文章编号: 0258-7106 (2017) 01-0185-15

海南岛高通岭钼矿床赋矿岩体 LA-ICP-MS 锆石 U-Pb 年龄、Hf 同位素和 Ce^{4+}/Ce^{3+} 特征^{*}

朱昱桦¹²,于亮亮^{3,4**},于得水¹²,许德如¹,付王伟⁵

 (1中国科学院广州地球化学研究所,中国科学院矿物学与成矿学重点实验室,广东广州 510640;2中国科学院大学, 北京 100049;3中山大学地球科学与地质工程学院,广东广州 510275;4广东省地质过程与矿产资源探查重点实 验室,广东广州 510275;5 哈密地区安全生产监督管理局,新疆 哈密 839000)

摘 要 高通岭钼矿床位于海南岛中部的早白垩世一晚白垩世高通岭岩体中,是一个小型热液脉型钼矿床。 作者对赋矿围岩黑云母钾长花岗岩进行了岩相学观察、LA-ICP-MS 锆石 U-Pb 定年、锆石 Lu-Hf 同位素测试和锆石微 量元素分析。结果显示: 赋矿围岩矿物组合为钾长石(45%~60%)、石英(20%~30%)、斜长石(10%~20%)及黑 云母(10%~15%); 矿石矿物以辉钼矿为主,矿石类型主要为石英脉型,次为蚀变黑云母钾长花岗岩型和碎裂岩型; 高通岭岩体中的锆石,具有清晰的振荡环带,显示其岩浆成因; 锆石 U-Pb 年代学研究获得²⁰⁶ U/²³⁸ Pb 加权平均年龄为 (102.5±1.8) Ma,锆石的¹⁷⁶ Hf/¹⁷⁷ Hf 比值为0.282 349~0.282 663, $\varepsilon_{\rm Hf}(t)$ 为-12.8~-1.7,二阶段地壳模式年龄 ($T_{\rm DM}^{\rm C}$)为1976~1271 Ma 峰值为1450~1400 Ma,锆石稀土元素配分模式显示高通岭岩体的陆壳源区属性。地表取 样的黑云母钾长花岗岩(GTL-03和GTL-04)具有较低 Ce⁴⁺/Ce³⁺比值(160左右),反映了较低氧逸度,钻孔取样的黑 云母钾长花岗岩具有较高 Ce⁴⁺/Ce³⁺比值(平均值 377)。高通岭岩体总体上氧逸度较低,暗示其大规模成矿潜力较 低。

关键词 地球化学; 锆石 U-Pb 定年; Hf 同位素; Ce⁴⁺ /Ce³⁺比值; 高通岭钼矿床 中图分类号: P618.65 文献标志码: A

LA-ICP-MS zircon U-Pb dating, Hf isotopic composition and Ce⁴⁺/Ce³⁺ characteristics of Gaotongling molybdenum ore deposit in Hainan Province and their implications for metallogeny

ZHU YuHua^{1,2}, YU LiangLiang^{3,4}, YU DeShui^{1,2}, XU DeRu¹ and FU WangWei⁵

(1 CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Earth Science and Geological Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China; 4 Guangdong Key Laboratory on Geological Process and Mineral Resources Exploration, Guangzhou 510275, Guangdong, China; 5 Hami Administration of Work

Safety, Hami 83900, Xinjiang, China)

Abstract

The Gaotongling molybdenum ore deposit classified as the quartz vein type ore deposit is located in the central

^{*} 本文受到国家重点研发计划"深地资源勘查开采"(编号: 2016YFC0600401)重点专项和国土资源部全国矿产资源潜力评价项目(编号: 1212010881625)资助

第一作者简介 朱昱桦,男,1989年生,硕士研究生,矿物学、岩石学、矿床学专业。Email: zhuyuhua23@163.com **通讯作者 于亮亮,男,1983年生,博士,主要从事构造与成矿学研究。Email: shushengbeibei@163.com 收稿日期 2015-11-26; 改回日期 2016-09-10。张绮玲编辑。

area of the Hainan Island. It is hosted in the Cretaceous granite named Gaotongling terrace. In order to investigate mineral composition, metallogenic age and metallogenic source of the Gaotongling molybdenum deposit, the authors conducted petrographic observations, LA-ICP-MS zircon U-Pb dating, zircon in situ Lu-Hf isotope analysis and trace elements analysis of the ore-hosting rocks. The ore-hosting rocks are medium-coarse grained biotite moyite, and the ore types can be divided into quartz vein type molybdenite ore, altered moyite type molybdenite ore and cat-aclastic rock type molybdenite ore. LA-ICP-MS zircon dating of biotite moyite rock yielded ²⁰⁶U/²³⁸Pb ages varying from 105. 10 Ma to 99. 89 Ma with weighted average age of (102. 5 ± 1. 8) Ma. LA-ICP-MS zircon Hf isotopic analyses show $\varepsilon_{\rm Hf}(t)$ values of biotite moyite rocks from -12.8 to -1.7. The two-stage crust model ages ($T_{\rm DM}^{\rm C}$) of Gaotongling terrace vary from 1976 Ma to 1271 Ma, with the peaks from 1450 Ma to 1400 Ma. Combined with REE characteristics of zircons, the authors hold that the Gaotongling rocks belong to continental crust. Early Gaotongling granite rocks have low Ce⁴⁺ /Ce³⁺ ratios (around 160), reflecting a low oxygen fugacity, whereas Gaotongling gran-ite samples collected from the drill hole have high Ce⁴⁺ /Ce³⁺ ratios (377 on average), showing a higher oxygen fugacity.

Key words: geochemistry, zircon U-Pb dating, Hf isotope, Ce⁴⁺/Ce³⁺ ratio, Gaotongling molybdenum deposit

近年来 随着找矿勘查工作的开展 已在海南岛发 现9个钼矿床(陈沐龙等 2002) 分别是罗葵洞大型钼 矿床(刘君等 2010; 王国君等 2010; 于立红等 2010; 于立红,2014)、石门山中型钼铅锌多金属矿床、新村中 型钼矿床、龙门岭中型钼矿床、高通岭小型钼矿床(廖香 俊等 2008)、红门岭小型钼钨矿床(付王伟等 2013)、报 告村小型钼矿床、梅岭小型铜钼矿床(龙文国等 2003) 和红岭钼矿点(图1)。这一系列矿床时代相近,成矿动 力学背景相同 矿床类型相似 且大多数分布在九所一陵 水深大断裂两侧 因此 前人将这些矿床统一归为石门 山式钼矿床(廖香俊等 2008) 或海南岛早白垩世晚期至 晚白垩世早期(120~70 Ma) 钼成矿作用的产物(付王 伟, 2013; 李孙雄等 2014)。地理位置上, 高通岭钼矿 床位于昌江-琼海深大断裂带 梅岭铜钼矿床分布在海 南岛东北部 其余矿床均分布在九所-陵水断裂两侧的 岩体中。 矿床类型上 红门岭钼钨矿床、龙门岭钼矿床 和高通岭钼矿床均属热液脉型钼矿床 其余钼矿床均为 斑岩型钼矿床(陈沐龙等 2002; 付王伟等 2011; 李孙雄 等 2014)。由此可见 高通岭钼矿床在地理位置上和矿 床类型上与其他钼矿床存在着差异 这些钼矿床是否能 统一划成一类仍需要更多证据的支持。

前人对高通岭钼矿床的成矿时代进行过初步的研 究。廖香俊等(2008)对高通岭钼矿床进行了辉钼矿 Re-Os 同位素测年 获得了(98.4±2.5) Ma 的等时线年 龄。陈沐龙等(2002)对高通岭岩体进行锆石 U-Pb 定 年 获得了(95.6±1.6) Ma 的年龄,并认为这一年龄代 表该矿床形成的年龄。贾小辉等(2010)和 Wang 等 (2012)对高通岭岩体进行 LA-ICP-MS 锆石 U-Pb 定年, 获得(108.1±1.7) Ma 的加权平均年龄。付王伟等 (2014)对高通岭岩体进行定年,获得了加权平均年龄 (100.8±2.4) Ma 和(100.2±1.7) Ma。那么 这些年龄 的意义分别是什么? 到底哪一年龄可以代表高通岭钼 矿的形成年龄? 这些问题尚需进一步探讨。

高通岭钼矿床成因的研究工作尚处于起步阶段 对 其矿床成因和成矿物质来源相关研究不多。廖香俊等 (2008)通过矿石石英中包裹体的 C、H、O 同位素研究, 推测该矿床为燕山晚期岩浆活动形成的热液脉型矿床, 并推测高通岭钼矿成矿流体来自于高通岭岩体。付王 伟等(2013;2014)根据高通岭岩体年龄与辉钼矿年龄非 常相近 推测高通岭钼矿的成矿流体直接来自于高通岭 岩体。高通岭的岩浆性质、氧逸度和成矿过程等尚不明 确 仍有待进一步研究。

本文对高通岭钼矿床赋矿围岩黑云母钾长花岗岩 进行了 LA-ICP-MS 锆石 U-Pb 定年、锆石微量元素含量 和锆石 Hf 同位素组成分析,以探讨高通岭岩体及钼矿 床形成年龄、高通岭岩体的源区、岩体的氧逸度和含矿 能力,从而为研究高通岭钼矿床的成因提供制约。

图 1 海南岛区域地质简图(据 Xu et al., 2013)

Fig. 1 Simplified map showing the main stratigraphic and magmatic units , and ore deposits in the Hainan Island , south China (after Xu et al. , 2013)

1 成矿地质背景及矿床地质特征

海南岛是一个大陆性岛屿 通过琼州海峡与华南大陆相连(Xu et al., 2013; 2014)。海南岛地处欧亚板块、印度-澳大利亚板块和太平洋板块的交汇地带,具有复

杂的大地构造特征和构造演化历史 经历了晋宁、加里东、海西-印支期、燕山期和喜马拉雅构造运动(付王伟等 2014; Xu et al., 2013; 2014)。海南岛出露地层主要为古生界 其次为元古宇和新生界(图1)。最老地层为中元古代抱板群 但是出露较为零星且被后期侵入岩体切割(陈哲培等 1997)。海南岛大量发育印支期和燕山

期侵入岩,约占整个海南岛面积的60%(陈哲培等, 1997)。海南岛主要发育EW向和NE向构造带(图1)。 自北向南,海南岛分布4条EW向构造带,分别是王五-文教断裂、昌江-琼海断裂、尖峰-吊罗断裂和九所-陵水 断裂(图1)。NE向构造带主要包括白沙断裂和著名的 含金矿带——戈枕韧性剪切带。以九所-陵水深大断裂 为界,海南岛的北部是华南地层大区的五指山地体,南 部是南海大区的三亚地体(陈哲培等,1997)。

高通岭钼矿床位于昌江-琼海断裂中段燕山晚期的 高通岭岩体内(付王伟等 2011)。高通岭黑云母钾长花 岗岩呈岩株状分布在屯昌复式岩体之中 出露面积约为 3.0 km²。矿区内发育大量燕山晚期岩脉,主要为花岗 斑岩脉、煌斑岩脉(图 2a),其次有伟晶岩脉、辉石闪长 岩脉、花岗细晶岩脉和闪长岩脉等。岩脉规模及产状变 化较大 常呈平行排列,具分叉复合现象。高通岭岩体 内发育近 SN 向、NW 向断裂和破碎带 矿体严格受控于 NW 向断裂破碎带。

高通岭钼矿床矿体呈脉状分布在高通岭岩体中 (图 2b)。矿化带以高通岭为中心 地表宽度约 200 m、 长度约 600 m 走向约 115~123° 倾向 NE 倾角约 49~ 85°(图 2a、b)。矿化带中分布 14 个钼矿体和矿化体(图 2a) 其中 9 个矿体可达到最低可采厚度和最低工业品 位的要求。矿体 NW 向平行分布 间距一般 10~20 m (图 2b)。矿体中心一般为含辉钼矿的石英-多金属硫 化物脉 矿体两侧发育浸染状矿化现象。矿体地表长度 一般在 200~400 m 最长约 529 m(V,矿体)厚一般 1 ~2 m 最厚 3.61 m(V₂ 矿体) 倾向延深一般 100~200 m 最深约 390 m(V₂ 矿体)。矿体的钼品位为 0.06%~ 0.28% 最高达 2.70% 全矿床平均钼品位为 0.1%。截 止 2006 年 该矿床已查明钼金属储量 1697.5 t。

Fig. 2 Geological map of the Gaotongling molybdenum ore deposit(a , after Fu et al. , 2014) and geological

section of the Gaotongling molybdenum ore deposit(b , after Fu , 2013)

图 3 高通岭钼矿区赋矿围岩和矿石照片

a. 黑云母钾长花岗岩手标本; b. 正交偏光下显微照片; c. 石英脉型钼矿石; d. 自形叶片状、板片状辉钼矿; e. 蚀变钾长花岗岩型钼矿石; f. 碎裂岩型钼矿石

Kf—钾长石; Q—石英; Pl—斜长石; Bi—黑云母; Ser—绢云母; Mo—辉钼矿

Fig. 3 The photographs for the rocks and the ore of the Gaotongling molybdenum ore deposit

a. Biotite moyite sample; b. Microscopic photograph (crossed nicols); c. Quartz vein type molybdenum ore; d. Euhedral foliated and plate-like

molybdenite; e. Altered biotite movite type molybdenum ore; f. Cataclastic rock type molybdenum ore

Kf-K-feldspar; Q-Quartz; Pl-Plagioclase; Bi-Biotite; Ser-Sericite; Mo-Molybdenum ore

2 赋矿围岩和矿石矿物组成

高通岭钼矿床赋矿围岩为黑云母钾长花岗岩(图 3a) 呈肉红色-灰白色,花岗结构,局部可见钾长石斑 晶块状构造。主要矿物成分为钾长石(45%~60%,微 斜长石为主)、石英(20%~30%)、斜长石(10%~20%) 及黑云母(10%~15%) 副矿物有锆石、磷灰石、磁铁矿 等次生矿物有高岭石、绢云母等(图3b)。按照矿物颗 粒大小 可分成细粒黑云母钾长花岗岩与粗粒黑云母钾 长花岗岩 两者呈渐变关系。

矿石类型主要为石英脉型(图 3c) 次为蚀变黑云

母钾长花岗岩型和碎裂岩型。石英脉型矿石通常是在 石英脉两侧发育厚层状辉钼矿 辉钼矿通常以粗粒板片 状和叶片状辉钼矿集合体形式存在(图 3d)。矿石矿物 以辉钼矿为主,含少量黄铁矿、黄铜矿、闪锌矿、黑钨矿 等脉石矿物为石英、斜长石、钾长石、绢云母、绿泥石 等。蚀变黑云母钾长花岗岩型钼矿石 通常产于石英脉 的外侧 强烈钾化 辉钼矿则呈细粒浸染状分布其中(图 3e)。碎裂岩型钼矿石主要发育在断裂破碎带中,石英 脉中含石英脉碎块、断层泥以及细粒状和团块状辉钼矿 (图 3f)。

3 样品及分析方法

本文对 1 件样品(GTL-03) 进行 LA-ICP-MS 锆石 U-Pb 定年、锆石微量元素含量和锆石 Hf 同位素组成分 析 2 件样品(GTL-04 和 GTL-09) 进行锆石微量元素含 量和锆石 Hf 同位素组成分析。这 3 件样品均采自高通 岭钼矿区的高通岭岩体。GTL-03 样品取自 V_2 矿脉坑 道口附近的细粒黑云母钾长花岗岩(图 2b); GTL-04 样 品取自 V_2 矿脉坑道口南 16 m 处的近矿细粒黑云母钾 长花岗岩; GTL-09 样品取自钻孔 ZK22702 的 127 回次 265 m 处(图 2a、b) 为粗粒黑云母钾长花岗岩。

本次所采样品新鲜 基本无矿化 部分样品发生轻 微蚀变。先对样品清洗后 挑选一部分新鲜的岩石 粉 碎至 120 目左右 经电磁选和重选富集锆石。在双目镜 下挑选出晶形完好的锆石颗粒 将锆石制靶并拍摄阴极 发光图像(CL)、透射光图像和反射光图像。锆石的分 选、阴极发光图像、透射光图像和反射光图像拍摄均在 北京锆年领航科技公司完成。在阴极发光图像上选取 适合的位置 首先进行 LA-ICP-MS 锆石 U-Pb 定年和锆 石微量元素测试 之后在对应的测点上进行 Lu-Hf 同位 素测试 上述测试均在中国科学院广州地球化学研究所 同位素地球化学国家重点实验室完成。LA-ICP-MS 锆 石 U-Pb 定年、锆石微量元素测定和 Lu-Hf 同位素测定 均采用 Resolution M-50 型激光剥蚀系统和 Agilent 7500a 型的 ICP-MS 联机。锆石 U-Pb 定年、锆石微量元 素含量测定时 采用标准锆石 TEMORA (417 Ma) 作为 测年外标 测试时剥蚀激光斑束直径为 31 μm 频率为 8 Hz 分析过程见涂湘林等(2011)。锆石 Lu-Hf 同位素组 成测试时 剥蚀激光斑束直径为 44 μm 频率为 8 Hz。 锆石 U-Pb 定年和锆石微量元素数据处理使用 ICPMS-DataCal 8.6 软件(Liu et al., 2008) 谐和图的绘制采用 Isoplot v3.0 软件完成。

4 数据分析

4.1 锆石 U-Pb 定年

LA-ICP-MS 锆石 U-Pb 同位素数据见表 1 和图 4。 图 4 所显示的是 GTL-03 样品的锆石颗粒阴极发光图像 (CL)测点位置及锆石 U-Pb 年龄均进行了标注。大部 分锆石为长柱状 晶形完好 颗粒较大 锆石颗粒的长度 大多在 $70 \sim 280 \ \mu m \ K/$ 宽比在 $1.5 \sim 4$ 之间。其中较大 的锆石颗粒反映较饱和的锆含量。绝大部分锆石颗粒 具有清晰明显的震荡环带 表明这些锆石颗粒属于岩浆 成因锆石(Hoskin et al., 2003)。锆石 Th/U 比值在 $0.55 \sim 0.86$ 之 间, 也反映出典型的岩浆锆石的Th/U比值特征(吴元

表 1 高通岭钼矿花岗岩围岩锆石 LA-ICP-MS U-Pb 年龄定年结果 Table 1 LA-ICP-MS zircon U-Pb data of granite in the Gaotongling molybdenum ore deposit

							0				-		
测上口	w(B) /10 ⁻⁶			TTL/II	比	值	比	值	年龄/Ma	a	年龄/Ma	此印度	
测点亏	Pb	Th	U	- In/U	207 Pb / 235 U	1σ	206 Pb / 238 U	1σ	$^{207}\mathrm{Pb}/^{235}\mathrm{U}$	1σ	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	1σ	咱们反
GTL3-01	8.35	343	413	0.83	0.10748	0.00840	0.01564	0.00027	103.66	7.70	100.02	1.73	96%
GTL3-03	20.97	774	985	0.79	0.10690	0.00522	0.01639	0.00021	103.13	4.79	104.77	1.35	98%
GTL3-05	7.91	224	409	0.55	0.11206	0.00907	0.01564	0.00030	107.85	8.28	100.01	1.89	92%
GTL3-07	5.77	203	292	0.70	0.10197	0.01124	0.01644	0.00042	98.59	10.36	105.10	2.69	93%
GTL3-11	5.59	192	290	0.66	0.11134	0.00941	0.01562	0.00028	107.19	8.59	99.91	1.79	92%
GTL3-12	6.16	273	317	0.86	0.11421	0.01076	0.01562	0.00037	109.81	9.80	99.89	2.37	90%
GTL3-14	10.10	310	481	0.64	0.11902	0.00714	0.01658	0.00027	114.18	6.48	105.97	1.71	92%
GTL3-15	20.56	595	1024	0.58	0.11843	0.00913	0.01616	0.00025	113.65	8.28	103.35	1.58	90%
GTL3-16	6.66	192	351	0.55	0.11253	0.00813	0.01570	0.00033	108.28	7.42	100.41	2.07	92%
GTL3-19	7.25	269	361	0.74	0.09830	0.00753	0.01629	0.00036	95.21	6.97	104.18	2.31	90%

保等 2004; 高晓英等 2011)。从震荡环带的交切关系 可发现 大部分锆石颗粒都具有核 这些处于核部锆石

图 4 高通岭钼矿赋矿花岗岩样品 GTL-03 的锆石 CL 图像 实线圆为 LA-ICP-MS U-Pb 年龄测点 虚线圆为 Hf 同位素测试点

Fig. 4 Cathodoluminescence (CL) images of zircon from granite of the Gaotongling molybdenum ore deposit White solid circles indicate locations of LA-ICP-MS U-Pb dating and dotted circles indicate LA-MC-ICP-MS Hf analytical positions , the U-Pb age is also shown

(GTL-04 and GTL-09 after Fu et al. , 2014) $\,$

同样具有明显的震荡环带。在锆相对饱和的岩 浆中,这种结构是由于锆石沿着尚未溶解的锆石周 围继续结晶而形成(Hoskin et al., 2003)。

在锆石 U-Pb 年龄分析时 对于谐和度小于 90% 的 点予以舍弃。GTL-03 样品的²⁰⁶ Pb/²³⁸ U 年龄分布在 99.89~105.97 Ma 之间 获得了(102.5±1.8) Ma 的²⁰⁶ Pb/²³⁸ U 加权平均年龄(图5)。这一年龄与付王伟等 (2014)采用 LA-ICP-MS 方法获得的高通岭岩体锆石²⁰⁶ Pb/²³⁸ U 加权平均年龄(100.8±2.4) Ma 和(100.2± 1.7) Ma 在误差范围内一致。

4.2 锆石 Lu-Hf 同位素组成

对 GTL-03、GTL-04 和 GTL-09 三件黑云母钾长花 岗岩样品进行了锆石原位 Hf 同位素组成测试。Hf 同 位素测试结果如表 2 所示。GTL-03 黑云母钾长花岗岩 锆石的¹⁷⁶Hf/¹⁷⁷Hf 比值范围分布在0.282 44 ~0.282 61, ¹⁷⁶Lu/¹⁷⁷Hf比值范围分布在0.000 42 ~0.001 38。GTL-04 黑 云 母 钾 长 花 岗 岩 锆 石的¹⁷⁶Hf/¹⁷⁷Hf比值范围分布在0.282 38 ~0.282 66,

表 2 高通岭钼矿赋矿黑云母钾长花岗岩锆石 Hf 同位素组成														
Table 2 Zircon Hf isotope data for the ore-bearing granite of the Gaotongling molybdenum ore deposit														
测点号	年龄/Ma	$^{176}{\rm Yb}/^{177}{\rm Hf}$	¹⁷⁶ Lu / ¹⁷⁷ Hf	$^{176}{\rm Hf}/^{177}{\rm Hf}$	2σ	$arepsilon_{ m Hf}$	$\varepsilon_{\rm Hf}(t)$	$T_{\rm DM}$ / Ma	$T_{\rm DM}^{\rm C}$ / Ma					
GTL3-01	100.02	0.035343	0.001086	0.282563	0.000010	-7.4	-5.3	977	1499					
GTL3-03	104.77	0.041367	0.001378	0.282438	0.000013	-11.8	-9.6	1162	1777					
GTL3-05	100.01	0.034647	0.000973	0.282576	0.000011	-6.9	-4.8	956	1469					
GTL3-07	105.10	0.031889	0.000997	0.282593	0.000011	-6.3	-4.1	933	1429					
GTL3-11	99.91	0.035172	0.001030	0.282571	0.000009	-7.1	-5.0	965	1482					
GTL3-12	99.89	0.035446	0.001116	0.282388	0.000018	-13.6	-11.5	1224	1891					
GTL3-14	105.97	0.027453	0.000824	0.282596	0.000012	-6.2	-4.0	925	1421					
GTL3-15	103.35	0.022563	0.000678	0.282584	0.000009	-6.7	-4.4	938	1448					
GTL3-16	100.41	0.014128	0.000422	0.282605	0.000010	-5.9	-3.7	901	1400					
GTL3-19	104.18	0.024592	0.000710	0.282613	0.000013	-5.6	-3.4	897	1381					
GTL4-03	100.72	0.031044	0.000840	0.282601	0.000006	-6.1	-3.9	918	1412					
GTL4-06	237.58	0.025394	0.000740	0.282380	0.000015	-13.9	-8.8	1223	1823					
GTL4-09	104.42	0.018031	0.000516	0.282649	0.000007	-4.4	-2.1	844	1301					
GTL4-10	99.91	0.047688	0.001331	0.282663	0.000011	-3.8	-1.7	841	1274					
GTL4-12	89.19	0.062232	0.002102	0.282604	0.000015	-6.0	-4.1	946	1418					
GTL4-16	105.82	0.027180	0.000758	0.282644	0.000007	-4.5	-2.3	856	1312					
GTL4-19	97.92	0.039492	0.001135	0.282584	0.000011	-6.7	-4.6	949	1453					
GTL4-20	101.54	0.051891	0.001236	0.282526	0.000375	-8.7	-6.6	1034	1582					
GTL4-22	97.36	0.032314	0.000919	0.282601	0.000011	-6.1	-4.0	920	1415					
GTL4-25	101.85	0.031203	0.000946	0.282614	0.000007	-5.6	-3.4	902	1383					
GTL9-01	99.19	0.026061	0.001054	0.282567	0.000009	-7.3	-5.2	971	1491					
GTL9-02	102.42	0.018996	0.000642	0.282500	0.000016	-9.6	-7.4	1054	1637					
GTL9-05	110.51	0.025806	0.001015	0.282643	0.000014	-4.6	-2.2	862	1312					
GTL9-07	101.09	0.020489	0.000622	0.282583	0.000009	-6.7	-4.5	937	1450					
GTL9-10	100.41	0.022474	0.000857	0.282349	0.000013	-15.0	-12.8	1270	1976					
GTL9-11	99.38	0.027699	0.000998	0.282500	0.000010	-9.6	-7.5	1063	1640					
GTL9-12	97.04	0.023200	0.000691	0.282564	0.000011	-7.4	-5.3	965	1496					
GTL9-13	96.31	0.028743	0.001001	0.282553	0.000009	-7.7	-5.7	988	1522					
GTL9-14	108.56	0.020974	0.000688	0.282617	0.000007	-5.5	-3.2	891	1370					
GTL9-15	100.20	0.026316	0.000832	0.282529	0.000013	-8.6	-6.5	1019	1575					
GTL9-19	98.88	0.030921	0.000851	0.282656	0.000007	-4.1	-2.0	841	1290					
GTL9-22	100.98	0.025275	0.000773	0.282486	0.000014	- 10.1	-8.0	1077	1670					
GTL9-24	100.13	0.023274	0.000642	0.282662	0.000010	-3.9	-1.7	827	1274					
GTL9-25	102.480715	0.032074	0.000902	0.282663	0.000008	-3.9	-1.7	832	1271					

图 6 高通岭黑云母钾长花岗岩锆石的地壳 Hf 同位素模式年龄($T_{\rm DM}^{\rm C}$) 分布图(a) 和 $\varepsilon_{\rm Hf}(t)$ -年龄图(b) Fig. 6 Distribution of zircon Hf isotope crust model ages of Gaotongling granite ($T_{\rm DM}^{\rm C}$) (a) and the plots of the $\varepsilon_{\rm Hf}(t)$ versus U-Pb age diagram for the zircon of ore-bearing granite (b)

¹⁷⁶Lu/¹⁷⁷Hf比值范围分布在0.000 52~0.002 10。
GTL-09 黑云母钾长花岗岩锆石的¹⁷⁶Hf/¹⁷⁷Hf比值范围
围分布在0.282 35~0.282 66,¹⁷⁶Lu/¹⁷⁷Hf比值范围
分布在0.000 57~0.001 05。

高通岭赋矿围岩黑云母钾长花岗岩的 $\varepsilon_{\rm Hf}(t)$ 分 布在 – 12.8 ~ – 1.7, $T_{\rm DM}^{\rm C}$ 主要分布在 1976 ~ 1271 Ma,主要峰值落在 1450 ~ 1400 Ma 范围内(图 6a)。 图 6b 可以发现高通岭钼矿 $\varepsilon_{\rm Hf}(t)$ 大部分落在 1.5 ~ 1.3 Ga 演化线之上,但很少一部分锆石的 $\varepsilon_{\rm Hf}(t)$ 落 在 1.5 ~ 2.0 Ga 上地壳演化线之间,这说明高通岭 岩体母岩主要由 1.5 ~ 1.3 Ga 从亏损地幔分离出来 的物质加上小部分更老的上地壳物质混合形成。这 一小部分稍老的上地壳物质形成时间不晚于 2.0 Ga。

4.3 锆石微量元素特征与 Ce⁴⁺ /Ce³⁺比值

锆石中,Hf、Y、P、Th、U、REE 等元素常会以类质 同象替换锆石中的 Zr(雷玮琰等,2013)。磷钇矿 (化学式 Y(PO₄))具有与锆石相类似的结构,在锆 石中磷钇矿、磷灰石等是常见的包体。从阴极发光 图像可以发现,高通岭锆石中也含有包体(图4),虽 然在实验过程中尽量避开包体,但一些微小的包体 是难以避免的。那些具有异常高的 P(>500 × 10^{-6})、Y(>2000 × 10^{-6})和 Ca 含量的测点,很可能 含有包体,因此在分析锆石微量元素时需进行舍弃。 表 3 为黑云母钾长岗岩样品 GTL-03、GTL-04 和 GTL-09 中锆石微量元素含量。

锆石的球粒陨石标准化稀土元素配分模式表明 (图7),GTL-03、GTL-04和GTL-09样品中的锆石明 显的富集重稀土元素,具有Ce正异常和Eu负异常 等特征,并落在大陆地壳锆石成因范围内(Grimes et al.,2007)。GTL-03样品中锆石的Eu/Eu^{*}比值范 围在0.31~0.64(表3),平均值为0.45;GTL-04样 品中锆石的Eu/Eu^{*}比值为0.19~0.55(表3),平均 值为0.32;GTL-09样品中锆石的Eu/Eu^{*}比值为 0.23~0.51(表3),平均值为0.41。

岩浆中 Ce^{3+} 离子可以被氧化成 Ce^{4+} , Ce^{4+} 离子 具有与 Zr^{4+} 离子相同的电荷数以及相近的离子半 径,所以会更容易取代锆石中的锆离子,因此锆石会 呈现出强烈的 Ce 正异常(Liang et al., 2006)。 Ce^{4+}/Ce^{3+} 主要受氧逸度的控制,受温度和压力影响 较小(Ballard et al., 2002; Liang et al., 2006),因 此,锆石中 Ce^{4+}/Ce^{3+} 比值可以反映岩浆的氧逸度。 目前 Ce⁴⁺ /Ce³⁺ 尚不能通过光谱分析直接测得,但是 可以通过相关理论计算求得(Ballard et al., 2002), 公式为:

(Ce(IV) /Ce(III)) $_{\rm zircon}$ = (Ce $_{\rm melt}$ – Ce $_{\rm zircon}/D_{\rm Ce(III)}^{\rm zircon/melt})$ /

(Ce_{zircon}/D^{zircon/melt} – Ce_{melt}) (1) 根据 Blundy 等(1994) 提出的晶格扭曲模型,推 导出分配系数与半径的关系,即:

 $\ln D_{\rm i} = \ln D_0 - 4\pi E N_{\rm A} (r_{\rm i}/3 + r_0/6) (r_{\rm i} - r_0)^2 / RT \quad (2)$

同一岩浆中温度和压力一定 , D_i 为某元素在锆 石-熔体相分配系数 D_0 为假定的无应变时离子的理 想分配系数 R 为气体常数 ,E 为杨氏模量 , N_A 为阿 伏加德罗常数 r_i 为某元素的离子半径 r_0 为最优离 子半径 ,即 Zr 离子八配位的离子半径 0.84 Ù。由式 (2) 可知 , $\ln D_i$ 与($r_i/3 + r_0/6$) ($r_i - r_0$)² 线性相关。

取用三价稀土元素和四价 Hf、Th 和 U 的 $\ln D_i$ 与相应($r_i/3 + r_0/6$) ($r_i - r_0$)² 作图(图 8,以 GTL-03-11 为例)可以计算出 Ce³⁺和 Ce⁴⁺在锆石-熔体相的 分配系数(表4),更多细节可以参考(Ballard et al., 2002; 辛洪波等 2008;张俊杰等 2012)。将 Ce³⁺和 Ce⁴⁺的锆石-熔体相分配系数,岩石样品的 Ce 含量 (Ce_{melt})和锆石 Ce 含量(Ce_{zircon})带入式(1),即可计 算出 Ce⁴⁺/Ce³⁺比值。通过上述方法计算出 GTL-03 样品的 Ce⁴⁺/Ce³⁺比值范围在 17 ~ 322,平均值为 166; GTL-04 的 Ce⁴⁺/Ce³⁺比值范围在 20 ~ 412,平均 值为 155; GTL-09 的 Ce⁴⁺/Ce³⁺比值比前两者明显增 加,范围在 87 ~ 1053 之间,平均值为 377。

5 讨 论

5.1 高通岭岩体年龄及源区

目前对于高通岭矿床的年龄有以下4种结果:

(1) 陈沐龙等(2002) 给出高通岭钼矿的年龄为 (95.6±1.6) Ma;

(2) 廖香俊等(2008)的辉钼矿 Re-Os 定年结果 为(98.4±2.5) Ma;

(3) 贾小辉等(2010) 和 Wang 等 (2012) 获得高 通岭岩体锆石 U-Pb 年龄为(108.1±1.7) Ma(20 个 测点);

(4) 付王伟等(2014) 对高通岭钼矿围岩进行定
年 获得加权平均年龄(100.8±2.4) Ma和(100.2±1.7) Ma。

2017 年

表 3 黑云母钾长花岗岩锆石微量元素含量

Table 3 Trace elements data for the zircon of the ore-bearing granitoid

	w(B) /10 ⁻⁶																			
测点	Р	Y	Ca	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Th	U	Eu/Eu*
GTL3-01	219	690	101.6	0.36	25.1	0.17	1.34	3.07	0.97	16.5	5.03	58.2	22.0	98.3	21.7	223.7	46.6	343	413	0.42
GTL3-02	113	580	0.0	0.01	26.2	0.04	0.85	1.63	0.68	10.6	3.64	46.2	17.6	85.5	20.4	216.4	47.0	468	853	0.51
GTL3-03	128	757	23.8	0.02	32.6	0.04	1.02	2.63	0.98	15.9	5.28	61.5	23.2	111.7	26.2	264.5	57.2	774	985	0.47
GTL3-04	104	512	28.3	0.50	21.4	0.45	3.27	2.62	1.07	10.3	3.14	38.0	15.1	76.2	20.3	208.5	49.6	285	748	0.64
GTL3-07	127	475	19.1	0.18	17.5	0.10	1.21	2.01	0.86	10.6	3.43	39.3	14.5	69.1	15.6	162.0	34.3	203	292	0.57
GTL3-10	219	593	52.0	0.42	18.9	0.16	1.78	2.43	0.83	12.2	4.10	49.6	18.4	88.2	20.3	203.8	44.1	213	263	0.47
GTL3-11	158	614	64.4	0.08	18.3	0.04	0.72	1.84	0.46	11.5	3.96	48.2	19.0	92.3	21.3	220.5	47.7	192	290	0.31
GTL3-12	242	701	114.5	0.20	23.2	0.09	1.26	2.48	0.67	13.6	4.62	58.8	22.4	105.1	24.0	228.4	46.3	273	317	0.36
GTL3-13	121	480	0.0	0.07	16.4	0.06	0.78	1.48	0.44	9.4	3.06	38.4	14.8	70.4	17.3	178.4	39.7	192	323	0.37
GTL3-14	129	660	0.0	0.01	23.7	0.04	0.79	2.12	0.76	13.0	4.24	52.4	20.8	98.7	23.1	236.5	51.0	310	481	0.45
GTL3-15	116	1168	0.0	0.03	35.6	0.06	0.44	2.39	0.78	17.4	6.14	82.3	34.6	175.1	41.7	437.0	99.3	595	1024	0.37
GTL3-17	155	644	23.5	0.58	21.3	0.20	1.75	2.44	0.84	11.9	4.36	51.5	20.1	96.3	22.7	234.9	52.0	234	341	0.48
GTL3-20	183	461	180.8	0.07	18.9	0.09	0.74	1.66	0.58	8.7	2.86	36.6	13.9	69.3	16.6	173.2	38.2	203	314	0.47
GTL3-21	323	672	51.5	0.58	21.7	0.21	1.50	2.34	0.55	13.0	4.42	54.1	21.7	102.3	23.6	227.5	45.8	214	311	0.31
GTL3-23	86	442	72.8	0.08	18.6	0.06	0.69	1.16	0.57	7.3	2.61	32.8	13.3	65.7	16.8	182.1	42.1	247	502	0.61
GTL3-24	128	853	39.6	0.08	26.9	0.14	1.26	2.13	0.66	12.4	4.18	56.1	24.0	128.0	33.5	391.8	101.1	568	2344	0.40
GTL4-02	153	391	19.2	0.03	4.9	0.02	0.36	1.20	0.40	6.8	2.53	32.6	12.8	60.0	13.6	133.2	27.8	34	66	0.44
GTL4-03	188	889	8.2	0.11	10.9	0.07	0.84	2.62	0.54	18.1	6.22	71.5	27.6	128.9	30.1	307.0	66.0	263	725	0.24
GTL4-04	176	394	0.0	0.00	6.5	0.01	0.43	1.05	0.29	7.0	2.51	33.0	12.7	60.0	13.6	126.0	25.9	37	70	0.33
GTL4-08	105	464	160.2	0.04	10.5	0.08	0.93	2.05	0.62	12.4	3.65	41.1	14.4	66.3	15.5	158.0	33.1	89	291	0.38
GTL4-10	478	1217	298.3	0.36	18.7	0.20	2.13	4.28	0.99	27.3	9.08	102.4	37.8	173.0	39.3	386.8	78.5	845	2226	0.28
GTL4-13	204	452	0.0	0.06	7.7	0.08	0.69	1.25	0.57	8.2	3.04	37.8	15.1	68.3	14.9	141.0	28.0	57	84	0.55
GTL4-16	266	817	200.9	0.34	10.6	0.17	1.16	2.53	0.54	18.3	6.13	70.6	26.8	119.5	28.1	284.5	59.4	207	627	0.24
GTL4-17	134	372	90.5	0.00	5.8	0.01	0.31	0.99	0.26	6.5	2.36	29.0	11.8	57.3	13.1	129.0	25.9	43	85	0.32
GTL4-19	207	745	63.2	0.30	18.5	0.15	1.58	2.51	0.50	14.3	5.04	59.2	23.2	110.5	25.5	258.1	52.2	432	587	0.26
GTL4-20	222	1233	135.0	0.17	11.4	0.14	1.74	4.76	0.70	27.2	9.07	100.0	38.4	179.9	40.9	424.3	89.4	280	1062	0.19
GTL4-23	239	1244	0.0	0.08	13.9	0.09	1.70	3.77	0.82	21.7	7.56	92.4	37.0	177.3	41.2	423.4	90.9	311	692	0.28
GTL4-24	415	968	293.5	0.82	9.8	0.36	3.50	5.21	1.29	23.6	7.75	87.4	32.4	140.3	30.2	287.7	57.2	111	142	0.36
GTL4-25	210	1108	0.0	0.01	11.0	0.06	0.81	2.94	0.54	23.5	8.68	93.2	34.9	160.4	36.4	367.7	76.9	213	821	0.20
GTL9-04	113	419	0.0	0.11	17.3	0.06	0.70	1.13	0.40	8.3	2.66	33.2	12.7	62.1	15.0	152.0	34.5	174	267	0.41
GTL9-05	125	440	165.0	0.41	21.6	0.13	1.01	1.28	0.48	7.3	2.50	32.1	13.3	66.5	16.5	178.8	41.4	242	338	0.49
GTL9-06	121	654	0.0	0.00	24.7	0.05	1.18	2.22	0.69	12.5	4.43	50.7	20.1	97.4	23.5	241.6	52.1	272	378	0.41
GTL9-10	140	533	27.1	0.02	18.8	0.03	1.17	1.91	0.56	11.0	3.36	41.6	16.5	80.7	19.5	199.0	43.6	255	391	0.38
GTL9-11	137	574	89.0	0.14	22.5	0.08	1.16	1.85	0.72	10.3	3.51	42.9	17.0	84.3	20.7	226.9	52.9	321	753	0.51
GTL9-12	130	446	81.4	0.02	18.4	0.03	0.50	1.84	0.56	9.3	2.96	35.5	13.7	66.6	15.4	157.7	34.0	193	261	0.42
GTL9-13	186	649	70.9	0.79	20.4	0.20	1.43	2.20	0.75	12.4	3.92	47.7	19.3	97.7	23.9	265.2	63.0	280	536	0.44
GTL9-17	101	359	74.1	0.01	14.9	0.01	0.30	1.30	0.25	5.7	2.23	26.4	10.7	53.0	13.2	140.4	32.5	120	273	0.29
GTL9-18	188	375	138.4	0.73	17.9	0.17	0.97	1.31	0.40	7.8	2.55	29.3	11.7	56.2	13.1	139.1	30.7	201	296	0.38
GTL9-19	140	502	0.0	0.00	17.6	0.03	0.72	1.72	0.45	8.9	3.21	40.1	15.4	74.6	17.4	175.8	38.8	284	420	0.36
GTL9-21	172	735	154.1	0.12	18.5	0.14	2.46	5.21	1.73	23.4	6.45	66.1	23.6	103.6	22.8	224.6	48.8	210	274	0.49
GTL9-22	406	535	361.3	1.67	24.1	0.38	2.03	2.29	0.66	11.3	3.66	42.6	16.7	77.4	18.1	180.6	38.4	294	350	0.40
GTL9-24	159	514	49.3	0.00	14.3	0.03	0.94	1.56	0.42	8.8	2.91	38.4	15.6	77.2	18.8	194.6	43.3	267	429	0.35

这些年龄都曾被解释为高通岭钼矿床的年龄。 其中(95.6±1.6) Ma 这一年龄数据在发表时,具体 样品个数、测试点数、数据和采样地点均没有列出, 这一年龄明显偏小,可能是后期侵入脉体的年龄(陈 沐龙等 2002)。廖香俊等(2008)得到的辉钼矿 Re-Os 年龄为(98.4 ± 2.5) Ma,样品采自含矿石英脉, 代表高通岭钼矿的成矿年龄。贾小辉等(2010)和 Wang 等(2012) 在对高通岭岩体进行锆石 U-Pb 定年 的同时,还对屯昌岩体进行了锆石 U-Pb 定年,获得 了(107.2±1.3) Ma 加权平均年龄。高通岭岩体作 为屯昌岩体的侵入岩体,其年龄应小于屯昌岩体的 年龄。相比之下 高通岭岩体年龄(108.1±1.7) Ma 偏大 且其测点偏少。本文获得的高通岭赋矿岩体 黑云母钾长花岗岩中锆石 U-Pb 定年结果((102.5 ± 1.8) Ma) 与付王伟等(2014) 定年结果((100.8 ± 2.4) Ma 和(100.2±1.7) Ma) 在误差范围内一致, 可以代表高通岭钼矿赋矿围岩的年龄。目前,在海 南岛的白垩纪钼矿床中,只有高通岭钼矿床、石门山 钼 矿床((100 ± 1) Ma; 陈沐龙等 2014) 和罗葵洞钼

表 4 微量元素八倍配位的离子半径值和含矿斑岩微量元素在锆石-熔体相的分配系数

 Table 4
 Ionic radii of trace elements as cations in 8-fold coordination and the distribution coefficients for trace elements

 between individual zircon and whole rock for the ore-bearing granitoid

项目	年龄/Ma	$\mathrm{Ce}^{4+}/\mathrm{Ce}^{3+}$	平均值	La	${ m Ce}^{3}$ + & ${ m Ce}^{4}$ +	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Lu	Hf	Th	U
GTL-03	102.5 ± 1.8	17-322	166	33.9	57.3	6.12	19.7	2.92	0.79	1.98	0.28	1.53	0.30	0.78	0.12	0.13	3.4	9.63	2.69
GTL-04	100.8 ± 2.4	20-412	155	17.1	34.1	4.05	14.6	2.68	0.71	1.95	0.28	1.55	0.30	0.83	0.12	0.14	3.38	12.22	5.53
GTL-09	100.2 ± 1.7	87-1053	377	15.8	29.2	3.39	11.8	2.10	0.58	1.33	0.15	0.75	0.14	0.34	0.05	0.06	2.71	5.30	3.29
离子半径				1.16	1.14&0.97	1.13	1.11	1.08	1.07	1.05	1.04	1.03	1.02	1	0.99	0.98	0.83	1.06	0.1
10X				0.54	0.48&0.08	0.42	0.37	0.29	0.26	0.23	0.2	0.17	0.15	0.13	0.1	0.09	0	0.24	0.12

图 8 分配系数与离子半径函数的线性拟合图

Fig. 8 The liner fitting between lnDi and function of r_i

矿床((99.7±0.4) Ma,李孙雄等,2014)具有可靠 的年龄数据。在华南,90~100 Ma这一时期,古太平 洋板块(或称伊泽乃奇板块)向欧亚板块俯冲(毛景 文等,2008)而产生大规模的成矿事件(孙卫东等, 2008)。海南岛钼矿床的成矿时间与华南这一成矿 事件的时间吻合,因此,推测海南岛白垩纪钼矿床成 矿带很可能是华南白垩纪成矿带的南缘。

锆石 Hf 同位素模式年龄主要峰值为 1450 ~ 1400 Ma。在海南岛,峰值为 1477 Ma 的碎屑锆石 (Zhou et al., 2015)和(1439 ±9)Ma 的花岗岩体(Li et al., 2008)都已经被确认,这些碎屑锆石和岩体的 模式年龄大多分布在 1.6~1.8 Ga 范围内(梁新权, 1995)。虽然尚不能确定高通岭岩体是不是这些岩 石重熔的产物,但可以确定 1400~1450 Ma 在海南 岛有大规模岩浆事件。高通岭花岗岩锆石的 $\varepsilon_{\rm Hf}(t)$ 值均小于 0表明这些岩石的源区以地壳为主。锆石 的稀土元素配分模式与壳源锆石的稀土元素分配模 式相似(图 7),进一步证实了高通岭岩体的源区为 地壳岩石。

5.2 高通岭岩体与钼矿床成矿过程

目前对于高通岭钼矿床属于石英热液脉型矿床 已经取得共识(陈沐龙等 2002; 廖香俊等 2008; 付 王伟等 2011; 2014)。前人研究表明 高通岭钼矿床 的成矿流体源于岩浆流体(廖香俊等 2005; 2008; 付 王伟等 2014; 李孙雄等 2014)。岩浆流体形成的热 液脉型硫化物矿床与斑岩型矿床有着重要联系 ,二 者存在类似的成矿机制(江思宏等,2004;凌洪飞, 2011)。氧逸度可以影响进而控制长英质岩浆的矿 化作用(Mungall, 2002; Sun et al., 2004)。在岩浆 中 氧逸度控制着硫的价态 在低的氧逸度时 硫会 以 S²⁻的形式存在; 当氧逸度较高时, 硫则以 SO 或 SO₂ 的形式存在(Liang et al., 2006)。SO 和 SO₂ 与 Cu、Mo 等离子更具亲和性,且有较高的溶解度,随着 岩浆分异,流体-熔体中会逐渐富集 Cu、Mo 等元素, 故在高氧逸度时 流体中会富集更多 Cu、Mo 金属物 质 从而有利于成矿。因此 高的氧逸度常作为斑岩 型矿床成矿的标志之一(Ballard et al., 2002; Liang et al., 2006; 辛洪波等, 2008)。Ce⁴⁺/Ce³⁺比值大 小能反映出岩浆氧逸度高低(Trail et al., 2012; 赵 振华 2010) 国内外学者根据 Ce⁴⁺ /Ce³⁺比值和 Eu/ Eu^{*} 界定斑岩型矿床的成矿岩体与不成矿岩体, Ce⁴⁺ /Ce³⁺ 临界值一般分布在 260 ~ 300 之间,Eu/ Eu^* 为 0.4 大于这 2 个临界值才具有成矿潜力(Liang et al., 2006; 辛洪波等, 2008; 赵振华, 2010)。 本文的 Ce⁴⁺ /Ce³⁺比值计算结果表明 黑云母钾长花 岗岩样品 GTL-03、GTL-04 的 Ce⁴⁺ /Ce³⁺比值较低, 说明氧逸度偏低; 而黑云母钾长花岗岩样品 GTL-09 的 Ce⁴⁺ /Ce³⁺比值高 具有较高的氧逸度。表4 定年 数据显示 GTL-03、GTL-04 样品年龄数据稍大于 GTL-09 样品,且 GTL-09 样品采样位置位于 265 m 深 处钻孔内,因此认为 GTL-09 粗粒黑云母钾长花岗岩 样品代表晚期岩浆结晶的产物。

高通岭岩体早期结晶岩石具有较低氧逸度,在 岩浆演化晚期,氧逸度增加,此时岩浆流体得以携带 更多成矿物质。高通岭岩体不同部位氧逸度存在差 异的原因,可能是岩浆演化的结果,也可能是局部有 高氧逸度物质混染(凌洪飞 2011)。总体上,高通岭 岩体氧逸度较低,不具大规模成矿的潜力。

6 结 论

通过对高通岭钼矿床赋矿围岩和矿石进行岩相 学观察、赋矿围岩的 LA-ICP-MS 锆石 U-Pb 定年、锆 石 Lu-Hf 同位素组成测试和锆石微量元素分析得出 以下结论:

(1) 高通岭钼矿赋矿围岩是黑云母钾长花岗 岩。矿石类型可划分为石英脉型、蚀变黑云母钾长 花岗岩型和碎裂岩型。

(2) 高通岭岩体的锆石²⁰⁶ U/²³⁸ Pb 加权平均年 龄为(102.5±1.8) Ma。

 (3) 高通岭岩体的锆石 ε_{Hf}(t) 为 - 12.8 ~
 -1.7, 二阶段地壳模式年龄(T^C_{DM}) 分布在 1976 ~
 1271 Ma 峰值为 1450 ~ 1400 Ma。结合球粒陨石标 准化锆石稀土元素配分模式图,显示高通岭岩体的 陆壳源区属性。

(4) GTL-03、GTL-04 黑云母钾长花岗岩样品的 锆石 Ce⁴⁺ /Ce³⁺比值平均分别为 166、155 ,GTL-09 黑 云母钾长花岗岩样品的锆石 Ce⁴⁺ /Ce³⁺比值高,平均 值为 377 ,显示高通岭岩体总体上氧逸度偏低,大规 模钼成矿作用受限。

志 谢 本文的野外工作得到海南省地矿局的 支持 在此表示感谢。同时感谢匿名审稿专家和编 辑老师对本文的审阅及宝贵意见,这使得本文质量 有了提高。

References

- Ballard J R , Palin M J and Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV) /Ce(III) in zircon: Application to porphyry copper deposits of northern Chile[J]. Contributions to Mineralogy and Petrology , 144: 347-364.
- Blundy J and Wood B. 1994. Prediction of crystal-melt partition coefficients from elastic moduli [J]. Nature , 372:452-454.
- Chen M L , Fu C R , Zhuang Y G and Yun P. 2002. First discovery of quartz hydrothermal vein type molybdenum deposit in QiongZhong region [J]. Geology and Mineral Resources of South China , (1): 9 (in Chinese) .
- Chen M L , Ma C Q , Lv Z Y , Yun P and Liu Y Y. 2014. Zircon U-Pb chronology of Qianjia rock mass in Hainan Island and its geological significance [J]. Geological Science and Technology Information , 33 (6):1-10+27 (in Chinese).
- Chen Z P. 1997. Stratigraphy (Lithostratic) of Hainan Province [M]. Wuhan: China University of Geosciences Press. 1-100 (in Chinese).
- Fu W W , Xu D R , Fu Ya R , Yang C S , Zhou Y C , Yang D S , Wu C J and Wang Z L. 2011. Regional metallogenic regularity of molybdenum deposit in Hainan Island [J]. Journal of Minerals , (S1):772-773 (in Chinese with English abstract).
- Fu W W. 2013. An research on ore deposit-types and geodynamic background of the Mo ore deposits in Hainan Province, South China [D]. Supervisor: Xu D R. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. 184p (in Chinese with English abstract).
- Fu W W, Xu D R, Fu Y R, Wu C J, Yang C S, Zhou Y C and Wang Z L. 2013. Molybdenite Re-Os isotopic dating of Hongmenling Mo-W deposit in Hainan Province and its geological implications [J]. Journal of East China Institute of Technology, 35(2):135-142 (in Chinese with English abstract).
- Fu W W, Xu D R, Wu C J, Fu Y R, Zhou Y C, Zhou Y Q, Wang Z L and Lin G. 2014. LA-ICP-MS zircon U-Pb dating of syenogranites hosting Gaotongling Mo deposit in Hainan Province: Implications for metallogenesis[J]. Mineral Deposits, 33(2): 419-427 (in Chinese with English abstract).
- Gao X Y and Zheng Y F. 2011. On the Zr-in-rutile and Ti-in-zircon geothermometers [J]. Acta Petrologica Sinica , 27(2): 417-432(in Chinese with English abstract).
- Grimes C B , John B E , Kelemen P B , Mazdab F K , Wooden J L , Cheadle M J , Hangh? j K and Schwartz J J. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance [J]. Geology , 35: 643.

Hoskin P W O and Schaltegger U. 2003. The composition of zircon and

igneous and metamorphic petrogenesis [J]. Reviews in Mineralogy and Geochemistry , 53:27-62.

- Jia X H , Wang Q , Tang G J , Jiang Z Q , Zhao Z H , Yang Y H , Wang X D and Zhao W Q. 2010. Zircon U-Pb geochronology , geochemistry and petrogenesis of the Late Early Cretaceous adakitic intrusive rocks in the Tunchang area , Hainan Province [J]. Geochimica , 39(6): 497-519 (in Chinese with English abstract).
- Jiang S H , Nie F J , Zhang Y and Hu P. 2004. The latest advances in the research of epithermal deposits [J]. Earth Science Frontiers (China University of Geosciences, Beijing), 11(2): 401-411 (in Chinese with English abstract).
- Lei W Y , Shi G H and Liu Y X. 2013. Research progress on trace element characteristics of zircon different origins [J]. Earth Science Frontiers , 20(4): 273-284(in Chinese with English abstract).
- Li S X, Chen M L, Yang D S and Wang Y H. 2014. The molybdenite Re-Os age and analysis of geodynamic background in Hainan island[J]. Geology and Mineral Resources of South China, 30(3): 272-279(in Chinese with English abstract).
- Li Z X , Li X H , Li W X and Ding S J. 2008. Was Cathaysia part of Proterozoic Laurentia? – new data from Hainan Island , South China [J]. Terra Nova , 20(2) : 154–164.
- Liang X Q. 1995. Sm-Nd Ages of the Precambrian granitic-greenstone series in Hainan Island and their geological significance [J]. Acta Petrroologica Sinica, 11(1):71-76 (in Chinese with English abstract).
- Liao X J , Wang P A , Ding S J , Huang X D , Dong F X , Liu X C and Lei W Z. 2005. Main minerogenetic series and metallogenic characteristics on Hainan Island [J]. Journal of Geomechanics , 11(2): 187-194 (in Chinese with English abstract).
- Liao X J , Wang P A , Qin H C , Lu X K , Dong F X , Liu X C and Shu B. 2008. Geology , geochemistry and ore-forming age of the Gaotongling molybdenum deposit , Tunchang area , Hainan , China [J]. Geological Bulletin of China , 27 (4): 560-570 (in Chinese with English abstract).
- Liang H Y , Campbell I H , Allen C , Sun W D , Liu C Q , Yu H X , Xie Y W and Zhang Y Q. 2006. Zircon Ce⁴⁺ /Ce³⁺ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet [J]. Mineralium Deposita , 41: 152-159.
- Ling H F. 2011. Theory of granite type uranium deposit hydrothermal origin – from oxygen fugacity condition restriction [J]. Geological Review , 57(2): 193-206 (in Chinese with English abstract).
- Liu J, Cao Y L, Yu L H, Wang G J and Wang Y J. 2010. Wallrock alteration and prospecting criteria of the luokuidong molybdenum deposit in Hainan Province [J]. Geology and Resources, 19(1): 63-66 (in Chinese with English abstract).
- Liu Y , Hu Z , Gao S , Günther D , Xu J , Gao C and Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA– ICP–MS without applying an internal standard [J]. Chemical Geology , 257: 34-43.

质

矿

- Long W G , Ling Q Y , Fan Q H , Xie Z S , Zhang Y G and Yang Z Q. 2003. Geological features of Yantang Cu-Mo deposit in eastern Hainan Island [J]. Geology and Mineral Resources of South China , 30(3): 30-36(in Chinese with English abstract).
- Mao J W , Xie G Q , Guo C L , Yuan H D , Cheng Y B and Chen Y C. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings [J]. Geological Journal of China Universities , 14(4): 510-526 (in Chinese with English abstract).
- Mungall J E. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits [J]. Geology , 30(10) : 915-918.
- Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society , London , Special Publications , 42 (1): 313-345.
- Sun W D , Arculus R J , Kamenetsky V S and Binns R A. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization [J]. Nature , 431(7011): 975-978.
- Sun W D , Ling M X , Wang F Y , Ding X , Hu Y H , Zhou J B and Yang X Y. 2008. Pacific Plate subduction and Mesozoic geological event in eastern China [J]. Bulletin of Mineralogy , Petrology and Geochemistry ,27(3): 218-225 (in Chinese with English abstract).
- Trail D , Bruce W E and Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas [J]. Geochimica et Cosmochimica Acta , 97:70-87.
- Tu X L , Zhang H , Deng W F , Ling M X , Liang H Y , Liu Y and Sun W D. 2011. Application of resolution in-situ laser ablation ICP-MS in trace element analyses [J]. Geochimica , 40(1): 83-98 (in Chinese with English abstract).
- Wang G J , Liu J , Cao Y L and Zhang X N. 2010. Metallogenic characteristics of Luokuidong porphyry molybdenum deposit in the Baoting County , Hainan Province [J]. Mineral Exploration , 1 (5) : 453-457 (in Chinese with English abstract).
- Wang Q , Li X H , Jia X H , Wyman D , Tang G J , Li Z X , Ma L , Yang Y H , Jiang Z Q and Gou G N. 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang-Fengmu area , Hainan Province (South China) : Partial melting of lower crust and mantle , and magma hybridization [J]. Chemical Geology , 328: 222-243.
- Wu Y B and Zheng Y F. 2004. Genesis of zircon and its constraint on interpretation of U-Pb age [J]. Chinese Science Bulletin ,49 (16) : 1554-1569 (in Chinese).
- Xin H B and Qu X M. 2008. Relative oxidation states of ore-bearing porphyries inferred from Ce (Ⅳ) /Ce (Ⅲ) ratio in zircon: Application to the porphyry copper belt at Gangdese, Tibet [J]. Acta Mineralogica Sinica 28(2) : 152–160 (in Chinese with English abstract).
- Xu D R , Wang Z L , Cai J X , Wu C J , Nonna B C , Wang L , Chen H Y , Baker M J and Kusiak M A. 2013. Geological characteristics and metallogenesis of the shilu Fe-ore deposit in Hainan Province , South Chi-

na[J]. Ore Geology Reviews , 53: 318-342.

- Xu D R , Wang Z L , Chen H Y , Hollings P , Jansen N H , Zhang Z C and Wu C J. 2014. Petrography and geochemistry of the Shilu Fe-Co-Cu ore district , South China: Implications for the origin of a Neoproterozoic BIF system [J]. Ore Geology Reviews , 57: 322-350.
- Yu L H , Wang G J and Wang Y J. 2010. Study on molybdenum wall-rock alteration and mineralization of Luokuidong Mo ore in Hainan Province [J]. Non-ferrousmining and Metallurgy , 26(01):9-12 (in Chinese with English abstract).
- Yu L H. 2014. Molybdenum ore body geological characteristics and prospecting marks of Luokuidong Mo ore in Hainan Province [J]. Heilongjiang Science and Technology Information, (28):90-92 (in Chinese).
- Zhang J J , Wang G J , Yang X Y , Sun W D and Dai S Q. 2012. The petrogenesis of the Jingde granodiorite and its MMEs: Constraints from geochemistry ,zircon U-Pb dating and Hf isotopic compositions [J]. Acta Petrologica Sinica 28(12): 4047-4063(in Chinese with English abstract).
- Zhou Y , Liang X , Liang X , Jiang Y , Wang C , Fu J and Shao T. 2015. U-Pb geochronology and Hf-isotopes on detrital zircons of Lower Paleozoic strata from Hainan Island: New clues for the early crustal evolution of southeastern South China [J]. Gondwana Research , 27(4): 1586-1598.
- Zhao Z H. 2010. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis [J]. Earth Science Frontiers , 17(1): 267-286 (in Chinese with English abstract).

附中文参考文献

- 陈沐龙,符策锐,庄有光,云平.2002.琼中地区首次发现热液石英 脉型钼矿床[J].华南地质与矿产,(1):9.
- 陈沐龙,马昌前,吕昭英,云平,刘园园. 2014. 海南岛千家复式岩 体锆石 U-Pb 年代学及其地质意义[J]. 地质科技情报,(6):1-10+27.
- 陈哲培. 1997. 海南省岩石地层[M]. 中国地质大学出版社. 1-100.
- 付王伟,许德如,傅杨荣,杨昌松,周迎春,杨东生,吴传军,王智 琳. 2011. 海南岛钼矿床区域成矿规律初探[J]. 矿物学报, (S1):772-773.
- 付王伟. 2013. 海南岛钼矿床成因类型及成矿动力学背景研究[D]. 导师:许德如. 中国科学院大学. 184 页.
- 付王伟,许德如,傅杨荣,吴传军,杨昌松,周迎春,王智琳. 2013. 海南省红门岭钼钨矿床辉钼矿 Re-Os 同位素定年及地质意义 [J]. 东华理工大学学报(自然科学版),(2):135-142.
- 付王伟,许德如,吴传军,傅杨荣,周迎春,周岳强,王智琳,林舸. 2014. 海南省高通岭钼矿床赋矿岩体 LA-ICP-MS 锆石 U-Pb 定年 及成矿意义[J]. 矿床地质,(2):419-427.
- 高晓英,郑永飞. 2011. 金红石 Zr 和锆石 Ti 含量地质温度计[J]. 岩

第 36 卷 第 1 期 朱昱桦等:海南岛高通岭钼矿床赋矿岩体 LA-ICP-MS 锆石 U-Pb 年龄、Hf 同位素和 Ce⁴⁺ / Ce³⁺ 特征 199

石学报,(2):417-432.

- 贾小辉,王强,唐功建,姜子琦,赵振华,杨岳衡,王晓地,赵武强. 2010. 海南屯昌早白垩世晚期埃达克质侵入岩的锆石 U-Pb 年代 学、地球化学与岩石成因[J]. 地球化学,(6): 497-519.
- 江思宏, 聂凤军, 张义, 胡朋. 2004. 浅成低温热液型金矿床研究最新进展[J]. 地学前缘, (2): 401-411.
- 雷玮琰,施光海,刘迎新. 2013. 不同成因锆石的微量元素特征研究 进展[J]. 地学前缘,(4): 273-284.
- 李孙雄,陈沐龙,杨东生,汪焰华.2014. 海南岛钼矿床 Re-Os 年龄 及其成矿地球动力学背景探讨 [J]. 华南地质与矿产,(3): 272-279.
- 梁新权. 1995. 海南岛前寒武纪花岗岩-绿岩系 Sm-Nd 同位素年龄及 其地质意义[J]. 岩石学报,(1):71-76.
- 廖香俊,王平安,丁式江,黄香定,董法先,刘晓春,雷伟志.2005. 海南岛主要成矿系列与矿床成矿规律研究[J].地质力学学报, (2):187-194.
- 廖香俊,王平安,覃海灿,路西坤,董法先,刘晓春,舒斌.2008.海 南屯昌地区高通岭钼矿床的地质、地球化学特征及成矿时 代[J].地质通报,(4):560-570.
- 凌洪飞. 2011. 论花岗岩型铀矿床热液来源──来自氧逸度条件的 制约[J]. 地质论评,(2): 193-206.
- 刘君,曹玉莲,于立红,王国君,王英杰. 2010. 海南省罗葵洞钼矿 围岩蚀变找矿标志[J]. 地质与资源,(1):63-66.
- 龙文国,林起玉,范庆贺,谢自 ,庄有光,杨志强.2003. 海南琼 海烟塘梅岭铜钼矿床地质特征[J]. 华南地质与矿产,(3):30-36.

- 毛景文,谢桂青,郭春丽,袁顺达,程彦博,陈毓川. 2008. 华南地 区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地 质学报,(4): 510-526.
- 孙卫东,凌明星,汪方跃,丁兴,胡艳华,周继彬,杨晓勇. 2008.太 平洋板块俯冲与中国东部中生代地质事件[J]. 矿物岩石地球 化学通报,(3): 218-225.
- 涂湘林,张红,邓文峰,凌明星,梁华英,刘颖,孙卫东. 2011. RES-Olution 激光剥蚀系统在微量元素原位微区分析中的应用[J]. 地球化学,(1): 83-98.
- 王国君,刘君,曹玉莲,张馨宁.2010.海南罗葵洞斑岩型钼矿地质 特征及矿床成因[J].矿产勘查,(05):453-457.
- 吴元保,郑永飞. 2004. 锆石成因矿物学研究及其对 U-Pb 年龄解释 的制约[J]. 科学通报,(16): 1589-1604.
- 辛洪波,曲晓明. 2008. 西藏冈底斯斑岩铜矿带含矿岩体的相对氧化 状态:来自锆石 Ce(Ⅳ)/Ce(Ⅲ)比值的约束[J]. 矿物学报, (2): 152-160.
- 于立红,王国君,王英杰. 2010. 海南省罗葵洞钼矿围岩蚀变与矿化 研究[J]. 有色矿冶,(1):9-42.
- 于立红. 2014. 海南罗葵洞钼矿矿体地质特征及找矿标志[J]. 黑龙 江科技信息,(28): 90-92.
- 张俊杰,王光杰,杨晓勇,孙卫东,戴圣潜. 2012. 皖南旌德花岗闪 长岩与暗色包体的成因:地球化学、锆石 U-Pb 年代学与 Hf 同位 素制约[J]. 岩石学报,(12): 4047-4063.
- 赵振华. 2010. 副矿物微量元素地球化学特征在成岩成矿作用研究 中的应用[J]. 地学前缘,(1): 267-286.