse-
quently Occluding Other Molecules. According to the
above discussion, later-forming geomacromolecules inherit the
occluded components of the earlier ones, but they may also
occlude new small molecules during their formation and
evolution processes.
First, the asphaltene structure may develop new spaces or

cracks to accommodate new small molecules when it is
developed from kerogen cracking. Second, asphaltenes are
liable to flocculate in oils to form stable aggregates,63,86−90

which have similar 3D spatial structures as kerogen. This kind
of aggregates can also adsorb and even occlude other small
molecules (Figure 5b),34,91 which causes the occluded

Figure 6. Schematic diagram showing the stable carbon isotope
fractionation of the occluded vs bonded hydrocarbons from kerogens.

Figure 7. Chromatograms of terpanes and steranes from the occluded fractions of the raw asphaltene and its pyrolysis residues: (a) the raw
asphaltene; (b, c) the residues from 240 and 290 °C asphaltene pyrolyses. The biomarker assignments are listed in Table 1.
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components therein to differ significantly from those from the
early asphaltenes.64

Similarly, solid bitumen not only inherits the occluded
components of the parent asphaltenes, but may also trap new
components during the process of its evolution from
asphaltenes, which has been observed in the simulated
experiment on adsorption/occlusion phenomena inside the
asphaltene structure.34

3.3. Influencing Factors on the Occluded Compo-
nents in Geomacromolecules. During the processes of
kerogen cracking to oils (including asphaltene), and oil
(asphaltene) evolving to solid bitumen, thermodynamic activity
is the main driving force. Both adsorbed and occluded
components within the geomacromolecular structure will be
influenced by thermal stress as verified by a thermal simulation
experiment performed on a low-matured source rock.35

Previous studies have shown that, based on biomarker
indices, the maturity of the occluded fractions does not match
that of the adsorbed fractions. Guo et al.30,31 found that the
ratios of C31 hopanes 22S/(22S+22R) and C29 steranes 20S/
(20S+20R) and ββ/(ββ+αα) from CS2/NMP extracts of
MaoMing oil shale kerogen were higher than those from
chloroform extracts. Zhao et al.27 observed a similar
phenomenon that the ratios of Ts/(Ts+Tm) (for explanations
of these abbreviations, see Table 2) and C29 steranes 20S/(20S
+20R) in the occluded fraction of ZG31 asphaltene from the
Tarim Basin were higher than those from its adsorbed fraction.
However, Yang81 found the ratios of C29 steranes 20S/(20S
+20R) and ββ/(ββ+αα) in the occluded fractions lower than
those in the adsorbed fractions for 14 asphaltenes from the
Tarim Basin. Thermal simulation of a low-matured source rock
showed that the adsorbed and occluded hydrocarbons had
similarities in terms of biomarker features in the early stage of
kerogen thermal evolution, but different with increasing
thermal levels.35

Thermal evolutions of the two kinds of fractions of
geomacromolecules are not always the same. This may be
because the adsorbed components are influenced by other
factors, such as mineral catalysis, thermochemical sulfate
reduction, or biodegradation, while the occluded components
are controlled mainly by thermal stress because they are present
in a relatively closed environment and avoid contact with
outside matters.

4. GEOCHEMICAL SIGNIFICANCE OF THE EVOLUTION
CHARACTERISTICS OF OCCLUDED COMPONENTS
IN GEOMACROMOLECULES

Geochemical studies on adsorption−occlusion phenomenon
within geomacromolecule structures have progressed, but
previous studies focused on isolating one from the others and
ignored the association between different geomacromolecules.
The occluded components inside geomacromolecular struc-
tures are persistently retained through the evolution process of
kerogen → asphaltene → solid bitumen.
Later-forming geomacromolecules inherit the occluded

components of the earlier ones and retain these components
within their microporous structural units. Compared with the
adsorbed components, which will be influenced by many other
factors besides thermodynamic activity, the occluded compo-
nents undergo a relatively simple thermal evolution, and so they
may be more useful for oil (bitumen)−source correlation and
the identification of mixed-source reservoirs. For different
geomacromolecules originated from the same parent biomass,

studies on the characteristics of their adsorbed and occluded
hydrocarbons will be helpful for understanding the geochemical
evolution of oil and gas other than thermal stress.
Furthermore, due to the fact that later-forming geo-

macromolecules may occlude new free molecules during their
formation processes, developing a means to identify these
inheritances and new components inside the later geo-
macromolecules is a challenging task worth more efforts.

5. SUMMARY
As the evolution products of sedimentary organic matter at
different stages, kerogen, asphaltene, and solid bitumen have a
close correlation in terms of origin. During the evolution
process of kerogen → asphaltene → solid bitumen, the
occluded components inside geomacromolecule structures are
persistently retained through the carrier action of a macro-
molecule fragment. Later-forming geomacromolecules inherit
the occluded components of the earlier ones, but may also
occlude new small molecules. The occluded components have a
relatively independent thermal evolution, whereas the adsorbed
components will be influenced by many other factors besides
thermal stress.
Studying the evolution characteristics of occluded hydro-

carbons within the changing structures of geomacromolecules is
important for the geochemical information encoded with them,
which can be used in the field such as oil (bitumen)-source
correlation, identification of mixed-source reservoirs, and
characterization of hydrocarbon accumulation and evolution.
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