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Carbon recycling through alkali basalts
Carbon is one of the most important elements that control
life and the environment of Earth. The atmosphere and bio-
sphere, however, are very small C reservoirs. By contrast, the
mantle has 27,000 examoles C, whereas the total Earth sur-
face (mostly sediments including fossil fuels) has
~7350 examoles C, with only 0.07 in the atmosphere and 0.13
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in the biosphere and 3.3 in the hydrosphere (Hayes and
Waldbauer, 2006). Therefore, carbon exchanges between the
mantle and the surface, which are dominated by magmatism
(outgassing) and plate subduction (down going), are the keys
that strongly influence long term climate changes and the
inhabitability of Earth. The C fluxes and the detailed pro-
fter (Dasgupta et al., 2013; Thomson et al., 2016): solidus lines of dry carbonated
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cesses that release C from deep in the mantle into the
atmosphere remain obscure.

There are four major forms of carbon in the mantle: dia-
mond, graphite, carbide and carbonates, with minor CO2 and
CH4 etc. Carbonate and also CO2 are very active in the mantle.
Experiments showed that the solidus line of silicate is dra-
matically lowered once carbonated (Fig. 1), whereas CO2 can
facilitate low-degree mantle-derived melt, reduce the SiO2 and
increase the alkalis in the melt, i.e. promote the formation of
alkali basalts (Dasgupta et al., 2007). In this case, alkali
magmatism is an important source of CO2 emission from the
mantle that must be considered sensibly.

A recent paper in Nature Geoscience reported for the first
time, direct observation on the transition of carbonated mag-
mas to alkali basalts in the South China Sea (Zhang et al.,
2017). The authors argued that carbonated silicate melts
reacted with the lithospheric mantle and were converted to
alkali basaltic melts on their way up. They further proposed
that the extremely thin lithosphere of less than 20 km in the
South China Sea facilitates extrusion of the carbonated silicate
melts.

Alkali basalts are widely distributed worldwide, e.g., sig-
nificant portion of ocean island basalts are alkali basalts. The
questions to be tackled in the future include: Is the transition
from carbonated magmas to alkali basalt a normal phenom-
enon that controls the formation of all alkali basalts? What is
the source of carbonates in the melt, i.e., newly recycled or
previously stored in the transition zone (Fig. 1)?

Large scale Mg isotope anomalies of alkali basalts in
eastern China indicate the incorporation of subducted carbo-
nates, most likely during the westward subduction of the
Pacific Plate (Li et al., 2017; Yang et al., 2012). In the case of
the South China Sea basalt, the carbon may come from sub-
ducted Neo-Tethys oceanic crust (Sun, 2016) or paleo-Pacific
plate. Nevertheless, the close association of CO2 and carbo-
nated magmas with alkali basalts opens a new window that
enable us to have a better perspective on the deep carbon
recycling.

Plate subduction is the main process that transports carbon
down into the mantle. Carbonate is the predominant carbon
spices in the subducted oceanic slab. As shown in Fig. 1,
carbonated MORB get melted before it goes across the
UppereLower Mantle boundary (Thomson et al., 2016). So,
carbonate cannot be preserved in the mantle as residues of the
subducted oceanic slab. In contrast, carbonated mantle peri-
dotite is stable between 300 and 800 km, i.e. in the transition
zone and the upper most Lower Mantle. Carbonate melts may
be preserved there as carbonated peridotite after reacted with
mantle peridotite. Therefore, the transition zone may have
played a major role in carbon recycling.
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