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A B S T R A C T

Toluene exhaust gas is a nuisance to the environment and human beings. In this study, 1-dodecyl-3-
methylimidazolium chloride (DDMIM Cl) was selected as the absorbent solution and was combined with
photocatalytic oxidation (PCO) for the treatment of toluene gas. The effects of toluene concentration, UV
lamp power, catalyst dosage, coexisting ions and pH on the toluene removal ratio by PCO were
investigated. Changes to the absorbent structure after four reuses were compared according to the UV–
vis absorption spectrum, and the anti-oxidation ability of the absorbent was evaluated. The results
showed that the absorbent concentration was an important factor in the absorption of toluene. At the
absorbent concentration of 5%, the initial absorptivity reached 96.79%, and the saturated absorption
capacity was 43.8 mg/L. With a toluene concentration of 13.1 mg/L, an 18-W UV lamp, a photo catalyst
dosage of 400 mg/L, and a reaction time of 80 min, the removal ratio of toluene reached 91.3%. The PCO of
toluene followed pseudo-first-order kinetics. The main intermediates of toluene oxidation were benzoic
acid and benzaldehyde, while traces of cresol and benzyl alcohol were also found. After four reuses, the
absorption capacity of the absorbent was not weakened, and the molecular structure of DDMIM Cl
remained stable, reflecting its oxidation resistance. Therefore, the use of an ionic liquid as an absorption
solution combined with PCO for the treatment of toluene waste gas is theoretically feasible.

© 2016 Published by Elsevier Ltd.
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1. Introduction

Toluene exhaust gas emitted during production processes in the
chemical, ceramic, paint, electroplating, and other industries
greatly harms employee health [1–3]. Currently, combustion and
adsorption methods are used to treat toluene gas [4]. Of these, the
combustion method has a greater temperature requirement for the
exhausted gas, with a direct combustion that should occur at
temperatures above 1100 �C. The investment and operation costs of
this method are also great [5]. The adsorption method has a better
removal ratio of toluene exhaust gas at low concentrations,
although it has some problems, such as adsorbent regeneration
and the inability to reduce contaminants to harmless levels [6].
Photocatalytic oxidation (PCO) is considered a promising method
for the treatment of toluene exhaust gas owing to its powerful
catalytic activity, mild working conditions, and safe environment
[7–9]. However, the removal ratio of the exhaust gas is restricted by
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the contact reaction time and the toluene concentration on the
surface area of the photo catalyst [10]. By adding absorbents that
enhance the solubilization of toluene in the solution, absorption
can make up for the shortcomings of PCO [11]. Thus, absorption
combined with PCO should be feasible for the treatment of toluene
exhaust gas.

Ionic liquids (ILs), composed of an organic cation and an organic
or inorganic anion, are molten salts at room temperature, and
imidazoles are the most common cations [12]. They have many
unusual properties, such as high thermal and chemical stability
and excellent solvability for inorganic and organic compounds
[13]. In recent years, many researchers have reported treating
inorganic and organic gases using ILs [14–18], but rarely treating
toluene exhaust gas. By analyzing Henry’s constant of toluene over
272 types of ILs using the COSMO-RS method, Bedia et al. [19]
found that imidazole ionic liquid with long-chain alkanes in the
imidazolium cations had better toluene absorption capabilities.
Stepnowski et al. [20] noted that elongating the substituent length
in the imidazolium cations could significantly decrease degrad-
ability. Siedlecka et al. [21] observed that Cl� was able to compete
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for hydroxyl radicals with BMIM+, and the degradation of ionic
liquids by PCO could be inhibited.

Therefore, in this study, 3-methyl, 1-dodecyl imidazole chloride
(DDMIM Cl) was selected as an absorbent to treat simulated
toluene gas, and the influence of its concentration on absorption
was assessed. Further, the effects of toluene concentration, UV
lamp power, photo catalyst amount, system pH, and coexisting
ions on the PCO process were investigated. Oxidation mechanisms
of toluene were determined based on the identification of
intermediates. The oxidation resistance of the absorbent was also
investigated.

2. Experimental design and methods

2.1. Materials

Toluene (purity: 99.8%) was purchased from Sigma-Aldrich,
DDMIM Cl (purity: 97–98%), was purchased from Shanghai
Chengjie Chemical Co. without further purification, and the photo
catalyst (80% anatase TiO2, particle diameter � 15–20 nm, surface
area � 60–100 m2/g) was purchased from Hangzhou Wan Jing New
Material Company.

2.2. Experimental device

A schematic diagram of the absorption and PCO processes is
depicted in Fig. 1. The inner diameter of the reaction vessel was
4.5 cm; its height, 30 cm; and working volume, 300 mL. An 18-W
ultraviolet (UV) lamp with a radiation peak at 254 nm (Fujitsu,
Japan) was placed in the middle of the vessel for illumination. The
reaction vessel was shielded with tinfoil for protection against UV
rays. The reaction temperature was controlled at 25 �1 �C via a
water bath.

The inlet gas feed was provided via bubbling a bottle of
compressed dry air through liquid toluene in the glass cylinder. The
air flux containing toluene was mixed with air, forming a simulated
gas with the desired toluene concentration. It was then fed into the
reaction vessel, which was filled with 200 mL of absorption
solution, through a gas disperser. In this study, the total flow ratio
of gas measured and controlled with rotary flow meters was fixed
to 100 mL/min, and the toluene concentration of the inlet gas was
approximately 1000 mg/m3.

2.3. Toluene absorption experiments

The absorption solutions were prepared according to varying
weight ratios of DDMIM Cl to water (0,0.01%, 0.02%, 0.05%, 0.1%,
Fig. 1. A sketch map showi
0.2%, 0.5%, 1%, 2%, and 5%). During the experiment, the UV lamp
was turned off. The toluene concentrations of the inlet and outlet
gas were measured once every 10 min by a ppbRAE monitor (PGM
7340, RAE Systems, USA) [22,23]. When the toluene concentration
of outlet gas was equal to that of the inlet gas, the absorption
solution reaches its saturation toluene absorption, its toluene
concentration was determined from the absorbance of the peak
maximum at 261 nm on a Lambda 850 UV–vis spectrophotometer
[24]. Repetition experiments were performed 3 times.

Toluene absorptivity (A, %) at a certain absorption time was
calculated as follows:

A ¼ Y0 � Yg

Y0
� 100% ð1Þ

where Y0 (mg/m3) and Yg (mg/m3) are toluene concentrations of
the inlet and outlet gas, respectively.

2.4. PCO of toluene in absorption solution

The two rotary flow meters were turned off, and a certain
amount of photo catalyst was added to the saturated toluene
absorption solution. Prior to the PCO experiments, the suspension
was stirred for more than 1 h in the dark, ensuring full adsorption
of toluene on the photo catalyst [25]. When the UV lamp was
switched on, air was bubbled continuously into the suspension at
low speed (20 mL/min) by opening rotary flow meter 1 during the
runs. Aliquots of 10 mL were collected every 20 min and were
centrifuged before being analyzed by the ultraviolet absorption
method. Each analyzed sample was returned to the reaction
vessel after the test [26]. Blank tests were performed in the
absence of the photo catalyst and illumination by the UV lamp.

After their extraction by dichloromethane, the intermediate
oxidation products of toluene were analyzed by GC–MS (Agilent
7890A) equipped with a DB-WAX column (30 m � 0.25 mm � 0.25
mm) and a flame ionization detector. The primary temperature of
40 �C was maintained for 1 min, after which the temperature was
increased by 10 �C/min to 200 �C. The temperature was again
raised by 8 �C/min to a final temperature of 240 �C. The sample
was held at the final temperature for 5 min. The MS operating
conditions included an ion source at 200 �C, full scan mode, and
the MS mass range of m/z 35–450 with an acquisition ratio of 200
spectra per second. The electron impact (EI) ionization source at
�70 eV was used after a 4-min solvent delay. Intermediates were
identified using a program of the NIST Library.
ng the lab-scale set-up.



Fig. 3. Changes in saturation toluene concentration of the absorption solutions.
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The removal ratio of toluene (R, %), characterizing the removal
effect of PCO, was calculated as follows:

R ¼ C0 � Ct

C0
� 100% ð2Þ

where C0 (mg/L) is the initial toluene concentration in the
absorption solution, and Ct (mg/L) is the toluene concentration
at reaction time t.

2.5. Reuse of absorption solution

The absorption solution was treated by centrifugation and
filtration for removal of the photo catalyst and then by abstersion
and separation with 50 mL of dichloromethane for reduction of
intermediate interference. The experimental process detailed in
sections 2.3 and 2.4 (including absorption and PCO) was repeated
four times for evaluation of the effects of reuse of the absorption
solution.

UV-vis was utilized for analysis of changes in the absorption
spectra of the absorbent through reuse [27]. After each reaction,
the treated absorption solutions were sampled, diluted, and
scanned with a UV–vis spectrophotometer at 195–400 nm.

3. Results and discussion

3.1. Absorption capacity of the absorbent

The toluene absorption capacity of absorbent was investigated
for different concentrations of the simulated exhaust gas. Fig. 2
presents the absorption curves and clearly shows the differences in
absorptivity and duration among the absorption solutions. When
the concentration of the absorption solution increased from 0% to
5%, the absorption time extended from 20 min to 120 min, and the
initial toluene absorptivity increased from 27.3% to 96.79%. These
findings indicate that the concentration of the absorption solution
plays an important role in the absorption capacity.

As shown in Fig. 3, with increased absorbent concentration, the
saturation toluene concentration in the solution increased by a
factor of 19 from 2.3 mg/L to 43.8 mg/L. It is remarkable that the
increase of toluene was so distinguishable at different absorbent
concentration ranges. Toluene concentrations increased signifi-
cantly and then slowly as the absorbent concentration increased
from 0 to 0.5% and then 0.5% to 5%, respectively. This is because
when the concentration of the absorbent is equal to or greater than
the critical micelle concentration (CMC), a large number of
Fig. 2. Absorption curves of the absorption solutions.
micelles form [28]. The surface tension of the solution decreases
rapidly, which may promote the solubilization of toluene
molecules in micelles. As the concentration continues to increase,
the micelles may swell to their limit, reducing the toluene
concentration growth rate in the solution [29].

3.2. Removal of toluene by PCO

3.2.1. Effect of toluene concentration
Four absorption solutions at concentrations of 0.1%, 0.5%, 2%

and 5% and saturated with toluene via the absorption of toluene
gas were used for investigation of the effect of toluene
concentration on removal by PCO. All experiments were performed
with the 18-W UV lamp, a dosage of 400 mg/L of photo catalyst, a
pH of 7 and an 80-min reaction time. As shown in Fig. 4, the blank
test revealed that the loss of toluene via gas exposure was less than
1%.

Photocatalytic oxidation kinetics of organic compounds can be
successfully modeled using the Langmuir–Hinshelwood (L–H)
equation to describe a correlation between degradation rate
constants and initial concentrations [30]:

�dC
dt

¼ kC ðIÞ
Fig. 4. Effect of toluene concentration on toluene removal.



Fig. 5. Effect of toluene concentration on the rate constants.
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where k is the rate constant in min�1.
A satisfactory linear correlation (R2 > 0.98) between k and initial

concentration was given in Fig. 5 (inset of Fig. 5). It shows that the
rate constant of toluene decreased when the initial concentrations
of toluene increased from 13.1 to 43.8 mg/L. Within 80 min of
reactions, more than 90% of toluene at concentration of 13.1 mg/L
was degraded, whereas at concentration of 43.8 mg/L, less than
70% of toluene was removed, and the rate constants decreased
from 0.0287 min�1 to 0.0133 min �1. At a higher initial concentra-
tion, two factors could hinder the degradation of toluene. Firstly,
increased amount of toluene may occupy a greater number of TiO2

active sites, which subsequently inhibites generation of the
oxidants and results in lower degradation rates. Secondly, a higher
toluene concentration absorbs more photons, which consequently
decreases available photons to TiO2. Hence, the overall reaction
rates were lowered with the higher initial toluene concentration,
which has been observed in many photochemical reactions [31].

3.2.2. Effect of lamp power
The effect of different powers of the UV lamp (4, 8,12, and 18 W)

on removal of toluene by PCO was assessed. As shown in Fig. 6, it
should be noted that UVC (254 nm) radiation with low power (4W)
can degrade an unnegligible amount of toluene (approximately
20%). By contrast, with UVA (365 nm) radiation (4W), the
Fig. 6. Effect of UV lamp power on toluene removal. 
degradation is less than 10% [32]. Some reports have shown that
UVC radiation irradiation could generate a great number of a
reactive species like hydroxyls radical, hence it could efficiently
excite the TiO2 catalys [33].

The removal ratio and rate constants of toluene in the
absorption solution by PCO increased with increasing UV lamp
power (Fig. 7). This was likely because greater UV lamp power
produced more photons and free radicals in the system, which may
have improved the removal of toluene by PCO [34].

3.2.3. Effect of photo catalyst dosage
The effect of different dosages of the photo catalyst (100, 200,

300, 400 and 500 mg/L) on removal of toluene by PCO was also
investigated. As shown in Figs. 8 and 9, when the photo catalyst
dosage increased from 100 to 400 mg/L, the removal ratio and rate
constants increased from 33.33% and 0.0053 min�1 to 70.76% and
0.0146 min�1, respectively. With the further increase of the photo
catalyst dosage, the removal ratio and rate constants decreased.
When the dosage of the photo catalyst is lower than the optimal,
more of the catalyst will be excited by the UV lamp; therefore,
more H+, hydroxyl radicals, and other active substances will be
produced by the addition of the catalyst, accelerating the reaction
ratio. When the photo catalyst is overdosed, the existence of
excessive particles may cause unfavorable light scattering, reduce
the penetration of light into the solution and increase the
recombination ratio of electron-hole pairs, thus weakening
toluene removal [35].

3.2.4. Effect of pH
The pH of an aqueous environment plays an significant role on

the PCO of organic contaminant since it determines the surface
charge of the photo catalyst and the size of aggregates it forms. To
elucidate the role of pH, five experiments were performed in
sequence at every pH (3, 5, 7, 9, and 11). The pH was adjusted using
NaOH and HCl.

As shown in Fig. 10 and 11, pH clearly had a significant effect on
the PCO of toluene. The removal ratio and rate constants were
greatest at a pH of 6–7 and less in acidic or alkaline conditions. The
surface charge of photo catalyst can be profoundly affected by the
solution pH, and the ionization state of the surface can be
protonated and deprotonated under acidic and alkaline conditions
respectively as shown in the following reactions:

pH<PZCTiOH + H+! TiOH2
+ (II)
Fig. 7. Effect of UV lamp power on the rate constants.



Fig. 8. Effect of photo catalyst dosage on toluene removal.

Fig. 9. Effect of photo catalyst dosage on the rate constants.

Fig. 10. Effect of pH on toluene removal.

Fig. 11. Effect of pH on the rate constants.

L. Zhang et al. / Journal of Environmental Chemical Engineering 5 (2017) 539–546 543
pH>PZCTiOH + OH�! TiO� + H2O (III)

The point of zero charge (Pzc) of the TiO2 is widely reported at
approximately 7 [36]. Some organic contaminants are reported to
be favourable in acidic and neutral solutions [37], while others are
found to undergo degradation at a faster rate at higher pH values
[38]. All these effects can be attributed to the nature of the
pollutant to be degraded. In this study, the stability of nano-
particles is the most important factor. When the pH value was
beyond the range of 6–7, the aggregation of nanoparticles can be
observed, especially in strongly alkaline medium, which reduced
solution permeability and the adsorption of toluene on the surface
of the photo catalyst.

3.2.5. Influence of inorganic coexisting ions
It is well-known that PCO occurs at the surface of the catalyst

particle. Thus, adsorption of specific ions may affect system
performance by competing with the adsorption of organic
molecules. The effect of the presence of common anions, including
nitrate, sulfate, carbonate and chloride, was studied using the
corresponding sodium. All the experiments were performed using
0.1-mol/L solutions.

As shown in Fig. 12, different anions had different levels of
influence on the PCO of toluene. The effects of Cl� and CO3

2� were
so pronounced that the toluene removal ratio was reduced from
Fig. 12. Removal of toluene with the present of coexisting ions.



Fig. 14. Mechanism of oxidation toluene by PCO.
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70.76% to 17.45% and 29.3%, respectively, while SO4
2� and NO3

�

exerted comparatively less influence on adsorption and, conse-
quently, on the PCO. In general, the presence of anions in the
system was adverse to the photocatalytic reaction. This is because,
firstly, anions can not only affect toluene adsorption on the surface
of the photo catalyst by blocking the active sites but also act as
scavengers of the hydroxyl radical[39]. Secondly, the presence of
anions reduces the diffusion characteristics of the matrix and the
dissolved oxygen adhered to the surface of the photo catalyst [40].

3.2.6. Intermediate analysis
Reaction intermediates were identified by GC/MS with 5% of the

absorption solution saturated with toluene, an 18-W UV lamp,
400 mg/L of the photo catalyst, a pH of 7 and an 80-min reaction
time for elucidation of the toluene oxidation mechanisms. As
shown in Fig. 13, based on the mass spectrum of the structure in
the NIST05 database, dichloromethane and siloxane were deter-
mined to be the solvent and residue in the column, respectively.
The main intermediates of toluene oxidation were benzoic acid
and benzaldehyde, while traces of cresol and benzyl alcohol were
also detected.

Fig. 14 presents a tentative reaction mechanism for the PCO of
toluene in the absorption solution. The reaction is mainly initiated
via the transfer of an electron from toluene to TiO2 or the reaction
between the toluene molecule and a hydroxyl free radical directly
alongside the formation of a benzyl radical and hydrogen radical.
The benzyl radical then reacts with O2 to form a benzylperoxy
radical, which can couple to form a tetroxide. The tetroxide is
unstable and subsequently decomposes into benzaldehyde and
benzyl alcohol, which can be further oxidized easily into benzoic
acid in the system. With the side-chain oxidation pathway directly
attacking CH3, the electron density on the benzene ring is reduced
by the conjugated effect of the carbonyl group, which reduces the
activity and toxicity of toluene [41]. The generation of the cresol
may be attributable to the addition of a hydroxyl radical on the
aromatic ring of toluene in the presence of O2 and UV irradiation
[42].

3.3. Reuse of absorption solution

Experiments were conducted on the effects of the reuse of the
solution with an absorbent concentration of 2%. The shapes of five
absorption curves produced after four reuses were nearly identical
Fig. 13. GC/MS spectrum of intermediate products of toluene by PCO.
(Fig. 15). The initial removal ratio remained between 85% and 90%,
and the absorption time for saturation was approximately the
same. The toluene saturation concentration was maintained at 34–
37 mg/L and did not decrease with increasing number of uses
(Fig. 16). Therefore, the process of PCO did not affect the absorption
capacity of the absorbent.

It is evident from Fig. 17 that the absorption spectrum of
DDMIM Cl in water is characterized by a main band in the
ultraviolet region located at 204–206 nm, which is associated with
the imidazolium ring [27]. With increasing uses, the band was
essentially the same. This finding indicates that the molecular
structure of DDMIM Cl remained stable through the process of
reuse, reflecting its oxidation resistance. In comparison, the
presence of tetradecyldimethylamino-oxide was found beneficial
for photocatalytic oxidation of toluene in liquid–solid regime, but
it was also completely degraded and could not be reused [43].

In the process of PCO, carbon atoms on the imidazole ring are
easily attacked by free radicals when the absorbent molecules are
adsorbed onto the surface of the photo catalyst. The spatial
configuration of the absorbent molecule, in which the non-polar
substituted alkyl on the imidazole ring points to the surface of the
photo catalyst and the imidazole ring with a positive charge points
in the opposite direction, protects it from attack by the steric effect
[20].
Fig. 15. Toluene absorption curves of DDMIM Cl solution after reused.



Fig. 16. Changes in toluene saturation absorption concentration during the reuse of
the studied absorbent solution.

Fig. 17. UV spectra of the absorption solution after reused.

L. Zhang et al. / Journal of Environmental Chemical Engineering 5 (2017) 539–546 545
4. Conclusion

The treatment of toluene gas by combination of ionic liquid
absorption and photocatalytic oxidation has been investigated. The
heterogeneous gas–liquid photocatalytic oxidation of toluene gas
involves gas–liquid mass transfer with simultaneous reaction. By
adding ionic liquid that enhance the solubilization of toluene in the
solution, absorption can make up for the shortcomings of PCO.
When the concentration of absorbent was 5%, the initial removal
ratio of toluene reached approximately 96.79%, and the toluene
saturation concentration was 43.8 mg/L.

The rate of toluene degradation may be influenced by toluene
concentration, UV lamp power, dosage of photo catalyst, pH and
inorganic coexisting ions. With an initial toluene concentration of
13.1 mg/L, an 18-W UV lamp, 400 mg/L of the, and a reaction time of
80 min, the toluene removal ratio by PCO was 91.3%. The PCO of
toluene followed pseudo-first-order kinetics. The reuse test
revealed that the molecular structure of DDMIM Cl remained
stable and the toluene absorption capacity did not decrease after
four reuses. Transformation products formed during the PCO were
shown to mainly follow the side-chain oxidation pathway (i.e.,
toluene ! benzyl alcohol ! benzaldehyde! benzoic acid).
This study has confirmed the potential of the combination of
absorption and PCO for the treatment of harmful toluene
emissions. Future systematic studies are required to elucidate
the detailed processes involved in this treatment method and
especially the accumulation of the intermediate and the durability
of the reaction system.
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