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The H2/CH4 ratio during 
serpentinization cannot reliably 
identify biological signatures
Ruifang Huang1,2, Weidong Sun1, Jinzhong Liu3, Xing Ding4, Shaobang Peng5 & 
Wenhuan Zhan2

Serpentinization potentially contributes to the origin and evolution of life during early history of the 
Earth. Serpentinization produces molecular hydrogen (H2) that can be utilized by microorganisms to 
gain metabolic energy. Methane can be formed through reactions between molecular hydrogen and 
oxidized carbon (e.g., carbon dioxide) or through biotic processes. A simple criterion, the H2/CH4 ratio, 
has been proposed to differentiate abiotic from biotic methane, with values approximately larger 
than 40 for abiotic methane and values of <40 for biotic methane. The definition of the criterion was 
based on two serpentinization experiments at 200 °C and 0.3 kbar. However, it is not clear whether 
the criterion is applicable at a wider range of temperatures. In this study, we performed sixteen 
experiments at 311–500 °C and 3.0 kbar using natural ground peridotite. Our results demonstrate that 
the H2/CH4 ratios strongly depend on temperature. At 311 °C and 3.0 kbar, the H2/CH4 ratios ranged from 
58 to 2,120, much greater than the critical value of 40. By contrast, at 400–500 °C, the H2/CH4 ratios 
were much lower, ranging from 0.1 to 8.2. The results of this study suggest that the H2/CH4 ratios cannot 
reliably discriminate abiotic from biotic methane.

Serpentinization, a hydrothermal alteration of ultramafic rocks (typically peridotite and komatiite), occurs in 
a great variety of tectonic settings on the Earth, including the ocean floor, mid-ocean ridges and subduction 
zones1–6, and also on Mars7–9. Serpentinization dramatically modifies chemical and physical properties of oceanic 
lithosphere10–16. It induces a decrease in density and possibly an increase in volume5. A low degree of serpen-
tinization (5–10%) could greatly weaken the strength of peridotite10. Serpentine, with a chemical formula of 
Mg3Si2O5(OH)4, can incorporate up to 13.5 wt% H2O and large quantities of fluid-mobile elements, such as Be, 
Ba and Cs11–17. In particular, serpentine can be stable at depths greater than 200 km18,19. Therefore, serpentine is 
an important chemical reservoir in subduction zones.

Serpentinization produces molecular hydrogen (H2), resulting from the oxidation of ferrous iron in olivine 
and pyroxene to ferric iron (Reaction (1)). Abiotic methane (CH4) can be derived from reactions between H2 and 
oxidized carbon (e.g., carbon dioxide) through Fischer-Tropsch type (FTT) synthesis (Reaction (2)). Molecular 
hydrogen and methane support microbial communities in hydrothermal fields20–27. Methane may be produced 
biologically by methanogenic archaea28. The identification of abiotic and biotic methane is essential to understand 
ultramafic ecosystems, which potentially contribute to the origin and evolution of life during early history of 
Earth and possibly other terrestrial planets.
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Traditionally, stable isotopes of carbon were used for identifying abiotic and biotic methane, because the δ 13C 
values of abiotic methane differ largely from those of biotic methane. However, abiotic methane synthesized in the 
presence of elevated Fe-Ni alloys has δ 13C values as depleted as those of biotic methane29,30. Recently, a simple cri-
terion, the H2/CH4 ratio, was proposed to distinguish abiotic from biotic methane, based on two serpentinization 
experiments at 200 °C and 300 bars27. H2/CH4 ratios greater than approximately 40 mostly likely represent abiotic 
methane, and values less than 40 indicate biotic methane27. However, it is not clear whether the criterion is appli-
cable at a wider temperature range. Temperature greatly influences H2 production during serpentinization31–33. 
The production of H2 reaches a maximum at ~300 °C31,33, whereas it largely decreases at temperatures higher than 
350 °C33, possibly leading to a dramatic decrease in the H2/CH4 ratio. Previous experiments were primarily con-
ducted at ≤ 300 °C27,31,33–36, and the temperature dependence of H2/CH4 ratios was poorly constrained.

In this study, we performed sixteen experiments at 311–500 °C and 3 kbar using natural ground peridotite 
with initial grain sizes of < 30, 42–59, and 100–177 μ m. The objectives of this study were (1) to investigate the 
temperature dependence of H2/CH4 ratios and (2) to explore whether H2/CH4 ratios can be used to identify  
abiotic and biotic methane at a wider range of temperatures.

Results
The H2/CH4 ratios. Molecular hydrogen, methane, ethane, and propane were formed. At 311 °C and 3.0 kbar, 
the H2/CH4 ratios ranged from 58 to 2,120, much higher than the critical value of 40 (Fig. 1a,b). The ratios 
increased as a function of time, implying that rates of H2 production are faster than the rates of CH4 forma-
tion. In experiments using peridotite with initial grain sizes < 30 μ m, the H2/CH4 ratios varied from 58 to 91. 
By contrast, for those using larger grain sizes (100–177 μ m), the H2/CH4 ratios were much higher, from 360 to 
2,120. At 400–500 °C and 3.0 kbar, the H2/CH4 ratios decreased greatly, 0.1–8.2 (Fig. 1c). In experiments at 500 °C 
and 3.0 kbar using peridotite with initial grain sizes of < 30 μ m, the H2/CH4 ratios increased during the first 20 
days to a maximum value and then decreased slightly during the subsequent 16 days. This decrease suggests an 
increase of CH4 production (Table 1). A similar trend was also observed at 400 °C and 3.0 kbar with grain sizes of 
42–59 μm, whereas it was not detected in experiments with larger grain sizes.

Figure 1. Plot of H2/CH4 ratios as a function of time (in days), showing strong temperature dependence.  
(a) 311 °C and 3.0 kbar. (b) An enlargement of the rectangle in (a). The critical number 40 is shown as a 
horizontal curve. (c) 400–500 °C and 3.0 kbar.
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Solid products. At 311 °C and 3.0 kbar, the major secondary hydrous mineral was fibrous chrysotile (Fig. 2a), 
whereas tabular shaped lizardite formed at 400 °C and 3.0 kbar (Fig. 2b). Serpentine was identified based on 
infrared spectra with stretching modes at 954 and 1087 cm−1 for the Si-O group and a stretching vibration 
at 3686 cm−1 for the –OH group (Fig. 2d)37–39. Chemical compositions of secondary minerals in HR61 were 
provided in an experimental study40, consistent with compositions of serpentine41. At 500 °C and 3.0 kbar, the  
secondary hydrous minerals produced were talc and lizardite. Talc is characterized by a stretching mode at 
671 cm−1 for Si-O-Mg and a stretching vibration at 3677 cm−1 for the –OH group (Fig. 2d)42.

Discussion
The hydrocarbons produced in this study are probably abiotic, supported by the following evidence. First, blank 
experiments were performed at 311–500 °C and 3.0 kbar using peridotite loaded without any fluid. The quan-
tities of H2 and hydrocarbons were below the detection limit of gas chromatograph after 27 days of reaction 
time. It suggests that hydrocarbons were not released from the decomposition of organic matter and long-chain 
hydrocarbons in peridotite43,44. Otherwise, it would result in highly elevated hydrocarbons. Moreover, the log 
of the n-alkane concentrations is linearly correlated with the carbon numbers (Fig. 3), which is consistent with 
the Schulz-Flory distribution predicted for FTT synthesis31. All these indicate that hydrocarbons were formed 
through reactions between H2 and dissolved carbon dioxide from the atmosphere in the starting fluid.

A plot of H2/CH4 ratios as a function of temperature is illustrated in Fig. 4, showing that the H2/CH4 ratios 
greatly depend on temperature. They reached their maximum values at ~300 °C, from 58 to 4,000 (Fig. 4a)31,45. 
By contrast, the values were much lower at 400–500 °C, much less than 40 (Fig. 4), resulting from the dramatic 
decrease in H2 production and increase in CH4 formation. The decrease in H2 production may be induced by 
very slow rates of olivine serpentinization at temperatures higher than 350 °C46–48, supported by infrared spec-
tra of solid products with a sharp peak centered at 503 cm−1 for the Mg-O group of olivine and a weak band at 
3677 cm−1 for the –OH group of talc (Fig. 2d). It suggests that H2 is mostly derived from orthopyroxene alter-
ation. As indicated by experimental studies, the quantities of H2 produced during orthopyroxene alteration at  
> 350 °C were one to two orders of magnitude less than those formed after olivine serpentinization at 300 °C31,32. 
Consequently, H2 production at 400–500 °C decreases greatly. By contrast, CH4 concentrations increased at higher 
temperatures (Table 1), which possibly results from sufficient Fe-Ni alloys that highly enhance CH4 production29.

Initial grain sizes of peridotite greatly influence the production of H2 and CH4, and the H2/CH4 ratios. Smaller 
grain sizes result in larger quantities of H2 and CH4 (Table 1). Grain sizes exert a strong influence on serpentini-
zation rates, with smaller grain sizes for faster rates48. For experiments with the same run durations, peridotite 
with smaller grain sizes has larger reaction extents48. As suggested by an experimental study, the production of H2 
showed a positive correlation with reaction extents of serpentinized peridotite34, and consequently smaller grain 
sizes result in more H2. Larger reaction extents possibly lead to the formation of more catalytic minerals (e.g., 
Fe-Ni alloys), which could greatly enhance CH4 production29.

Run durations have great effects on H2/CH4 ratios (Fig. 1). At 311 °C and 3.0 kbar, the H2/CH4 ratios increased 
with longer time, implying that rates of H2 production are faster than rates of CH4 formation. By contrast, for 
experiments at 400–500 °C with smaller grain sizes (e.g., < 30 and 42–59 μ m), the H2/CH4 ratios first increased to 
a maximum value, and then they decreased slightly during the subsequent reaction time (Fig. 1c). It implies that 
rates of CH4 production were slow at the onset of reactions, possibly resulting from insufficient catalytic minerals 
(e.g., Fe-Ni alloys). When reactions proceeded, more catalytic minerals formed, which promote CH4 production, 

Sample No.
T 

(°C)
P 

(kbar)
Time 
(days)

Initial grain  
sizes (μm)

W/R 
ratio

H2 
(m)

CH4 
(m)

C2H6 
(μ)

C3H8 
(μ) H2/CH4

δ13CH4  
(vs. PDB)

HR61 311 3.1 120 100–177 0.82 127 0.06 2.72 5.44 2,120

HR77 311 3.0 28 100–177 1.2 10.1 0.028 26.5 39.5 360

HR86 311 3.0 27 < 30 0.86 119 1.3 59.3 316 91

HR91 311 3.0 14 < 30 0.89 167 2.88 161 322 58

HR105 311 3.0 10 < 30 1.0 21 0.35 23.6 9.2 60

HR68 400 3.0 20 < 30 0.71 2.3 11.8 1,686 1,384 0.2

HR78 400 3.0 29 100–177 1.0 3 0.37 36.9 35.4 8.2

HR79 400 3.0 27 100–177 0.86 1.3 0.37 4.0 0 3.5

HR90 400 3.0 24 100–177 0.93 2.3 3.8 526 129 0.6

HR98 400 3.2 31 42–59 0.96 5.6 13.2 591 214 0.4

HR102 400 3.0 38 42–59 1.1 0.4 4.1 208 40.1 0.1 − 24

HR70 500 3.0 20 < 30 0.98 13.5 15.6 24.4 61.8 0.9

HR82 500 3.0 36 < 30 1.0 2.8 48.8 34.1 6.66 0.05

HR81 500 3.3 22 100–177 0.88 0.8 0.51 21.3 0.01 1.6

HR101 500 3.2 9 < 30 0.71 3.3 15.0 110 14.0 0.2

HR103 500 3.0 15 < 30 0.61 1.2 7.2 9.9 4.97 0.2 − 22

Table 1.  Experimental conditions and gas compositions. W/R ratio: ratio between the mass of the starting 
fluids and solid materials loaded in gold capsules. The starting materials for HR101 and HR103 are mechanical 
mixtures of olivine and SiO2 with a mass ratio of 1:1.
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Figure 2. Identification of solid products by scanning electron microscope and Fourier transformed 
infrared spectroscopy analyses. (a) HR61, 311 °C and 3.1 kbar, with the formation of fibrous chrysotile (Ctl). 
(b) HR79, 400 °C and 3.0 kbar, with tabular shaped lizardite (Lz). (c) HR81, 500 °C and 3.3 kbar, with lizardite. 
(d) Infrared spectra of solid products. The spectra indicate that serpentine formed at 311–400 °C, whereas 
serpentine and talc were produced at 500 °C and 3.3 kbar. Talc was identified based on its stretching mode at 
671 cm−1 for Si-O-Mg and a stretching vibration at 3677 cm−1 for the –OH group42.

Figure 3. Schulz-Flory distribution of hydrocarbons produced in this study. The two solid lines show the 
least-squares fit of the data at 400 °C and 3.0 kbar (Table 1) using Origin 8.6 with correlation coefficients (R2).
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leading to a decrease in H2/CH4 ratios. By contrast, for experiments at 400 °C using peridotite with grain sizes of 
100–177 μ m, the H2/CH4 ratios increased with time, whereas their maximum values were not reached. It implies 
that longer time is needed for peridotite with larger grain sizes to achieve maximum H2/CH4 values.

Fluid compositions (e.g., dissolved silica) may dramatically influence the H2/CH4 ratios. As indicated by an 
experimental study, basalt alteration at 300 °C produced H2 concentrations approximately two orders of magni-
tude less than those after peridotite serpentinization, resulting in very low H2/CH4 ratios, 0.0449. Consistently, 
fluids recharged from basalt-hosted hydrothermal fields have much lower H2/CH4 ratios than those from 
peridotite-hosted hydrothermal fields50. It is possibly because basalt alteration releases one to two orders of mag-
nitude more dissolved silica into hydrothermal fluids49. Silica impedes the production of magnetite51, and conse-
quently H2 production decreases greatly52. By contrast, for experiments at 400–500 °C, differences in H2 between 
basalt and peridotite hydration are much less significant49,53, leading to comparable H2/CH4 ratios (Fig. 4, Table 1).

As discussed above, the H2/CH4 ratios during serpentinization can be greatly influenced by many factors, 
including temperature, initial grain sizes of peridotite, run durations, and the dissolved silica in hydrothermal 
fluids. The H2/CH4 ratios of < 40 can be achieved at temperatures higher than 350 °C or in the presence of silica, 
which may not necessarily represent biological signatures. In hydrothermal fields, peridotite commonly expe-
riences a retrograde metamorphism, and serpentinization may occur at a wide range of temperatures5. It indi-
cates that the production of H2 in hydrothermal fields can be greatly influenced by temperature. Additionally, 
high-temperature reactions (aside from serpentinization), microbial oxidation and sulphate reduction possibly 
affect H2 production54, and consequently the H2/CH4 ratios may be modified. All these indicate that the H2/CH4 
ratios cannot reliably identify abiotic and biotic methane.

Interestingly, methane produced in this study has δ 13C values larger than − 30‰ (referenced to Pee Dee 
Belemnite, Table 1), consistent with isotopic compositions of abiotic methane55. By contrast, methane synthesized 
in the presence of elevated Fe-Ni alloys has very depleted δ 13C values, much lower than − 30‰29,30. Iron-Ni alloys 
are accessory minerals in serpentinites, typically less than 0.5%. Therefore, experiments conducted using elevated 
Fe-Ni alloy may not represent natural hydrothermal systems. As reported in an experimental study, δ 13C values of 
methane greater than − 30‰ was detected in one experiment, whereas in the other experiment under the same 
condition, methane had δ 13C values lower than − 30‰56. In particular, the δ 13C values of methane became more 
depleted with longer time56. Therefore, it is not clear whether stable isotopes of carbon can effectively identify 
abiotic and biotic methane.

Materials and Methods
A non-altered peridotite was reacted with NaCl fluid (0.5 mol/L dissolved NaCl; ~0.6 mmol/kg dissolved CO2). 
The peridotite was sampled from Panshishan (Jiangsu Province, China) where it occurs as xenoliths in basalt57,58. 

Figure 4. The H2/CH4 ratio as a function of temperature. (a) Comparisons of H2/CH4 ratios in this study  
(in blue) and those in previous work (in black)27,31,45,49,53. (b) An enlargement of the yellow rectangle in (a).
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It is composed of 60–65% olivine, 20–25% orthopyroxene, 15% clinopyroxene, and 1–3% spinel. The sample was 
crushed and sieved into grain sizes of < 30, 42–59, and 100–177 μ m.

All experiments were conducted in the high-pressure and high-temperature laboratory at Guangzhou 
Institute of Geochemistry, Chinese Academy of Sciences. Experimental procedures were essentially the same as 
those described in another experimental study40. The reactants and starting fluid were sealed into gold capsules, 
which were placed into the end of hydrothermal vessels, followed with a filler rod. After heating, the vessels were 
quenched to room temperature in cold water within 10 min.

The gas components in the gold capsules were analysed using an Agilent 7890A gas chromatograph at the State 
Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry. The gold capsule was placed 
in a vacuum glass piercer, which was connected to a Toepler pump and a volume-calibrated glass pipe through  
vacuum line. The gold capsule was pierced by a steel needle in vacuum (with a pressure of less than 1 ×  10−2 Pa), 
and all of gas components were concentrated by a Toepler pump into the volume-calibrated pipe. The hydrocar-
bons were quantified using an external standard with an accuracy of less than 0.5%. The detailed analysis proce-
dures have been reported in previous studies40,59,60.

After gas chromatography analyses, the remaining gas in the vacuum glass piercer and glass pipe, with an 
amount about 80% of the initial value, was taken with a syringe for gas chromatography-isotope ratio mass spec-
trometry analyses. The carbon isotope value of CO2 reference gas was calibrated by NBS 22 oil as a reference using 
element analysis, combined with isotope ratio mass spectrum. Carbon isotope values of methane were calculated 
with CO2 as a reference gas that was automatically loaded into the system at the beginning and the end of each 
analysis.

The surface morphology of solid products was characterized with a Zeiss Ultra 55 Field emission gun scanning 
electron microscope at Second Institute of Oceanography, State Oceanic Administration of China. Fourier trans-
formed infrared spectroscopy analyses were performed using a Bruker Vector 33 FTIR spectrometer at Analytical 
and Testing Center of South China University of Technology. Infrared spectra were obtained at wavenumbers 
from 400 to 4000 cm−1 at a resolution of 4 cm−1 with 32 scans for each spectrum. The KBr pellets were prepared 
by mixing around 1 mg of sample powder with 200 mg of KBr.
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