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Mesozoic intrusions, including MORB-type gabbros, high-Mg diorites, calc-alkaline diorites and granodiorites,
were exposed in the Andomicrocontinent that is bounded between the Qiangtang and Lhasa terranes. Discoveries
of these Mesozoic intrusions have provided new petrogenetic constraints on our understanding of Bangong-
Nujiang ocean evolution. Zircon U–Pb dating shows that these intrusions formed in the early-middle Jurassic
(174–177 Ma). The gabbros have relatively flat REE distribution patterns, which is analogous to the geochemical
features of MORB. Their positive εNd(t) values (εNd(t) = 4.4–5.5) are consistent with those of ophiolites along
the Bangong-Nujiang suture zone. These gabbros are also characterized by enrichments offluid-sensitive elements
andnegative to positiveNb anomalies, indicative of the influence of subduction-related compositions in theirman-
tle source. These features suggest that the gabbros were most likely originated from asthenosphere-derivedmelts
metasomatized by enriched lithospheric mantle during the upwelling. The high-Mg diorites are characterized by
typical features of high compatible elements (MgO = 8.3–10.24 wt%, Cr = 400–547 ppm, Ni = 120–152 ppm),
high Mg# (70–74) and low Sr/Y ratios. Their high initial 87Sr/86Sr isotopic ratios and negative εNd(t) values
(−10.5 to −10.8), together with their sanukitic characteristics, imply that the high-Mg diorites were probably
produced by partial melting of mantle peridotites metasomatized by slab-derived melts and aqueous fluids. The
calc-alkaline diorites have relatively high MgO (4.04–5.50 wt%), Cr, Ni contents and Mg# (56–59), as well as
high (86Sr/87Sr)i ratios and negative εNd(t) values (−7.5 to −7.3), suggesting that they were most likely formed
by partial melting of the Ando basement rocks with significant input of mantle components. The granodiorites
are peraluminous and have higher (86Sr/87Sr)i ratios and more negative εNd(t) values (−10.6 to −10.8), similar
to those of the granitic gneisses of the Ando basement, suggesting partial melting of the Ando basement. Taking
into account the spatial and temporal distribution of theMesozoic magmatic rocks in the Southern Qiangtang ter-
rane, we suggest that the formation of the Early-Middle Jurassic magmatic “flare-up” in the Southern Qiangtang
terrane was related to the asthenospheric upwelling triggered by the roll-back of the subducted Bangong–
Nujiang oceanic slab.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Magmatic rocks is crucial to investigate regional tectonic events and
canprovide further important constrains ondeep geodynamic processes.
The growth and reworking of continental crust is commonly triggered by
the underplating of mantle magmas (Chen and Arakawa, 2005; Jahn
et al., 2004). In subdution zones, themantle rocks and the coeval granites
have therefore recorded abundant information regarding the crustal
growth and differentiation of continental crust (Kamei et al., 2004;
Karsli et al., 2010). However, the production of the subdution-related
magmatic rocks was always attributed to distinct dynamic mechanisms,
including slab break-off (Davies and von Blanckenburg, 1995), ridge sub-
duction (Abratis and Worner, 2001; Guivel et al., 1999), slab tearing
(Guivel et al., 2006; Pallares et al., 2007), or slab roll-back (Kay and
Mpodozis, 2001; Ramos and Folguera, 2009). All of these geodynamic
processes are closely corresponding to the upwelling of hot astheno-
sphere mantle, which provides enough heat for partial melting of the
subducted oceanic crust and marine sediments, the overlying sub-
continental lithospheric mantle and low crust. The partial melting of
these unites always generates some distinct magmatic rocks in various
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tectonic regimes, such as high-Mg andesite, adakite, which therefore can
be used to constrain the different geodynamic processes.

The uplift of Tibetan Plateau is generally considered to have formed
by continental collision between India and Eurasian along the Indus–
Yarlung suture in the early Cenozoic (Chung et al., 2005; DeCelles
et al., 2002; Ding et al., 2005; Nelson et al., 1996; Yin and Harrison,
2000). Recently, more and more evidence indicates that the pre-
Cenozoic tectonics and magmatism probably contributed to the
accretion and formation of the central and northern Tibetan Plateau be-
fore thefinal India and Eurasian collision (Guynn et al., 2012; Kapp et al.,
2003, 2007; Long et al., 2015; Murphy et al., 1997; Pullen et al., 2011).
For example, an active continental margin is proposed to have
developed in the Southern Qiangtang caused by the subduction of the
Bangong-Nujiang Ocean (BNO), which is predated to the collision
between the Lhasa and Qiangtang terranes (Kapp et al., 2005; Liu
et al., 2014). Late Mesozoic intermediate–felsic intrusions in the
Southern Qiangtang terrane are considered to have been produced by
the northward subduction of the Bangong–Nujiang Ocean (S.M. Li
et al., 2014; J.X. Li et al., 2014; Pullen et al., 2011). Recently, early Jurassic
granitoids (185–175 Ma) were discovered in the Ando microcontinent
along the margin of the Southern Qiangtang terrane (Liu et al., 2011,
2015). These Mesozoic granitoids were suggested to represent a
“missing” Jurassic continental arc along the Southern Qiangtang terrane
(Guynn et al., 2006), but the detailed subduction processes related to
the Bangong–Nujiang Ocean are still controversial. For example, the clo-
sure timing, the subduction polarity and the subduction-related
tectonic model are poor constrained.
Fig. 1. (a) Tectonic map of the central and southern Tibet and geological map of the studied are
Longmu-Shuanghu suture, Southern Qiangtang terrane, Bangong–Nujiang suture, Lhasa terrane
(b) Geological map of the Ando terrane (after BGTAR, 2005).
In order to constrain the tectonic setting and crustal growth in cen-
tral Tibet, we present new zircon U–Pb ages, whole-rock geochemical
and Sr-Nd isotopic data for Jurassic MORB-type gabbros, high-Mg
diorites, calc-alkaline diorites and granodiorites in the Ando area.
Based on the petrogenesis of these intrusions, a slab roll-back model
of the subducted Bangong-Nujiang Ocean is proposed to interpret the
tectonic regime when the Jurassic mafic-felsic intrusions formed.

2. Geological background

The central and southern Tibetan plateau is commonly divided into
three terranes from south to north, including Lhasa, Qiangtang and
Songpan-Ganze, which were separated by the Mesozoic Bangong–
Nujiang and Jinshajiang suture zones, respectively (Fig. 1; Chung et al.,
2005; Ding et al., 2007; Yin and Harrison, 2000). It is generally accepted
that theBangong–Nujiang ocean openedduring the Permian–Triassic or
Early Jurassic and closed prior to the Early Cretaceous (Murphy et al.,
1997), whereas the formation of the Jinshajiang suture predates the
Jurassic (Tapponnier et al., 2001). (See Fig. 2.)

The Bangong–Nujiang suture zones (BNSZ) extends more than
2000 km from west to east, which can be subdivided into the western
(Bangong Lake-Gaize), the middle (Dongqiao-Amdo), and the eastern
(Dingqing-Nujiang) sectors (Pan et al., 2012). The suture zone is made
up of a discontinuous belt of flysch, mélange and ophiolitic fragments
(Kapp et al., 2003; B.D. Wang et al., 2016; K.J. Zhang et al., 2014; X.Z.
Zhang et al., 2014). To the south, the Lhasa terrane is divided into north-
ern, central, and southern subterranes, based on basement rocks and
From north to south: Songpan–Ganzi terrane, Jinsha suture, Northern Qiangtang terrane,
, Indus-Yarlung suture (modified after Chen et al., 2016; Liu et al., 2015; Zhai et al., 2013).



Fig. 2. Textural characteristics of the Jurassic plutons. Under cross-polarized light. (a) gabbro, (b) high-Mg diorite, (c) calc-alkaline diorite, (d) granodiorite. Pl = plagioclase. Hb =
hornblende, Py = pyroxene, Kfs = K-feldspar, Bi = biotite, Spn = sphene, and Qtz = quartz.
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sedimentary cover (Zhu et al., 2011). Differently, to the north of the
BNSZ, some researchers recently suggested that the Qiangtang terrane
was composed of two subterranes separated by the east–west-
trending Longmu–Shuanghu suture (Li et al., 2006; Zhang et al., 2012;
Zhu et al., 2013). The Longmu–Shuanghu suture is usually considered
as a residue of an Ordovician–Triassic Paleo-Tethyan ocean (Liu et al.,
2011; Yin and Harrison, 2000; Zhu et al., 2013). The ocean was
suggested to have closed during the Triassic based on the presence of
the Triassic high-pressure metamorphic rocks belt in the central
Qiangtang (Zhai et al., 2011a, 2011b, 2013). However, Kapp et al.
(2000, 2003) suggested that the Longmu–Shuanghu metamorphic
rocks belt was only a metamorphic core complex produced by
underthrusting of Jinshajiang ocean lithosphere beneath the Qiangtang
Terrane during the Early Mesozoic, then to be exhumed in an
intracontinental setting by Late Triassic–Early Jurassic normal faulting.
Recently, Zeng et al. (2015) proposed that the exhumation of Triassic
Qiangtang metamorphic event was due to the northward subduction
of Bangong-Nujiang Ocean beneath the Qiangtang terrane during late
Triassic.

The Ando terrane is an isolatedmicrocontinentwithin the Bangong–
Nujiang suture zone and bounded by Mesozoic ophiolites to its north
and south sides (Guynn et al., 2006, 2012; Shi et al., 2012; K.J. Zhang
et al., 2014; X.Z. Zhang et al., 2014; Zhu et al., 2013). Themicrocontinent
consists mainly of orthogneisses with minor metasedimentary rocks,
mafic amphibolites and migmatites, which were intruded by Jurassic
granitoids (Kapp et al., 2005; Zhang et al., 2012; Zhu et al., 2011). Beside
Nyainqêntanglha massif, the Ando microcontinent is the only one with
well defined outcrops of Neoproterozoic (920–820 Ma) and Cambrian-
Ordovician (540–460 Ma) crystalline basement in the interior of Tibet
(Guynn et al., 2006; Kapp et al., 2005; Xu et al., 1985; Zhu et al., 2011).

Recently, abundant of Jurassic magmatic rocks were identified to
occur along the southern margin of the Southern Qiangtang terrane,
extending from the Bangong Co in the westernmost, through Gaize
and Amdo in the middle, to Dingqing in the eastern (Guynn et al.,
2006; S.M. Li et al., 2014; J.X. Li et al., 2014; Liu et al., 2014, 2015).
These magmatic rocks were considered to be produced in a magmatic
arc setting (Guynn et al., 2006; Zhang et al., 2012). In this study,
MORB-type gabbros, high-Mg diorites, calc-alkaline diorites and grano-
diorites were collected from the southern Ando microcontinent. All of
these samples intruded into the Precambrian basement rocks (Fig. 1).
The gabbros consist of plagioclase (~40 vol.%), hornblende (~50 vol.%),
clinopyroxene (b10 vol.%) (Fig. 2a). The high-Mg diorites are mainly
composed of plagioclase (~20 vol.%), K-feldspar(~25 vol.%), hornblende
(~45 vol.%) and quartz (b10vol.%),withminor accessory zircon, apatite,
titanite and Fe–Ti oxides (Fig. 2b). The calc-alkaline diorites
consist of plagioclase (~45 vol.%), hornblende (~35 vol.%) and biotite
(~15 vol.%), with minor quartz (b5 vol.%) and accessory minerals
(Fig. 2c). In contrast, the calc-alkaline granodiorites have more
K-feldspar (~35 vol.%), biotite (~25 vol.%), quartz (~15 vol.%), but
less plagioclase (~25 vol.%) (Fig. 2d). All of these samples are middle-
grained without mafic enclaves.

3. Analytical methods

3.1. Major and trace elements

Fifteen samples (Fig. 1) were chosen for geochemical analysis and
such analyses were carried out at the State Key Laboratory of Isotope
Geochemistry (SKLIG), Guangzhou Institute of Geochemistry, Chinese
Academy of Sciences (CAS). These sample were first crushed into
small pieces, then ultrasonically cleaned in distilled water, and finally
dried and powdered to 200 meshes. Major element oxides of whole-
rock samples were determined by Rigaku ZSX100e X-ray fluorescence
spectrometer. The detailed operating procedures are the same as
those described by Chen et al. (2010). The analytical uncertainty of
the XRF in this lab are generally between 1% and 5%. Trace elements, in-
cluding the rare earth elements (REE), were analyzed by an inductively
coupled plasma mass spectrometry (ICP-MS), using a Perkin-Elmer
Sciex ELAN 6000 instrument at the same institute. Before geochemical
analysis, the powdered samples (50 mg) were digested with mixed
HNO3 + HF acid in Teflon-coated steel bombs in order to assure
complete dissolution of refractory minerals. A solution containing Rh
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was used as internal standard to monitor the signal drift. Eight rock
standards, including the USGS rock standards (G-2, W-2, MRG-1
and AGV-1) and the Chinese national rock standards (GSD-12, GSR-1,
GSR-2 and GSR-3), were used to calibrate the elemental concentrations
of our samples. The analytical precision for trace elementswas generally
better than 5% in this laboratory. Major and trace element results from
those samples are listed in Table 1.

3.2. Zircon U–Pb dating

Four samples collected from the Ando plutons were selected for
zircon LA-ICPMS U–Pb dating. The cathodoluminescence (CL) imaging
was performed using a JXA-8100 Electron Probe Microanalyzer with a
Mono CL3 Cathodoluminescence System in the Guangzhou Institute of
Geochemistry to observe the internal structure of the zircons.
Table 1
Geochemistry of the Ando magmatic rocks in the Southern Qiangtang terrane.

Sample L13
AD51

L13
AD52

L13
AD53

L13
AD54

L13
AD33

L13
AD34

L13
AD35

Rock-type Gabbro High-Mg diorite

SiO2 47.10 54.52 47.03 47.30 56.45 54.69 55.92
TiO2 1.26 1.18 1.00 1.08 1.13 1.33 1.27
Al2O3 14.43 14.06 16.56 14.93 11.08 9.94 10.82
Fe2O3

T 11.86 10.95 11.26 11.66 8.02 7.96 7.41
MnO 0.20 0.20 0.21 0.18 0.17 0.17 0.15
MgO 7.24 4.84 7.19 7.88 8.30 10.24 9.09
CaO 13.75 8.79 11.99 12.13 6.05 8.00 6.80
Na2O 2.20 2.99 1.97 2.47 1.15 1.32 1.23
K2O 0.78 1.15 1.29 1.09 5.79 4.19 5.17
P2O5 0.11 0.10 0.09 0.10 0.29 0.30 0.30
LOI 0.63 0.78 0.98 0.77 1.13 1.42 1.40
Total 99.55 99.56 99.56 99.56 99.57 99.57 99.57
Na2O/K2O 2.83 2.59 1.52 2.27 0.2 0.31 0.24
A/CNK 0.49 0.63 0.63 0.55 0.58 0.47 0.54
Mg# 57.77 49.76 58.89 60.25 69.86 74.25 73.33
Sc 44.4 36.5 45.9 49.7 41.2 36.0 29.7
Cr 232 40.4 488 238 400 547 456
Co 49.3 34.7 48.5 53.9 31.5 39.7 34.5
Ni 89.4 39.1 144 92.3 120 152 131
Ga 17.6 22.8 16.7 16.7 17.8 17.1 17.4
Ge 2.86 2.69 2.78 2.65 3.72 3.63 3.14
Rb 17.6 32.9 42.7 16.0 323 211 331
Sr 107 86.7 101 95.8 187 178 215
Cs 1.64 1.73 2.83 0.79 8.63 4.21 8.72
Ba 33.7 43.1 57.7 23. 5 1571 1061 1457
La 4.13 4.67 3.86 2.75 32.23 59.7 65.9
Ce 11.0 12.8 10.6 7.92 98.5 135 138
Pr 1.76 2.11 1.58 1.34 16.4 18.7 17.5
Nd 9.28 10.9 8.16 7.31 71.2 72.5 61.1
Sm 3.13 4.11 2.68 2.55 15.7 11.9 9.04
Eu 1.05 1.05 0.89 0.92 2.33 2.19 1.58
Gd 3.63 5.05 3.03 3.04 12.0 8.50 6.78
Tb 0.75 1.14 0.62 0.66 1.99 1.05 0.75
Dy 5.10 7.88 4.17 4.62 11.48 4.95 3.34
Ho 1.13 1.71 0.92 1.04 2.31 0.95 0.64
Er 3.20 4.74 2.55 3.00 6.16 2.44 1.67
Tm 0.47 0.70 0.37 0.45 0.91 0.34 0.24
Yb 2.97 4.44 2.45 2.86 5.70 2.25 1.65
Lu 0.46 0.65 0.37 0.44 0.82 0.35 0.27
Y 28.2 44.5 22.4 25.5 57.5 23.1 14.1
Zr 62.5 80.3 51.0 47.5 309 393 383
Hf 2.02 2.66 1.56 1.54 9.29 11.1 10.7
Nb 5.54 16.6 4.00 2.44 24.7 16.9 12.9
Ta 1.27 2.13 0.36 0.18 3.31 0.78 0.78
Th 0.74 1.48 0.54 0.16 16.5 46.1 33.1
U 2.01 3.36 1.4 0.09 4.56 5.71 3.64
Pb 8.08 28.8 11.8 5.09 29.0 22.5 20.6
(La/Yb)N 1.00 0.75 1.13 0.69 4.05 19.0 28.7
(Gd/Yb)N 1.00 0.94 1.03 0.88 1.75 3.13 3.41
Eu/Eu⁎ 0.95 0.70 0.94 1.00 0.50 0.63 0.59

Note: The units of major and trace elements are wt.% and ppm, respectively. A/CNK= molar r
Zircon U–Pb dating was carried out using a LA-ICP-MS at the State
laboratory in the same institute. The analytical description are divided
into seven steps as described by Li et al. (2011): 1) Sample mounts
were placed in a sample cell designed by Laurin Technic Pty. Ltd.,
flushedwith Ar and He; 2) Laser ablationwas performed using a pulsed
Resonetic 193 nm ArF excimer laser, operated at a constant energy of
80 mJ, with a repetition rate of 8 Hz and a spot diameter of 31 μm;
3) The ablated aerosol was carried to an Agilent 7500a ICP-MS by He
gas via a Squid system to smooth signals; 4) Data were acquired for
30 s with the laser off, and 40 s with the laser on, giving approximately
100mass scans; 5) Each block of 5 unknownswas bracketed by analyses
of external standards, including NIST SRM 610 glass and the Temora
zircon; 6) Off-line data processing was performed using ICPMSDataCal
(Liu et al., 2008); 7) The common Pb correction was carried out using
the Excel program ComPbCorr#3 (Andersen, 2002). The Plesovice
L13
AD02

L13
AD03

L13
AD04

L13
AD05

L13
AD45

L13
AD46

L13
AD47

L13
AD48

Cal-alkaline diorite Granodiorite

55.88 52.93 56.30 56.27 62.16 65.99 65.12 62.90
0.97 1.03 1.08 1.01 0.76 0.63 0.83 0.85
17.24 17.05 17.32 17.73 18.15 16.09 15.77 16.78
7.40 8.74 7.26 7.21 5.60 4.60 6.02 6.34
0.13 0.18 0.12 0.13 0.06 0.05 0.07 0.06
4.77 5.50 4.46 4.04 2.15 1.81 2.32 2.46
6.77 7.51 6.40 6.64 3.63 2.02 2.85 3.04
3.22 3.10 3.15 3.35 3.56 2.48 2.86 3.10
1.81 1.99 1.99 1.93 2.67 4.98 2.75 3.02
0.17 0.18 0.17 0.17 0.06 0.06 0.06 0.08
1.22 1.36 1.32 1.09 0.76 0.86 0.92 0.94
99.56 99.57 99.57 99.56 99.56 99.56 99.56 99.56
1.78 1.56 1.59 1.74 1.33 0.5 1.04 1.03
0.88 0.81 0.91 0.9 1.18 1.22 1.22 1.21
59.09 58.51 57.96 55.71 46.2 46.85 46.36 46.46
25.8 34.1 28.0 25.8 13.7 11.4 14.1 17.5
93.2 161 58.2 51.6 19.8 33.2 27.7 38.2
25.4 29.9 23.7 23.2 12.3 10.6 13.4 15.2
35.4 43.2 22.0 21.9 15.6 19.5 19.4 25.2
20.6 20.6 19.8 20.0 25.0 19.4 22.8 28.2
1.83 2.01 1.75 1.75 2.60 1.90 2.50 3.13
89.4 91.1 102 95.1 208 245 218 267
300 283 283 300 227 225 179 220
3.97 3.10 5.38 6.04 14.2 11.0 14.0 16.8
452 470 460 465 266 1591 282 340
31.4 23.1 18.5 18.9 60.7 21.8 52.5 67.9
69.0 71.9 45.5 48.1 116 40.8 98.8 130
8.84 9.52 6.02 6.64 13.7 4.61 11.15 15.4
35.6 42.2 25.0 28.7 47.8 16.4 39.4 54.0
7.65 10.3 5.52 6.68 9.36 3.03 7.12 10.2
1.54 1.85 1.31 1.46 1.57 1.28 1.27 1.56
7.11 9.96 5.22 6.63 9.10 2.73 6.10 9.21
1.16 1.65 0.85 1.10 1.53 0.40 0.85 1.36
7.07 10.2 5.30 6.74 9.25 2.27 3.96 6.95
1.41 2.07 1.08 1.33 1.91 0.47 0.68 1.30
3.93 5.56 2.97 3.65 5.07 1.31 1.58 3.27
0.53 0.78 0.42 0.49 0.67 0.20 0.20 0.43
3.34 4.84 2.57 3.00 3.86 1.31 1.26 2.69
0.50 0.71 0.39 0.45 0.57 0.21 0.20 0.41
40.1 58.2 30.3 37.7 49.1 11.2 15.0 31.9
154 143 93.6 184 178 228 225 270
3.98 4.04 2.55 4.62 4.90 6.25 6.28 7.77
10.5 11.8 9.96 9.99 15.4 12.1 15.7 19.8
1.07 1.30 1.17 1.23 1.69 1.25 1.70 2.19
8.51 9.36 3.18 2.80 41.3 13.2 35.1 47.4
1.24 6.99 1.76 2.54 3.25 1.83 2.77 3.92
68.0 27.8 42.5 30.1 30.7 50.0 25.1 29.8
6.75 3.42 5.17 4.52 11.3 11.9 29.9 18.1
1.76 1.70 1.68 1.83 1.95 1.72 4.00 2.84
0.63 0.55 0.73 0.66 0.51 1.34 0.58 0.48

atio of Al2O3/(CaO + Na2O + K2O); Mg# = molar ratio of MgO/(MgO+ 0.89*Fe2O3
T)*100.
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zircon was used as a secondary standard to check the accuracy of the
analyses (Sláma et al., 2008). The analytical results are presented in
Appendix Table S1.

3.3. Sr–Nd isotopes

Eight samples were analyzed for whole-rock Sr–Nd isotopic compo-
sitions using a MC-ICP-MS at the State laboratory in the CAS. Analytical
procedures are described by Li et al. (2004). Sample powders
(50–100 mg) were digested with distilled HF-HNO3 in screw-top PFA
beakers at 120 °C for 7 days. Sr and REEs were then separated using
cation columns and Nd fraction were further separated with HDEHP
columns. The 87Sr/87Sr and 143Nd/144Nd ratios of the JNdi-1 standard
material were measured during this study and all the measured
87Sr/87Sr and 143Nd/144Nd ratios were corrected for fractionation to
86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219, respectively. The Sr–Nd
isotopic results are listed in Table 2.

4. Results

4.1. Zircon U–Pb ages

Zircon grains from the studied samples are euhedral to subhedral
with prismatic or granular shapes and crystal lengths of 95–180 μm.
The CL images of zircons show oscillatory growth zoning and Th/U ra-
tios of 0.28–2.5 N 0.1, indicating a magmatic origin (Corfu et al., 2003).

Twenty-five zircon grains from a gabbro sample (L13 AD50) were
analyzed and yielded similar 206Pb/238U ages between 171 Ma and
183 Ma, with a weighted mean age of 176.6 ± 0.8 Ma (MSWD =1.6)
(Fig. 3a and Appendix Table S1), representing the crystallization age.
Twenty-five zircons from a high-Mg diorite sample (L13 AD32)
were dated for U–Pb ages. Their 206Pb/238U ages range from 168 Ma
to 178 Ma, yielding a weighted mean age of 173.7 ± 1.2 Ma
(MSWD =0.66) (Fig. 3b). This mean age is interpreted as the crystalli-
zation age of the high-Mg diorite rocks. Thirty analyses on zircons from
a calc-alkaline diorite sample (L13 AD01) yielded 206Pb/238U ages rang-
ing from 169Ma to 185Ma and aweightedmean age of 174.8± 1.2Ma
(MSWD=1.12), representing the crystallization age (Fig. 3c). Analyses
on twenty-four grains from the calc-alkaline granodiorites sample
(L13 AD44) yield two populations of U–Pb ages, One population
generated a weight mean 206Pb/238U age of 177.4 ± 1.2 Ma (n = 16;
MSWD =0.78) (Fig. 3d), whereas the other population give much
older 206Pb/238U ages varying from 734 Ma to 1771 Ma. The weight
mean age of the younger population is interpreted to represent the
Table 2
Sr–Nd isotopic composition of the Ando magmatic rock.

Sample Rock type Rb Sr 87Rb/86Sr 87Sr/86Sr ±2σ (87Sr/86Sr)i Sm

L13 AD51 Gabbro 17.6 107 0.4748 0.706191 0.000006 0.7050 3.13
L13 AD53 Gabbro 42.7 101 1.2195 0.709980 0.000007 0.7069 2.68
L13 AD33 high-Mg

diorite
323 187 5.0131 0.734342 0.000007 0.7220 15.7

L13 AD34 high-Mg
diorite

211 178 3.4334 0.729908 0.000006 0.7214 11.9

L13 AD02 calc-alkaline
diorite

89.4 300 0.8622 0.719963 0.000005 0.7178 7.65

L13 AD04 calc-alkaline
diorite

102 283 1.0451 0.719146 0.000005 0.7165 5.52

L13 AD45 Granodiorite 208 227 2.6557 0.737253 0.000006 0.7306 9.36
L13 AD47 Granodiorite 306 225 3.9383 0.740187 0.000007 0.7303 11.1

87Sr/86Sr(i) = (87Sr/86Sr) Sample − (87Rb/86Sr) Sample * (e λT − 1).
λ Rb-Sr = 0.0142 Ga −1; λSm-Nd = 0.00654 Ga −1.
εNd(t) = [(143Nd/144Nd)Sample(T)/(143Nd/144Nd)CHUR(T)− 1] ∗ 104.
(143Nd/144Nd)Sample (t) = (143Nd/144Nd)Sample − (147Sm/144Nd)Sample ∗ (e λT − 1).
(143Nd/144Nd)CHUR (t) = 0.512638–0.1967 ∗ (e λT − 1).
TDM2 = 1/λ ∗ ln{1 + [((143Nd/144Nd)Sample − [(147Sm/144Nd)Sample − 0.118] ∗ (e λT− 1)− 0.51
crystallization of sample L13 AD44, but the Precambrian population is
interpreted as inherited zircon grains.

4.2. Major and trace elements

The gabbros mostly have SiO2 contents varying from 47.03 wt.% to
47.30 wt.%, with relatively high MgO (7.19–7.88 wt.%), Al2O3

(14.43–16.56 wt.%) and TiO2 (1.0–1.27 wt.%) (Table 1), but relatively
low total alkali (Na2O + K2O = 2.98–3.55 wt.%). Sample L13 AD52,
however, shows more evolved geochemical compositions (SiO2 =
54.52 wt.%, TiO2 = 1.18 wt.%, MgO = 4.84 wt.%, Na2O + K2O =
4.14 wt.%). The gabbro samples plot in the subalkaline fields in the
TAS diagram (Fig. 4a and d), and define a typical tholeiitic trend in a
SiO2 versus FeOTotal/MgO diagram (Miyashiro, 1974) (not showing).

The gabbros have variable Cr (40–488 ppm) and Ni (39–144 ppm),
and high Zr/Nb (253–837) and Nb/La (0.88–3.54) ratios. They are
characterized by MORB-like REE patterns with relatively flat REE ([La/
Yb]N = 0.70–1.13) but slightly negative Eu anomalies (δEu =
0.70–1.01) (Fig. 5a). The rocks have (La/Sm)N ratios ranging from 0.70
to 0.93 that are higher than N-MORB. On the primitive mantle-
normalized diagram (Fig. 5b), they show enrichments in large ion
lithophile elements (LILE, e.g., Pb, Rb and Ba) relative to the high field
strength elements (HFSE, e.g., Nb and Ta).

The high-Mg diorites possess relatively high SiO2 (54.69–56.45 wt.%)
and TiO2 (1.13–1.33 wt.%), but low Al2O3 (9.94–11.08 wt.%) contents.
The samples are characterized by high MgO (8.30–10.24 wt.%), Mg#

(70–74), Cr (400–547 ppm) and Ni (120–152 ppm), but low CaO
(6.05–8.00 wt.%) and FeOtotal/MgO ratios (0.78–0.97). They all plotted in
the field of high–Mg andesite (HMA) in the MgO versus SiO2 diagram
(Fig. 9a). The rocks have high K2O (4.19–5.79 wt.%) and low Na2O
(1.15–1.32 wt.%), therefore with high K2O/Na2O ratios, showing
shoshonitic series characteristics in the SiO2 versus K2O diagram
(Fig. 4b). The high-Mg diorites display fractionated REE patterns
characterized by various enrichments of LREE, slightly deletion of
HREE ((La/Yb)N = 4.06–28.70; (Gd/Yb)N = 1.75–3.41), and weak nega-
tive Eu anomalies (δEu = 0.50–0.63) (Fig. 5c). They have low Sr
(178–215 ppm) and Yb (1.60–5.70), high Y (14.1–57.5 ppm) and thus
low Sr/Y (3.25–15.20) ratios. The samples are characterized by high Ba
(1061–1571 ppm) and show significant enrichment in LILE (e.g., K, Rb,
and Pb), and depletion in HFSE (e.g., Nb, Ta, and Ti) (Fig. 5d).

The calc-alkaline diorites have relatively lower SiO2 (52.93–
56.30 wt.%), MgO (4.04–5.50 wt.%), Mg# (56–59), K2O (1.81–1.99 wt.%)
and TiO2 (0.97–1.08) than the high-diorites, but with higher Al2O3

(17.05–17.73 wt.%) and Na2O (3.10–3.35 wt.%) contents. The samples
plot near the boundary of the gabbro and diorite and fall into subalkaline
Nd 147Sm/144Nd 143Nd/144Nd ±2σ (143Nd/144Nd)i εNd(t) TDM2

(Ga)
fSm/Nd

9.28 0.2041 0.512926 0.000005 0.512690 5.5 0.51 -0.04
8.16 0.1989 0.512865 0.000004 0.512635 4.4 0.60 -0.01
71.2 0.1339 0.512012 0.000005 0.511860 -10.8 1.83 -0.32

72.5 0.0990 0.511987 0.000004 0.511875 -10.5 1.82 -0.50

35.6 0.1302 0.512175 0.000005 0.512026 -7.5 1.57 -0.34

25.0 0.1337 0.512193 0.000004 0.512040 -7.3 1.55 -0.32

47.8 0.1187 0.512007 0.000004 0.511869 -10.6 1.82 -0.40
58.5 0.1150 0.511991 0.000005 0.511858 -10.8 1.84 -0.42

3151)/(0.118–0.2136)]}.



Fig. 3. Zircon U–Pb concordia diagrams of the Ando intrusive rocks in Southern Qiangtang terrane.
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fields in the TAS diagram. They exhibit high-K characteristics in the SiO2

versus K2O diagram. These rocks display relatively steep REE patterns
((La/Yb)N = 3.42–6.75; (Gd/Yb)N = 1.68–1.83) with negative Eu anom-
alies (δEu = 0.55–0.73) (Fig. 5e). They are metaluminous (Fig. 4c) and
show remarkable enrichments in LILE (such as Rb, K and Pb) and deple-
tions in HFSE, with negative Nb-Ta-Ti anomalies, similar to subduction-
related magmas (Fig. 5f).

The calc-alkaline granodiorites have high SiO2 (62.16–65.99 wt.%),
Al2O3 (15.77–18.15 wt.%), K2O (2.67–4.98 wt.%) and Na2O (2.48–
3.56 wt.%) contents. The rocks show high-K affinities and plotted
in the granodiorite field in the TAS plot (Fig. 4a and b). Their ASI
index varies from 1.18 to 1.23, displaying a peraluminous character
(Fig. 4c). The granodiorites samples also contain relatively low Fe2O3

T

(4.60–6.34 wt.%), MgO (1.81–2.46 wt.%), TiO2 (0.63–0.85 ppm), and
Mg# (46–47). They are significantly enriched in LREEs and display
slightly depleted HREEs ((La/Yb)N = 11.28–29.86, (Ga/Yb)N =
1.72–4.00), mostly with weak negative Eu anomalies (0.48–1.34)
(Fig. 5g). These samples show pronounced negative Nb, Ta, Ti and Ba
anomalies and positive K, Rb, Sr, Pb spikes in the primitive mantle-
normalized trace element distribution patterns (Fig. 5h).

4.3. Sr–Nd isotope data

The Sr–Nd isotopic data of the studied rocks are presented in Table 2.
The MORB-type gabbros show depleted Sr-Nd isotopic compositions,
with positive εNd(t) ranging from 4.4 to 5.5 and initial 87Sr/86Sr ratios
from 0.7050 to 0.7069 (Fig. 6). The high-Mg diorites are characterized
by enriched Sr-Nd isotopic compositions and have negative
εNd(t) (−10.50 to −10.80) and high initial 87Sr/86Sr ratios (0.7214
to 0.7220), with old Nd model ages (TDM = 1.82–1.83 Ga). The
calc-alkaline diorites and granodiorites also possess enriched Sr-Nd
compositions. They have slightly different negative εNd(t) (−7.3 to
−7.5 for the diorites and−10.6 to−10.8 for the granodiorites, respec-
tively) and high initial 87Sr/86Sr ratios (0.7165–0.7178, 0.7303–0.7306,
respectively), with respective Nd model ages at 1.55–1.57 Ga and
1.82–1.84 Ga.

5. Petrogenesis

Our collected samples are very fresh and have very low loss on igni-
tion (LOI) (0.63–1.42), which suggest an insignificant alteration or
metamorphism after these rocks formed. Therefore, mobile elements
(e.g., LILE) and immobile elements (e.g., HFSE) corresponding to
hydrothermal fluids are both used to constrain the petrogenesis of
these magmatic rocks.

5.1. Gabbro

Significant crustal contamination would modify both major-trace
elements and radiogenic isotope compositions of basaltic melts
(Castillo et al., 1999; X.-C.Wang et al., 2016). Therefore, the relation be-
tween major versus trace elements and elements versus radiogenic



Fig. 4. Major element diagrams for the Ando Jurassic plutons. (a) alkaline and sub-alkaline division after Irvine and Baragar (1971); (b) TAS classification diagram (after Middlemost,
1994); (c) ANK versus ACNK diagram (after Maniar and Piccoli, 1989); (d) AFM diagram with boundary between the calc-alkaline and tholeiitic fields (after Irvine and Baragar, 1971),
lava composition and trend lines for a typical sequence from Tingmuli volcano and a typical calc-alkaline trend from the Cascades lavas (after Carmichael, 1964). Literature data of
Jurassic intrusive rocks are from Liu et al. (2014, 2015) and S.M. Li et al. (2014), J.X. Li et al. (2014).
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isotopes can be used to evaluate the effect of crustal contamination on
basaltic rocks (Wang et al., 2014). Although accumulation or crystalliza-
tion of olivine, clinopyroxene, and plagioclase can modify both major
and trace element contents, but ratios of highly incompatible trace ele-
ments remain untaken. Because crustal materials are characterized by
low εNd(t), Nb/La and Nb/Th and high 87Sr/86Sr ratios (Rudnick and
Fountain, 1995), the high Nb/La and Nb/Th ratios of the Ando gabbros
suggest an insignificant crustal contamination. Furthermore, the
gabbros display a large range in Nb/La (0.88–3.54) and Nb/Th (7.43 to
15.60) ratios. If such various incompatible trace elements were caused
by crustal input, the large range of initial Sr-Nd isotopes are also expect-
ed. However, the observed Sr-Nd isotopes of the gabbros have nearly
constant values regardless their variations of the incompatible trace el-
ements. This is inconsistent with the prediction of crustal contamina-
tion. Therefore, crustal contamination played an insignificant role in
the formation of the Ando gabbros. This is also supported by the absence
of old inherited zircons.

The Ando gabbros show relatively flat chondrite-normalized
REE patterns ((La/Yb)N = 0.70–1.13) and depleted εNd(t) values
(4.40–5.50), geochemically similar to MORB, indicating astheno-
sphere mantle was involved in the formation of the Ando gabbros.
This is also supported by their similar Sr–Nd isotopic compositions
to those of the Bangong-Nujiang ophiolites (Chen et al., 2015; B.D.
Wang et al., 2016; K.J. Zhang et al., 2014; X.Z. Zhang et al., 2014).
The gabbros have lower (La/Sm)PM ratios (0.70–0.93) than OIB
(Sun and McDonough, 1989), and show relatively flat REE patterns
with negative Nb-Ta anomalies. All of these features exclude a deri-
vation from an OIB-like magma source. The weakly to strongly
negative Nb-Ta anomalies, various degrees of Th anomalies and
strongly enriched in Pb are commonly related to crustal contamina-
tion (Rudnick and Gao, 2003) or fluid metasomatism in subduction
zones (Donnelly et al., 2004). As demonstrated above, there are no
remarkable crustal contamination in the formation of the Ando
gabbros. The relatively flat REE patterns also exclude an origin from
partial melting of an enrichedmantle wedge formed by fluidmetaso-
matism in subduction zones. Moreover, the occurrence of a large
amount of aqueous minerals, such as hornblende, indicates that the
gabbros were derived from a hydrous mantle source. Because
asthenospheric mantle is hot and anhydrous, these hornblende
minerals are not stable in convecting asthenosphere, but stable
under the conditions of enriched lithospheric mantle (Class and
Goldstein, 1997). This implies the lithospheric mantle has participat-
ed in the formation of the studied gabbros. Therefore, the gabbros
were most likely derived from the upwelling asthenosphere-
derived melts metasomatized by enriched lithospheric mantle.

Formation of enriched lithospheric mantle can be attributed to pre-
vious melts or fluids metasomatism in ancient subduction zones
(Donnelly et al., 2004; Pearce et al., 2005). Generally, slab-derived fluids
are enriched in LILE (e.g., K, Rb, Pb), depleted in HFSE (e.g., Nb, Ta, Ti),
whereas LREE and Th are strongly partitioned into subducted oceanic
slab-derived melts (Tatsumi and Eggins, 1995; Woodhead et al.,
2001). The Ando gabbros are enriched in LILEs (e.g., K, Rb, Pb) and
depleted in HFSEs (e.g., Nb and Ta). They have relatively high Ba/La
(8–15), Ba/Th (29–150), U/Th (0.57–2.73) but low Th/Yb (0.05–0.33)
and plot into the scope of slab-derived fluids on the Ba/La versus Th/
Yb diagram (Fig. 7d). This suggests that the lithospheric metasomatism



Fig. 5. Chondrite-normalized REE patterns and primitive mantle-normalized trace element variation diagrams for the Ando early-middle Jurassic plutons. (a–b) gabbro; (c–d) high-Mg
diorite; (e–f) calc-alkaline diorite; (g–h) granodiorite. Normalizing values are from Sun and McDonough (1989). Ando ophiolite data are from B.D. Wang et al. (2016).
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was deduced by ancient slab-derived aqueous fluids (Plank, 2005;
Woodhead et al., 2001).

The gabbros possess variable Mg# (50–60) and compatible element
concentrations (Ni = 39–144 ppm, Cr = 40–488 ppm), indicating the
samples underwent various degrees of fractional crystallization. Their
Mg﹟ values are positively correlated with Ni and Cr contents (Fig. 7a
and b), suggesting significant olivine and chromite fractional crystalliza-
tions. Moreover, the positive correlation between Mg# and CaO indi-
cates clinopyroxene fractionation (Fig. 7c). Because of much higher
SiO2, sample L13 AD52 probably involved more significant fractional
crystallization of mafic minerals. Therefore, The Ando gabbros were
formed by interactions between the asthenospheric-derived melts and
the overlying lithospheric mantle, then underwent fractional crystalli-
zation of mafic minerals during the magma rising.

The melting depths of the gabbros can be modeled using the related
trace elements. Differentminerals have different partition coefficient for
trace elements. Garnet has high partition coefficient for Yb, whereas La,
Sm are incompatible in garnet, which has almost the same partition for
La and Sm (Aldanmaz et al., 2000). Therefore, various degrees of partial
melting of a garnet-lherzolite source region (with garnet residue) pro-
ducemelts with significantly decreasing Yb and increasing Sm/Yb ratios
than the mantle source. In consequence, the garnet-lherzolite melting
trend is displaced from the mantle array to higher Sm/Yb ratios on an
Sm/Yb against La/Sm diagram. However, spinel has almost unanimous
partition coefficients for Sm and Yb, partly dissolving of the spinel
lherzolite mantle can not change the Sm/Yb ratios. Melting of a spinel-
lherzolite source will therefore create a approximately horizontal melt-
ing trend, which lies within or close to a mantle array defined by DMM
and PM compositions (Aldanmaz et al., 2000; Jung et al., 2006). The
Ando gabbros define a relatively horizontal line trend in a La/Sm versus
Sm/Ybdiagram (Fig. 8a), with increasing La/Sm ratios at nearly constant
Sm/Yb ratios. The low and constant Sm/Yb ratios suggest that the
gabbros were derived from partial melting of a spinel-facies lherzolite
mantle, indicating a relatively shallow depth of melting (b80 km).
This is also supported by the La/Yb versus Dy/Yb diagram (Fig. 8b), in
which the Ando gabbros plot in the stability field of spinel peridotite.



Fig. 6. εNd(t) versus (87Sr/86Sr)i. Date sources are as follows: Ando orthogneiss fromHarris
et al. (1988), Globalmarine sediments fromPlank and Langmuir (1998), Bangong-Nujiang
Ocean ophiolites from K.J. Zhang et al. (2014) and X.Z. Zhang et al. (2014), Granitoids in
Larelaxin from Liu et al. (2014), Granitoids in Central Qiangtang from Zhai et al. (2013)
and Li et al. (2015), Granitoids in Rena Co from Hao et al. (2015) and Granitoids in
Kangqiong from Li et al. (2015).
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5.2. High-Mg diorite

The diorite samples have high MgO (8.30–10.24 wt.%) and Mg#

(70–74), and fall in the high-Mg andesite (HMA) field in the SiO2 versus
MgO diagram (Fig. 9a). The high-Mg diorites are generally divided into
four petrogenesis groups: sanukitoid, boninite, bajaite and high-Mg
adakite (Kamei et al., 2004; Smithies and Champion, 2000). Sanukitoid
is characterized by strong LILE and LREE enrichments, low HREE
contents, high Cr and Ni contents and high Mg#, relatively high
Y (N10 ppm) and Yb (N0.8 ppm), low Sr/Y (b40) and (La/Yb)N
(b10) ratios (Kamei et al., 2004; Martin et al., 2005). It is generated
by reaction of a silicic melt derived from a subducting oceanic
slab with a mantle peridotite (Kelemen et al., 2003; Tatsumi and
Fig. 7. (a) Mg# vs Cr, (b) Mg# vs Ni and (c) Mg# vs CaO diagrams for the Ando Jurassic magma
diorite after (Woodhead et al., 2001). Literature data of Jurassic intrusive rocks are same to Fig
Hanyu, 2003; Wang et al., 2011). Boninite is characterized by high
SiO2 (N 52 wt.%), MgO (N 8 wt.%), very low TiO2 (b 0.5 wt.%), depletion
of HFSE and REE, and enrichment of LILE (Saunders et al., 1987). The
rock is suggested to be produced by partial melting of depleted mantle
source fluxed by slab-derived fluids (Crawford et al., 1989) or disequi-
librium reaction of a mantle peridotite with a silicic melt derived
from partial melting of a subducting oceanic slab (Saunders et al.,
1987). Bajaite has very high Ba (N1000 ppm), Sr (Sr up to 4000 ppm),
K/Rb (N1000) and Sr/Y (45–506), but low Rb/Sr (b0.01), depletion in
HREE and HFSE (Rogers et al., 1985). It is considered to be produced
by disequilibrium interaction between mantle peridotite and slab-
derived Si-rich melts (Rogers et al., 1985). High-Mg adakite has
high Sr (N400 ppm), Sr/Y and (La/Yb)N ratios, low Y (b18 ppm) and
Yb (b1.9 ppm) (Defant and Drummond, 1990). It is usually derived
from melting of subducted oceanic slab, which react with mantle
wedge (Smithies and Champion, 2000) or thickened lower crust
(Atherton and Petford, 1993).

The Ando high-Mg diorites have relatively high TiO2 (N1%), exclud-
ing a petrogenesis of boninite. Their low Sr (178–215 ppm) contents
make them different from bajaites. Their low Sr, Sr/Y and relatively
high Y are also different from adakites. The high-Mg diorites are charac-
terized by enrichment of LILE and LREE, high Mg#(70–74), Cr
(400–547 ppm) and Ni (120–152 ppm) contents, low HREE, Sr/Y and
La/Yb ratios (Table 1), significant negative anomalies of Nb and Ti and
positive anomaly of Pb, which are quite analogous to those of Cenozoic
sanukites in the Setouchi Volcanic Belt (Martin et al., 2005; Tiepolo and
Tribuzio, 2008). This indicates a close affinity of sanukites for the high-
Mg diorites, which is also supported by plots of MgO (wt.%) vs. SiO2,
Sr/Y versus Y. (Fig. 9a and b). Therefore, the high-Mg diorites have sim-
ilar petrogenesis to typical sanukites generated by reaction of
subducting slab and/or sediment-derived melts with a mantle wedge.

Except for the above possible petrogenesis, there are three potential
models to interpret the formation of the high-Mg diorites, including;
(1) mafic magma with crustal contamination, (2) fractional crystalliza-
tion (FC) from parental basic magmas, (3) mixing between felsic and
basalticmagmas (Streck et al., 2007). The first twomodels are not appli-
cable to the Ando high-Mg diorites, because the coevalmaficmagmas in
this area (e.g., theMORB-type gabbros) have lowerMgO, Cr, Ni than the
tic rocks. (d) Ba/La vs Th/Yb diagram for the Ando gabbros, high-Mg diorite, calc-alkaline
. 4.



Fig. 8. (a) La/Sm vs Sm/Yb (after Aldanmaz et al., 2000) and (b) La/Yb versus Dy/Yb diagrams for the Ando gabbros (after Jung et al., 2006).
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high-Mgdiorites. If themaficmagmas undergone contaminationof con-
tinental crust or fractional crystallization, theirMgO, Cr, Ni contents will
decrease obviously. The mixing model is also inconsistent with the
high-Mg diorites, because their very high Mg# and low εNd(t) values
(−10.80 to−10.50) do not support a significant input of crustal felsic
magmas.

The high-Mg diorites exhibit low εNd(t) (−10.80 to−10.50) values,
high K2O (K2O/Na2O = 3.19–5.04) and Ba (N 1000 ppm). Because K is
enriched in clay minerals of deep-sea muds and shales, whereas Ba is
dominated in plagioclase of turbidites, the high K and Ba characters of
the high-Mg diorites are most likely produced by partial melting of
subducted marine sediments (Plank and Langmuir, 1998). In addition,
sediment-derived melts could notably enhance La/Sm ratios of the
magma (Fig. 9c), but it could not change Ba/Th ratios (Tatsumi, 2006).
The high-Mg diorites have relatively high La/Sm, low Ba/Th. As shown
in Th/Yb versus Sr/Nd, the high-Mg diorites plot parallel to the Th/Yb
axis (Fig. 9d), demonstrating that the mantle source of the diorites
was metasomatized by subducted oceanic sediment-derived melts
(Woodhead et al., 1998). All these evidence suggest that the high-Mg
Fig. 9. (a) MgO vs. SiO2 correlation diagram for distinguishing high-Mg andesite from normal a
from Tatsumi and Hanyu (2003) and magnesian andesite data of Baja California are from Calm
Kamei et al., 2004). (c) Ba/Th vs. (La/Sm)N distinguishing diagrams for the Ando high-Mg diorit
(2006) andHanyuet al. (2006). (d) Sr/Nd vs Th/Ybdistinguishingdiagram (afterWoodhead et a
Fig. 4.
diorites were probably generated by the interaction of subducted
oceanic sediment-derived melts and mantle peridotites. Hydrous
minerals (hornblende) exist in the high-Mg diorites, which suggests
that primitive parental melts are hydrous. This is supported by their
relatively high Ba/La ratios, because Ba is more soluble in aqueous
fluids than La (Hanyu et al., 2006). Therefore, we infer that not only
sediment-derived melts but also slab-derived aqueous fluids have
been involved in the magma generation.

5.3. Calc-alkaline diorite

Comparing with the high-Mg diorites, the diorites have relatively
low MgO, Mg#, Cr, Ni, and high FeOT values (Table 1), showing calc-
alkaline characters in the AFM diagram (Fig. 4d). Although the rocks
still fall in the HMA field in the SiO2 versus MgO diagram (Fig. 9a), it is
impossible for them to be derived from the high-Mg diorite magma
with significant fractional crystallization due to their relatively low
SiO2, high MgO, Mg#, Cr, Ni and moderate TiO2 and Fe2O3

T contents. In
addition, the Ando calc-alkaline diorites have higher εNd(t) values
ndesite (after McCarron and Smellie, 1998). Sanukitoid data of Setouchi volcanic belt are
us et al. (2003). (b) Sr/Y vs. Y distinguishing diagram for the Ando high-Mg diorites (after
es. Data of Choshi and Setouchi high-Mg andesites and normal arc rocks are from Tatsumi
l., 1998) for theAndo Jurassic plutons. Literaturedata of Jurassic intrusive rocks are same to
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than the high-Mg diorites, further excluding fractional crystallization
from the high-Mg diorites magma. In subduction zone, mafic to inter-
mediate magmas are generally produced by partial melting of mantle
wedge peridotites (Hildreth and Moorbath, 1988). The negative
εNd(t) values (−7.5 to −7.3), however, suggest that the calc-alkaline
diorites cannot be derived from a mantle wedge directly. Because
their εNd(t) values are similar to those of Ando basement rocks
(Fig. 6), it is likely that the calc-alkaline diorites were derived from the
crustal anatexis with/without significant input of mantle components.
The oldNd crustalmodel ages (1.82–1.83Ga) suggest that the basement
rocks of the Ando microcontinent are possible source material for the
calc-alkaline diorites. Mafic lower crust-derivedmelts are characterized
by low Mg# (b40) regardless of melting degrees, whereas those with
Mg# N 40 can only be obtained with involvement of a mantle compo-
nent (Patiño Douce, 1999; Rapp and Watson, 1995). Their relatively
high Mg# and εNd(t) values, however, indicate an input of mantle com-
ponents. These features, therefore, suggest that the diorites were most
likely produced by partial melting of the Ando basement rocks with sig-
nificant input of mantle components.

5.4. Calc-alkaline granodiorite

The granodiorites have enrichments in Rb, K, U, Th, Pb and deple-
tions in HFSEs, with pronounced negative Nb-Ta-Ti anomaly and nega-
tive Eu anomalies, similar to continental crust (Rudnick and Fountain,
1995). The rocks are peraluminous (ASI N 1.1) (Fig. 4c) and their rela-
tively high SiO2 and low P2O5 make up a linear relationship (no
showing), showing typical features of I-type granites (Chappell and
White, 2001). Their εNd(t) and initial 87Sr/86Sr isotopic ratios are close
to the Ando basement (εNd(t) = −7.49 to −9.56, (86Sr/87Sr)i =
0.7268–0.7383, Harris et al., 1988). This indicates that the granodiorites
were possibly derived from partial melting of the basement rocks
(Fig. 6). These geochemical characteristics further suggest a derivation
from partial melts of granitic gneisses in the basement. This interpreta-
tion is also supported by the old inherited zircons from our samples.
Therefore, we suggest that the granodiorites were generated by partial
melting of the Ando basement.

6. Discussion

6.1. Tectonic setting in the Mesozoic

The Mesozoic is a critical period for the magmatic and tectonic evo-
lution in the Southern Qiangtang terrane. Mesozoic plutons from the
southern Qiangtang terrane are poorly known due to the limited out-
crops in early studies (Guynn et al., 2006; Kapp et al., 2005). Recently,
lots of Jurassic intermediate-felsic intrusions, including coeval calc-
alkaline, highly fractionated I-type granites with mafic enclaves, alka-
line and peralkaline granitoids, have been newly discovered along the
southern margin of the Southern Qiangtang terrane (S.M. Li et al.,
2014; J.X. Li et al., 2014; Liu et al., 2014, 2015; Pullen et al., 2011).
Based on geochemical studies, these Jurassic magmatic rocks were
interpreted to be the products of the northward subduction of the
Bangong–Nujiang Ocean (Kapp et al., 2005; Liu et al., 2011; Pullen
et al., 2011). Although these intrusive rocks was suggested to be formed
due to the northward subduction of the Bangong–Nujiang Ocean, the
initial subduction time of this ocean is still unclear. Zhu et al. (2013)
suggested the Bangong–Nujiang ocean began northward subduction
beneath the Southern Qiangtang terrane as early as the middle-late
Triassic. Recently, abundant late Triassic (~210 Ma) arc-related
magmatic rocks are also exposed in the Central Qiangtang (Fu et al.,
2010; Peng et al., 2015; X.Z. Zhang et al., 2014), which represent the
early-stage of a magmatic arc induced by the northward subduction of
the Bangong–Nujiang Ocean (Zeng et al., 2015). Based on the research
of sedimentary rocks and associated magmatic rocks in Southern-
Central Qiangtang, the northward subduction of the Bangong–Nujiang
ocean was suggested to start even before middle-late Triassic (Chen
et al., 2015, 2016; Zeng et al., 2015). However, structural and sedimen-
tological studies argued that the subduction of this ocean most likely
initialed earlier in the east near Ando, but later in thewest near Bangong
Co (Yin and Harrison, 2000).

In the Ando area, Mesozoic granites were mainly formed in the Ju-
rassic (Liu, 2012). Because the granites are enriched in alkali, they
were considered to be generated in a post-collision setting (Liu et al.,
2011; Liu, 2012). In this study, however, the Jurassic MORB-type
gabbros, high-Mg diorites, calc-alkaline diorites and granodiorites
entirely show arc affinity, providing reliable evidence for the existence
of a Mesozoic continental arc once built on the Ando terrane. Based on
the research of basement rocks and ophiolites in this area, the Ando
terrane was suggested to be an isolated microcontinent during the
Permian–Triassic and subjected to northward subduction in the Early
Jurassic, resulting in metamorphism up to HP granulite-facies (Coward
et al., 1988; Guynn et al., 2006, 2012; Shi et al., 2012; Xu et al., 1985;
Zhang et al., 2012; K.J. Zhang et al., 2014; Zhu et al., 2013). Zircon U–
Pb dating of our studied samples indicates that the various Ando intru-
sive rocks formed during the time between 173.7Ma and 177.4Ma. The
intrusive ages of these arc-related plutons, therefore, suggest that the
beginning of northward subduction of the Bangong–Nujiang Ocean is
prior to the middle Jurassic.

Recently, voluminous slightly younger granitoids (170–150 Ma)
were continuously discovered along the southernmargin of the Southern
Qiangtang, not limitedly outcropped in the Ando microcontinent (Kapp
et al., 2005; S.M. Li et al., 2014; Liu et al., 2014, 2015; Pullen et al.,
2011). Based on geochronological and geochemical studies of these
granitoids, Guynn et al. (2006) suggested that a Jurassic arc developed
along the southern Qiangtang terrane during the northward subduction
of the Bangong–Nujiang ocean. This tectonic setting is also supported
by some recent achievements, e.g., the Jurassic arc-related magmatic
rocks exposed from Bangong Tso, though Gaize, to Ando (S.M. Li et al.,
2014; Liu et al., 2015). All these Jurassic rocks show typical arc geochem-
ical character and thuswere considered as results of aMesozoicmagmat-
ic arc (Kapp et al., 2005; J.X. Li et al., 2014; Liu et al., 2014). The above lines
of evidence, therefore, indicate a tectonic setting of continent arc deduced
by a northward subduction of the Bangong–Nujiang ocean underneath
the Southern Qiangtang terrane during the early Mesozoic.
6.2. Geodynamics model

Although the published date suggest that the Bangong–Nujiang
ocean was sudducted northward beneath the Southern Qiangtang ter-
rane during the Jurassic (Liu et al., 2011; Liu, 2012; S.M. Li et al., 2014;
J.X. Li et al., 2014), the petrogenesis of the Ando MORB-type gabbros
and high-Mg diorites could not be explained by a normal oceanic slab
subduction. These special rock typeswere generally generated under ab-
normal high temperature that was related to a slab roll-back environ-
ment, ridge subduction environment or slab break-off environment. In
these environments, the upwelling of asthenosphere will heat the
subducting slab (Ayabe et al., 2012; Sato et al., 2014) or sub-
continential lithosphere mantle to form the MORB-type gabbros and
high-Mg diorites (Coney and Reynolds, 1977; McKenzie and Bickle,
1988). The Zr saturation temperatures indicate that the Ando granodio-
rites were generated at high temperatures (793–836 °C). Additionally,
estimated by plagioclase and hornblende, the Jurassic granitoids were
suggested to be high-temperature and low-pressure types, also indicat-
ing a possible asthenospheric upwelling (Liu, 2012). Liu (2012) sug-
gested that the Ando early-middle Jurassic magmatism was triggered
by a slab break-off due to the collision between the Andomicrocontinent
and the South Qiangtang terrane. However, there are no coeval high-
temperature magmatic rocks exposed in the Qiangtang terrane to the
north of the Andomicrocontinent, ruling out a slab break-off setting. Be-
cause 185–150 Ma magmatism occurs in a linear distribution along the
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southernmargin of the Qiangtang terrane, it is impossible for our studied
rocks formed in a ridge subduction environment.

Because the formation of the different Jurassicmagmatic rocks needs
abnormal high temperatures, we suggest that a slab roll-back probably
played a key role in the generation of these rocks. The slab roll-back
model can well explain the linear distribution of the Jurassic magmatic
rocks (Kapp et al., 2005; Liu et al., 2011; Liu, 2012; J.X. Li et al., 2014;
Liu et al., 2015). During late Triassic to early Jurrassic, the Bangong–
NujiangOcean lithosphere subducted northward at a low angle beneath
the Qiangtang terrane, which result the widely distributed abundant
late Triassic (~210 Ma) magmatic rocks in the Central Qiangtang
(Zeng et al., 2015). In the Jurassic, the magmatic front moved further
south due to the normal angle subduction. Then, a magmatic gap in
the Southern Qiangtang from middle-late Trassic to early Jurassic
indicates the beginning of a “flat-subduction”. The Jurassic high-
temperature magmas along the Southern Qiangtang mark the appear-
ance of slab roll-back. In southern Qiangtang, a younger age trend of
magmatic rocks from north to south is consistent with the a slab roll-
back model. This model is also supported by Some Jurassic magmatic
rocks and theirmafic–intermediate enclaves in the southQiangtang ter-
rane. The magmatic rocks have relatively high compatible elements
(Fig. 7a-c) and wide ranges of Sr-Nd isotopes, suggesting a significant
input of mantle-derived components (S.M. Li et al., 2014; J.X. Li et al.,
2014; Liu et al., 2014). The occurrence of mafic–intermediate enclaves
corroborate the mantle component underplated beneath the Qiangtang
terrane (S.M. Li et al., 2014; J.X. Li et al., 2014; Liu et al., 2015).

Slab roll-back was associated with the northward subduction of the
Bangong–Nujiang Ocean lithosphere, therefore, has been proposed to
explain the generation of the MORB-type gabbros, high-Mg diorites,
calc-alkaline diorites and granodiorites exposed in the Ando area, center
Tibet (Fig. 10). The subducting slab migrates backwards to the
asthenospheric mantle (roll-back) and therefore results in the hot as-
thenospheric mantle upwelling and decompression melting. The
asthenosphere-derivedmelts reactedwith the overlying enriched litho-
spheric mantle metasomatized by ancient slab-derived aqueous fluids,
forming the MORB-type tholeiitic gabbros. The asthenospheric upwell-
ing results in high temperature conditions that led to the relative cold
subducted slab was effectively reheated to cause sediment melting.
These sediment-derived melts reacted with the mantle wedge and
then partialmelting of themetasomatizedmantle peridotites generated
the high-Mg diorites. Triggered by the upwelling asthenosphere, the
calc-alkaline diorites and granitoids were produced by partial melting
Fig. 10. A slab roll-back model for the gen
of the lower crust (Ando basement) with/without significant input of
mantle components, respectively.

7. Conclusions

(1) The gabbros, high-Mg diorites, calc-alkaline diorites and granodi-
orites exposed in the Ando areawere synchronously emplaced at
174–177 Ma.

(2) The MORB-type gabbros were generated by the reaction of up-
welling asthenosphere-derivedmeltswith sub-continental litho-
spheric mantle metasomatized by ancient slab-derived aqueous
fluids. The high-Mg diorites weremost likely produced by partial
melting of metasomatized mantle peridotites.

(3) The high-K calc-alkaline diorites and granodioritse were formed
by partial melting of the Ando basement rocks with and without
significant input of mantle components, respectively.

(4) The formations of these Jurassic intrusive rockswere triggered by
the asthenospheric upwelling that was resulted from the slab
roll-back of the subducted Bangong–Nujiang Ocean.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.lithos.2016.09.002.
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