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Considerable debate persists as to the tectonic setting of the Tianshan Orogen during the Late Paleozoic, with
active subduction system and intraplate large igneous provinces as two dominant schools. With aims of providing
constraints on this issue, geochronological and geochemical analyses have been carried out on the Late Carbonifer-
ous high-Al basaltic lava (HAB) from the BogdaMountains. These lavas, in conformable contactwith the felsic rocks,
belong to the Upper Carboniferous Liushugou Group. Zircon SHRIMP U–Pb dating of two felsic ignimbrites further
suggest that they were mainly erupted during 315–319 Ma. The Bogda basaltic lava is classified as HAB given
their high Al contents N16% and their chemical resemblance to those from modern arcs such as Aleutian and
Kamchatka. They are characterized by strong enrichment in large ion lithophile elements (LILE), strong negative
Nb–Ta and Ti anomalies, and distinct positive Pb anomalies. Hence, they are significantly different from the mantle
plume-related basalts, as exemplified by those from Siberian, Emeishan, and Tarim large igneous provinces. Instead,
their MORB-like Nd–Hf–Pb isotopes and arc-like trace elements indicate that the Bogda HABs may have been
generated from a mantle wedge metasomatized by sediment-derived melts. The sector and oscillatory zoning in
clinopyroxene phenocrysts in the Bogda HABs is attributable to rapid dynamic crystallization duringmagma ascent.
High Al content is due to delayed plagioclase nucleation likely by the high crystallization pressure rather thanwater
content. Collectively, our data lend support to an island arc environment during the Late Paleozoic, probably related
to southward subduction of the Paleo-Tianshan Ocean.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The Chinese Northern Tianshan is a key area for understanding the
Paleozoic tectonics and long-lasting evolution of the Central Asian
Orogenic Belt (CAOB; Sengör et al., 1993; Wilhem et al., 2012; Windley
et al., 2007; W.-J. Xiao et al., 2004; Xiao et al., 2013). The E–W trending
Bogda–Harlik (B–H) belt, occurring exclusively in the northern part of
the Chinese North Tianshan, is an important tectonic belt separating the
Juggar Basin to the north and the Tu–Ha Basin to the south (Fig. 1A).
The key issues surrounding the B–H belt include 1) its tectonic nature in
the Late Paleozoic and 2) the timing of final closure of the Paleo-
Tianshan Ocean. Some researchers suggested that the Paleo-Tianshan
Ocean closed by the end of Early Paleozoic (He et al., 1994) or Devonian
(Xia et al., 2008, 2012). Accordingly, most part of the Carboniferous and
Permian saw an intraplate setting, and the volcanic rocks erupted during
this period may reflect responses to continental rifting (Che et al., 1996;
Gu et al., 2000, 2001) or represent a large igneous province associated
tope Geochemistry, Guangzhou
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.

with a mantle plume (Xia et al., 2004, 2008, 2012). Others believed that
it closed during the Late Carboniferous (Gao et al., 1998; Shu et al.,
2011;Windley et al., 1990). This derives from the idea of a Carboniferous
island arc setting to Permian post-collisional orogenic setting (Chen et al.,
2011; Laurent-Charvet et al., 2003; Ma et al., 1997; Shu et al., 2011; W.-J.
Xiao et al., 2004; Yuan et al., 2010; Zhu et al., 2009). Otherwise, some
also argued that the Paleo-Tianshan Ocean closed at the end of Early
Carboniferous given the occurrence of ~316Ma A-type “stitching pluton”
(Chen et al., 2011; Han et al., 2010).

Magmatism provides a clue to evaluate these competing models.
Late Carboniferous–Permian volcano-sedimentary rocks are widely
exposed in the Bogda Mountains, consisting of basaltic and rhyolite
lava, felsic ignimbrite, breccia, and volcanic clastic sedimentary rocks
(Fig. 1B; BGMRXUAR, 1993; Gu et al., 2001; Liang et al., 2011; Zhao
et al., 2014). Among these volcanic rocks, high-Al basalt and basaltic
andesite (HAB) are particularly interesting, because these rock types
are generally associated with arcs or mid-ocean ridges on a global
scale (e.g., Crawford et al., 1987; Eason and Sinton, 2006; Grove et al.,
1988; Kuno, 1960; Ozerov, 2000; Sisson and Grove, 1993a).

Pioneering work by Tilley (1950) recognized HAB as a new magma
type. Kuno (1960) reported the existence of three different primary
magma types in the Japan arc (tholeiite, aphyric HAB, and alkali olivine
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Fig. 1. A) Simplified tectonic sketchmap ofmost part of Xinjiang province, NW China, modified after Pirajno et al. (2008), Wang et al. (2011), and Xiao et al. (2013),① Kalameili Fault,②
North Tianshan–Aqikuduke–Shaquanzi Fault,③ South Tianshan Future,④ Kumishi–Kawabulake–Xingxingxia Fault,⑤North Tarim Suture; B) Geological map of the Bogda oregenic belt
at the north margin of the Chinese North Tianshan, modified after Chen et al. (2011) and Zhao et al. (2014).
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basalt). Subsequent research used “high-alumina basalt (HAB)” to refer to
any sub-alkaline aphyric as well as porphyritic basaltic rock with
Al2O3 N 16% (e.g., Crawford et al., 1987; Eason and Sinton, 2006; Ozerov,
2000; Sisson and Grove, 1993a). According to samples and experimental
investigations, some workers further suggested that a slightly hydrous
HAB (H2O b 2%) always was tholeiite with olivine + high-CaO
pyroxene+plagioclase+magnetite (late crystallization)mineral assem-
blages, whereas a wet HAB (H2O N 2%) generally was calc-alkaline with
olivine + high-CaO plagioclase + magnetite (early crystallization) +
pyroxene/hornblende (Crawford et al., 1987; Hamada and Fujii, 2008;
Sisson and Grove, 1993a, 1993b and references therein). Although some
authors thought that the HAB might be generated by very high-degree
partial melting of subducted oceanic slab (Brophy and Marsh, 1986;
Johnson, 1986; Marsh, 1979, 1982), now most of researchers believe
that it is likely generated by low-degree partial melting of mantle perido-
tite (Bartels et al., 1991; Crawford et al., 1987; Eason and Sinton, 2006;
Green et al., 1967; Ozerov, 2000; Sisson andGrove, 1993a). The key factor
for the genesis of high alumina may be due to the delayed plagioclase
nucleation (Ariskin, 1999; Brophy, 1989; Crawford et al., 1987; Eason
and Sinton, 2006; Green et al., 1967; Ozerov, 2000; Sisson and Grove,
1993a, 1993b), and/or preferential accumulation or flotation of plagio-
clase (Crawford et al., 1987; Yoder and Tilley, 1962). Furthermore, many
workers believe that water (H2O N 2%) plays a dominate role for the
delayed plagioclase nucleation (Ariskin, 1999; Beard and Lofgren, 1992;
Grove et al., 2012; Sisson and Grove, 1993a, 1993b). Nevertheless, others
proposed that high pressure can also suppress plagioclase fractionation
(Bartels et al., 1991; Crawford et al., 1987; Draper and Johnston, 1992;
Eason and Sinton, 2006; Grove et al., 1982).

In this paper, we present SHRIMPU–Pb ages and geochemistry for the
Late Carboniferous HAB from the Bogda belt. We compare the Bogda
basalts with HABs from modern arcs and typical mantle plume-related
basalts. Then we combine mineral geochemistry to constrain the petro-
genesis of these rocks. Our results suggest that the Bogda HABs represent
magmas formed in a Late Carboniferous island arc system. Here, we also
emphasize that high pressure rather thanwater content plays a dominate
role to delay plagioclase nucleation in a tholeiite HAB.



Fig. 2. (A) Simplified stratigraphy column from Devinian to Triassic in the Bogda area
(modified after BGMRXUAR, 1993). (B, C) Two composite stratigraphy columns in Bogda
area, showing the relationship of the high-Al basaltic lavas (HAB) and felsic rocks. The
locations of the Tianchi and Dashitou geological cross-sections are shown in Fig. 1B.
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2. Regional geology

The Chinese Tianshan is a complex collage of island arc assemblages,
remnants of oceanic crust, continental fragments and margins. It was
formed by multiple subduction–accretion and collision processes
from the Neoproterozoic to the Late Paleozoic, and then experienced
Mesozoic thermal subsidence and Cenozoic thrusting and uplifts
(Allen et al., 1993; Sengör et al., 1993; Windley et al., 1990, 2007;
W.-J. Xiao et al., 2004; Xiao et al., 2013). The Chinese Tianshan can be
generally subdivided into three geological units from south to north,
separated by the Northern Tianshan–Aqikuduke–Shaquanzi Fault and
the Kumishi–Kawabulake–Xingxingxia Fault: the Chinese North,
Central and South Tianshan (Fig. 1A). Geographically, it can be also
subdivided into western and eastern Tianshan by a boundary roughly
along the Urumqi–Kurle road.

The Bogda–Harlik (B–H) belt encloses the northern part of the
Chinese North Tianshan and contains Late Paleozoic to Quaternary
sedimentary and igneous rocks. Nearby the B–H belt, the Kelameili
and Bayingou ophiolites crop out mainly along the Kelameili fault in
the Eastern Junggar and the Northern Tianshan fault, respectively
(Fig. 1A). Jian et al. (2005) reported SHRIMP U–Pb ages of 497 ±
12Ma and 403±9Ma for plagiogranitewithin the Kelameili ophiolites,
while younger age (330 ± 2 Ma) for gabbro within the Kelameili
ophiolites have been obtained byWang et al. (2009). The geochemistry
of the ophiolite suggests a supra-subduction zone (SSZ) origin in a
forearc setting (Wang et al., 2003; Yang et al., 2009). Xu et al. (2006a,
2006b) reported a LA-ICP-MS U–Pb age of the gabbro (344 ± 3 Ma)
and a SHRIMP U–Pb age of the plagiogranite (325 ± 7 Ma) for the
Bayingou ophiolites. These two ophiolites are therefore the youngest
ophiolites in the Chinese Tianshan, probably representing remnants of
the Paleo-Tianshan Ocean (Han et al., 2010; Xiao et al., 2004b, 2008).
The B–H belt was considered to be a Devonian to Carboniferous island
arc system, resulting from the consumption of the Paleo-Tianshan
Ocean (Han et al., 2010; W.-J. Xiao et al., 2004; Xiao et al., 2008; Yuan
et al., 2010). The Bogda belt, which is the focus of this study, is the
western part of the B–H belt (Fig. 1B).

The Devonian strata in the Bogda belt are dominated by marine–
terrigenous tuffaceous sandstone and volcanic rock. The Carboniferous
strata are in fault contact with the Devonian rocks and comprise three
formations, namely, the Lower Carboniferous Qijiaojing Formation, the
Upper Carboniferous Liushugou and Qijiagou Formations (BGMRXUAR,
1993; Gu et al., 2001; Liang et al., 2011; Xia et al., 2004; Zhao et al.,
2014). The Lower and Upper Carboniferous Formations are separated by
faults (Fig. 1B). The Lower Carboniferous Formation consists mainly of
marine volcanic ignimbrite, tuffaceous sandstone, bimodal volcanic lava,
while the Upper Carboniferous Formation is dominated by large volumes
of shallow-marine (pillow) basaltic and rhyolite lava, felsic ignimbrite,
with minor sandstone and siltstone. The Permian strata unconformably
overlie the Carboniferous rocks. In this region, the Permian Formation is
composed of terrestrial conglomerate, sandstone, siliceous mudstone in-
tercalated with bimodal volcanic lava. Jurassic clastic sediment occurs in
the southeast of the study area and lies unconformably over the Permian
strata (Fig. 1B; BGMRXUAR, 1993; Carroll et al., 1990).
3. Petrology of the Bogda Late Carboniferous HAB

Two stratigraphic cross-sections of ~1000 m thick in the northern
Bogda belt, i.e., the Tianchi and Dashitou sections, have been investigat-
ed (Fig. 1B). They comprise the Upper Carboniferous Liushugou Forma-
tion (BGMRXUAR, 1993; Gu et al., 2001; Liang et al., 2011; Xia et al.,
2004) which is mainly composed of HAB, rhyolite lava, felsic ignimbrite
and volcanic breccia (Fig. 2). The felsic ignimbrite is about 500 m thick
and is trachyte and trachy-andesite. The rhyolite lava is about 30 m
thick. Two layers of HABs are interlayered with the felsic rocks
(Fig. 3A, B, C). One layer is ~100 m thick and the other is b10 m. In
the Liushugou Formation, the volume ratio of the HAB against the felsic
rocks is about 1: 6.

The Bogda HABs can be further divided into two sub-groups: aphyric
and porphyritic basalts. The aphyric HAB is high-MgO (see geochemis-
try section below), contain tiny mafic minerals, plagioclase, and Fe–Ti
oxides (Fig. 3E). In contrast, the porphyritic HAB is low-MgO HAB,
showing porphyritic texture and contains 5–25% phenocryst and
75–95% matrix (Fig. 3F). The phenocrysts are mainly clinopyroxene
and plagioclase with minor magnetite. Their matrix is composed of
mafic minerals, plagioclase, and Fe–Ti oxides. Clinopyroxene pheno-
crysts aremore euhedral and bigger in size than plagioclase andmagne-
tite, suggesting that clinopyroxene crystallized earlier than the other
two minerals. Some phenocrysts suffered late hydrothermal alteration
to chlorite and sericite. Many clinopyroxene phenocrysts show sector
and oscillatory zoning (Fig. 9). Significantly, no olivine or hydrous min-
erals (e.g., biotite and hornblende) are found in the Bogda HABs (Fig. 3).

4. Analytical methods

4.1. Zircon U–Pb dating

Approximately 5 kg of each trachyte ignimbrite (DST-02 and TC-23)
was crushed for zircon separation. Zircons were concentrated using
conventional magnetic and heavy liquid separation methods, and then
handpicked out under a binocular microscope. Selected zircon grains
were mounted in epoxy resin along with chips of the zircon standard



Fig. 3. (A, B, C) Field photos showing the conformable contacts between the Bogda HAB and felsic rocks. (D) Hand sample of the felsic ignimbrites for U–Pb dating. (E, F) Photomicrographs
of the Bogda high-Al basalt (HAB). High-Ca Cpx = high-Ca clinopyroxene; Mt. = magnetite; Chl = chlorite.
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TEMORA 1 (417 Ma; Black et al., 2003), and then polished before they
were vacuum-coated with high purity gold.

The cathodoluminescence (CL) images were taken using a HITACHI
S3000-N scanning electron microscope (SEM) and in situ zircon
U–Th–Pb analyses were performed on a SHRIMP-II instrument at Curtin
University, Western Australia. The instrument was controlled and data
acquired using the SHRIMPRemote Operation System (SROS) from a re-
mote control center in the Beijing SHRIMP Center, Institute of Geology,
CAGS, Beijing. Analytical procedures follow those of Compston et al.
(1992) and Williams (1998). Standard zircon sample SL 13 (572 Ma)
was measured to calibrate U, Th, and Pb concentrations, and standard
zircon TEMORA 1 were used for the isotopic fractionation correction.
Common Pb correction was made using the 204Pb-based method.
Data processing was carried out using the SQUID 1.03 and Isoplot/
Ex2.49 programs of Ludwig (2001a, 2001b). Uncertainties for each
analysis are at 1σ, whereas the weighted mean age is quoted at 2σ.
The analytical data are presented in Appendix A1 and on Concordia
plots in Fig. 4.
4.2. Major and trace elements

Nine relatively fresh basaltic samples were chosen for major and
trace element analysis. 0.7 g powder of such samples was mixed
completely with Li2B4O7–LiBO2 flux and then fused to a glass bead at
1050–1100 °C in an automaticmelting instrument. Major element anal-
yses were carried out using X-ray fluorescence spectrometry (XRF,
Rigaku ZSX-100e) on fused glass beads at Guangzhou Institute of
Geochemistry, Chinese Academy of Sciences (GIGCAS), following the
analytical procedures described by Goto and Tatsumi (1996). Analytical
uncertainties are mostly between 1 and 5%. Trace element concentra-
tions were determined on a PerkinElmer Sciex ElAN 6000 ICP-MS,
following the techniques described by Liu et al. (1996). The USGS and
Chinese National standards AGV-2, BHVO-2, GSR-1, GSR-2, GSR-3, and
W-2were chosen for calibrating element concentrations of the analyzed
samples. The analytical precision is better than 5% for elements
N10 ppm, less than 8% for those b10 ppm, and about 10% for transition
metals.



Fig. 4. CL images of representative zircons (A for DST-02 from the Dashitou section and C for TC-23 from the Tianchi section) and concordia plot of SHRIMP zircon U–Pb dating results for
the trachyte ignimbrites (DST-02 and TC-23).
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4.3. Nd, Hf, Pb isotopes

Whole rock Nd and Hf isotopic ratios were measured with a
Micromass Isoprobe Multi-Collector ICP-MS at GIGCAS, using analytical
procedures described by Li et al. (2006). The mass fractionation correc-
tions for the isotopic ratios are based on 146Nd/144Nd = 0.7219 and
179Hf/177Hf = 0.7325, respectively. The reported 143Nd/144Nd and
176Hf/177Hf ratios were respectively adjusted to the Shin Etsu JNdi-1
standard 143Nd/144Nd = 0.512115 and the JMC14374 standard
176Hf/177Hf = 0.282178.

Forwhole rock Pb isotopic determinations, about 100mgpowderwas
weighed into a Teflon beaker, spiked and dissolved in concentrated HF
at 180 °C for 7 h. Lead was separated and purified by conventional
cation-exchange technique (AG1 × 8, 20–400 resin) with diluted HBr as
an eluant. Total procedural blanks were b50 pg Pb. Isotopic ratios were
measured by a VG-354mass-spectrometer at the GIGCAS. Repeated anal-
yses of SRM 981 yielded average values of 206Pb/204Pb = 16.9325 ± 3
(2σ), 207Pb/204Pb = 15.4853 ± 3 (2σ), and 208Pb/204Pb = 36.6780 ± 9
(2σ). External precisions are estimated to be less than 0.005, 0.005, and
0.0015.
4.4. Mineral chemistry

Four representative samples are selected to analyze the fresh pyrox-
ene and plagioclase phenocrysts. Major element analysis and back-
scattered electron (BSE) imaging of minerals were carried out using a
JEOL JXA-8230 electron probe microanalyzer (EPMA) at the GIGCAS.
The operating conditions are 15 kV accelerating voltage, 20 nA beam
current, 1 μm beam diameter, and 20 s peak counting time for Si, Al,
Fe, Mg, Ca (40 s for Ti, Mn; 60 s for Ni, Cr; 10 s for K, Na).

5. Analytical results

5.1. Zircon U–Pb age

The zircons (mostly b100 μm) from DST-02 exhibit transparent,
stubby prismaticmorphologies and fuzzy concentric oscillatory internal
structures in CL. The zircons (mostly b200 μm) from TC-23 have similar
morphologies but show distinct concentric oscillatory internal struc-
tures in CL. The zircons from DST-02 and TC-23 both show typical
characteristics of igneous zircon and no inherited zircon cores are ob-
served (Fig. 4A, C). The zircons fromDST-02 have lowU and Th contents
of 70–256 ppm and 30–251 ppm, respectively, with Th/U ratios of
0.33–1.35 (Appendix A1). Fourteen analyses form a tight cluster on
the Concordia plot and yield a weighted mean 206U/238Pb age of
319 ± 3 Ma (MSWD= 1.4) (Fig. 4B). Compared to DST-02, the zircons
from TC-23 have relatively higher and scattered U and Th contents of
59–565 ppm and 33–709 ppm, respectively, with similar Th/U ratios
of 0.47–1.3 (Appendix A1). Twenty-two analyses form a tight cluster
on the Concordia plot and yield a weighted mean 206U/238Pb age of
315 ± 2 Ma (MSWD = 0.75) (Fig. 4D). The two zircon U–Pb ages are
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concurrent within the error range and indicate that the volcanics from
the Liushugou Formation were erupted during 315–319 Ma.
5.2. Major and trace elements

The Bogda HABs have LOI contents ranging from 2.3 to 5.2%, consis-
tent with petrographic evidence for partial alteration. In the following
plots and discussion, all oxide contents of the samples have been
recalculated to 100%on a volatile-free basiswith all Fe as FeO (Appendix
A2).

The Bogda basaltic samples show scattered SiO2 (48.8–56%) and al-
kali (2.7–5.8%) contents (Fig. 5A). As shown in Fig. 5D, they are similar
to the high-Al basalt and basaltic andesite (HAB) defined by Kuno
(1960). But they have higher alkali contents in comparison with
modern HABs (i.e., the Aleutian, Izu, Japan, and Kamchatka Islands),
probably due to Na2O and K2Omobility during alteration, in accordance
with their high LOI contents. The Zr/TiO2 versus Nb/Y diagram
(Winchester and Floyd, 1977), therefore, is utilized for rock classifica-
tion, because all the elements are considered to remain immobile
during alteration/weathering. In Fig. 5B, the Bogda HABs fall in the
field of andesite/basalt. They straddle the line separating tholeiite and
calc-alkaline affinities (Fig. 5C), but most of them belong to tholeiite
which are similar to the modern HABs. We also use tholeiitic index
(THI = Fe4.0/Fe8.0; Zimmer et al., 2010) to characterize the studied
samples, where Fe4.0 is the average FeOT concentration of samples
with 4 ± 1 wt% MgO, and Fe8.0 is the average FeOT at 8 ± 1 wt% MgO.
The calculated result shows that the THI of the Bogda HABs is 1.05,
consistent with a tholeiitic affinity (THI N 1). Two Bogda samples have
relatively high MgO (9.1–9.8%), Mg# (62–65), Cr (586–644 ppm), Ni
(154–208 ppm), and Al2O3 (16.1–16.5%). Compared to these high-
MgO samples, the other Bogda samples have lower MgO (3–7.5%),
Fig. 5. Petrochemical diagrams: A) Total alkalis vs. Silica diagram (TAS, LeMaitre, 1989) Two fels
(Winchester and Floyd, 1977). C) FeOT/MgO vs. SiO2 diagram for the sub-alkaline basaltic sam
basalt and basaltic andesite. Data sources: Three Bogda Late Carboniferous samples are from
Ariskin (2014), and Simon et al. (2014). Large igneous provinces: Zhou et al. (2009),Wei et al. (2
Mg# (41–61), Cr (b130 ppm), Ni (b60 ppm) but higher Al2O3

(16.4–19.1%).
The Bogda HABs show large ranges of total REEs (ΣREEs =

40–150 ppm), enrichment of LREEs over HREEs ((La/Yb)N = 2.0–5.7,
(Dy/Yb)N = 1.2–1.4; Fig. 7A) and weak negative to positive Eu anoma-
lies (δEu = 0.9–1.1). On the trace element spider diagrams, they are
marked by strong enrichment in large ion lithophile elements (LILE) rel-
ative to high field strength elements (HFSE). Furthermore, they show
negative Nb–Ta and Ti anomalies and distinct positive Pb anomalies,
which are similar to arc basalts worldwide but are clearly distinct
from ocean island basalts (OIB; Fig. 7B).

5.3. Nd, Hf, Pb isotopes

Themeasured isotope ratios were corrected to 315Ma based on Sm,
Nd, Lu, Hf, U, Th, and Pb concentrations determined by ICP-MS
(Appendix A3). On the whole, the Bogda HABs have quite uniform
(143Nd/144Nd)t of 0.51257–0.51261 (εNd(t) = 6.75–7.43) and
(176Hf/177Hf)t of 0.28293–0.28299 (εHf(t) = 12.7–14.7). On the εHf(t)
versus εNd(t) diagram, all samples plot between the MORB + OIB
[εHf(t) = 1.59εNd(t) + 1.28] and Island Arc [εHf(t) = 1.23εNd(t) + 6.36]
arrays of Chauvel et al. (2008, 2009) (Fig. 8A). They also have restricted
(206Pb/204Pb)t (17.81–17.88), (207Pb/204Pb)t (15.46–15.48), and
(208Pb/204Pb)t (37.47–37.65). Fig. 8 illustrates that the Bogda HABs
have lower Pb isotopes relative to the Aleutian and Kamchatka HABs
and are close to depleted mantle (DM).

5.4. Mineral compositions

Major element compositions of pyroxene phenocrysts from the
Bogda low-MgO HABs are listed in Appendix A5. All pyroxene are
ic ignimbrites (DST-02 and TC-23) for U–Pb dating are also plotted. B) Zr/TiO2 versus Nb/Y
ples (Miyashiro, 1974). D) Al2O3–Na2O + K2O–silica diagram (Kuno, 1960). HAB, high-Al
Gu et al. (2000) and Liang et al. (2011). Modern arcs: Singer et al. (2007), Kimura and
014), Xu et al. (2001), L. Xiao et al. (2004), Zhang et al. (2006), Hawkesworth et al. (1995).
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high-CaO (18–22% CaO) augite and salite (belong to clinopyroxene)
with an end-member composition of Wo36–47En35–45Fs11–20 (Fig. 9A).
Some of these clinopyroxenes (Cpx) show sector and oscillatory zoning.
Relative to their rims, the cores of the sector-zoned Cpx all show lower
Mg# andhigher Al2O3whereas the oscillatory-zonedCpx has coreswith
higher Mg# and lower Al2O3 (Fig. 9D, E; Appendix A5). In terms of min-
eral composition, plagioclase (Pl) in the Bogda high-Al basalt can be
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6. Discussion

Effect of alteration on the geochemistry of the BogdaHABs cannot be
ignored given their relatively high LOI (2.3–5.2%). The lack of correlation
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between Rb, Ba, K, Sr, and Zr (Fig. 10) indicates that these large ion
lithosphile elements were mobile during post-magmatic alteration
(Polat and Hofmann, 2003). In contrast, REE, Nb, Hf, Th, U, and Pb
show positive correlations with Zr, suggesting that these elements re-
main essentially immobile during surface processes. Hence, in the
following discussion, we mainly focus on the abundances and ratios of
immobile elements. The studied samples have rather uniform Nd–Hf–
Pb isotopes, suggesting that their isotopic values are not significantly
affected during post-magmatic alteration and can be used to discuss
magmatic processes.
6.1. Rapid dynamic crystallization for the Bogda HABs

In the Bogda case, both high-MgO and low-MgO HABs are present
and show essentially same trace element composition and Nd–Hf–Pb
isotopes. This suggests that the two rock types share a similar petrogen-
esis and their compositional difference can be related each other
through fractional crystallization. The Bogda HABs exhibit coherent
trends between the oxides (Fig. 6), suggesting that they underwent
various degrees of fractional crystallization. The Cr and Ni contents
decrease from the high-MgO to the low-MgO HAB, consistent with the
early crystallization of Cr-spinel and olivine. For the samples with
MgO N 6 wt%, Al2O3 increases and CaO decreases with decreasing
MgO, indicating fractional crystallization of clinopyroxene rather than
plagioclase. The turning points occur for the samples with less than
6 wt%, pointing to that the fractionation of plagioclase (Fig. 6B). FeOT
Fig. 7. Chondrite-normalized REE diagrams (A, C, E) and primitive mantle-normalized mul
McDonough (1989). The values of upper continental crust (UCC) and lower continental crust
and Simon et al. (2014). Large igneous provinces: Zhou et al. (2009), Wei et al. (2014), L. Xiao
and TiO2 show limited increase as MgO decreases, arguing against
significant crystallization of magnetite in the Bogda HABs.

The development of sector and oscillatory zoning in clinopyroxene is
commonly attributed to disequilibrium and kinetic effects as rapid dy-
namic crystallization during magma ascent (Brophy et al., 1999;
Downes, 1974; Lofgren et al., 2006; Schwandt and McKay, 2006).
Crystallization pressure and temperature of such rapid dynamic crystal-
lization may decrease as magma ascent from the depth to the surface
and relevant information is registered in Cpx phenocrysts. The
clinopyroxene–liquid thermobarometers proposed by Putirka et al.
(2003) is applied as they are appropriate for both the dry and wet
lavas. Only the samples least affected by alteration are considered for
calculation. We used the whole rock compositions after deducing
compositions of phenocrysts to represent the liquid content (see the
Appendix A4). The clinopyroxenes with KDFe−Mg

Cpx− liquid (0.2–0.4; Putirka,
2008) is assumed to be in equilibrium with the liquid. The calculated
and observed values for the Cpx components are also very similar
(Fig. 9C). Such a practice yields the crystallization temperature of
1203–1136 °C and pressure of 4.8–0.8 kbar for the Bogda low-MgO
HABs (Appendix A5; Fig. 9). This suggests that the Bogda HABs were
not formed in a relatively steady magma chamber. As shown in Fig. 9,
the calculated temperatures for the sector and oscillatory-zoned Cpx
have restricted variation (1164–1136 °C) while the pressures show a
large variation (oscillatory-zoned Cpx 4.4–1.4 kbar; sector-zoned Cpx
2.1–0.8 kbar). These results are thus consistent with the idea that
the sector and oscillatory zoning in clinopyroxene is largely related to
rapid dynamic crystallization during magma ascent (Fig. 13; Brophy
ti-element variation diagrams (B, D, F). Normalizing values and OIB are from Sun and
(LCC) are from Rudnick and Gao (2003). Data sources: Modern arcs: Singer et al. (2007)
et al. (2004), Zhang et al. (2006), Hawkesworth et al. (1995).



Fig. 8. Plots of initial Nd, Hf, and Pb isotopic compositions. In Nd–Hf isotope plot, the
MORB + OIB and Island Arc arrays and fields for MORB, OIB, and Island-arc volcanics
are from Chauvel et al. (2008, 2009). The εNd(t) and εHf(t) values of depleted mantle
(DM) are assumed as +10 and +15, respectively. The Northern Hemisphere Reference
Line (NHRL, Hart, 1984) is shown. Approximate locations of mantle end-members
(Zindler and Hart, 1986) are indicated for reference. Data sources: DM and GLOSS are
from Chauvel et al. (2009), Plank and Langmuir (1998), Salters and Stracke (2004), and
Workman and Hart (2005). All of the end-members are normalized to ~315 Ma.
Modern arcs: Singer et al. (2007) and Simon et al. (2014). Large igneous provinces: Li
et al. (2012), Wei et al. (2014), Zhang et al. (2006).
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et al., 1999; Downes, 1974; Lofgren et al., 2006; Schwandt and McKay,
2006).

6.2. Subduction-modified, depleted mantle source for the Bogda HABs

The Bogda HABs are characterized by strong depletion in Nb and Ta
(Fig. 7B). These geochemical signatures can be related to crustal
contamination ormagmamixing during the ascent ofmagmas or reflect
that of magma source. Nevertheless, crustal contamination or magma
mixing en route can be ignored given the following considerations:
(1) the Bogda HABs have high and homogeneous εNd(t) (6.75–7.43)
and εHf(t) (12.7–14.7), despite their relatively large variation of SiO2

(48.8–56%). These data imply that they were essentially unaffected by
crust-level processes (b1% crustal contamination or magma mixing,
Fig. 8). (2) εNd(t) and (206Pb/204Pb)t show limited variation against
Sm/Nd and SiO2 (Fig. 11C, D), arguing against crustal contamination or
magma mixing (Vervoort et al., 1999). Thus, the MORB-like Nd–Hf–Pb
isotopes and arc-like trace element features of the Bogda HABs are
inherited from their source.

In subduction zones, themagmatism is characterized by depletion in
high field strength elements as refractory minerals such as rutiles in the
arc magma source that have retained the HFSE, but is enriched in LILE
(such as Rb, Sr, Ba, Pb) and Th and U due to the addition of subducted
input (e.g., Hawkesworth et al., 1997; Keppler, 1996; Pearce and
Peate, 1995). Likewise, the negative Nb–Ta and Ti anomalies of the vol-
canics along arc zones and active continental margins have been argued
to result from retained rutile during melting of subducted input
(e.g., Ayers and Watson, 1993; Elliott et al., 1997; Stolz et al., 1996).
Thus, the strong negative Nb–Ta and minor negative Ti anomalies of
the Bogda HABs are most likely due to rutile retention in the magma
source (Fig. 12A). As shown in Fig. 12, the BogdaHABs have the relative-
ly large variation of Th/Nb (0.3–0.93) with the low and restricted U/Th
(0.22–0.4) and Pb/Ce (0.1–0.2), pointing to the effect of sediment-
derived component (Elliott et al., 1997; Hawkesworth et al., 1997;
Miller et al., 1994; Singer et al., 2007).

Chauvel et al. (2008, 2009) outlined theMORB+OIB and Island Arc
arrays on the εHf(t) versus εNd(t) diagram (Fig. 8A). They discussed
further that the “Island Arc array” could be generated by the mixing of
depleted mantle and subducted sediments (Chauvel et al., 2009). In
Fig. 8A, the Bogda HABs plot between the MORB + OIB and Island Arc
arrays, suggesting a mixing between depleted mantle and subducted
sediments. The depleted, MORB-like Nd–Hf isotopes suggest less than
around 1% sedimentary input for the mantle source of the Bogda
HABs. Such an amount (b1%) of sedimentary input would have a
minor effect on their Nd–Hf–Pb isotopes, but it controls the budget of
the large ion lithophile elements (such as U, Th, Pb; Fig. 12). We thus
propose that the Bogda HABs were generated from a mantle wedge,
which was metasomatized by sediment-derived melt (b1%).

6.3. Factors controlling high Al contents in the Bogda HABs

Previous studies suggest that the key factor for the genesis of high
alumina is the delayed plagioclase nucleation (Ariskin, 1999; Brophy,
1989; Crawford et al., 1987; Eason and Sinton, 2006; Green et al.,
1967; Ozerov, 2000; Sisson and Grove, 1993a, 1993b), and/or preferen-
tial accumulation or flotation of plagioclase (Crawford et al., 1987;
Yoder and Tilley, 1962). Crawford et al. (1987) proposed that liquids
with low-MgO (b7 wt%) and high-Al (Al2O3 N 18 wt%) contents never
exist in nature and such a peculiar composition may be related to accu-
mulation of plagioclase phenocrysts. However, Beard and Lofgren
(1992) argued that plagioclase accumulation is not necessarily required
to explain the petrogenesis of HAB. According to MELTS modeling
(Asimow and Ghiorso, 1998; Ghiorso and Sack, 1995), Al2O3 content
in liquid could reach N18 wt% through fractional crystallization under
hydrous and/or high pressure conditions. This, together with the
weak negative to positive Eu anomaly and the relationship between
Al2O3 and MgO of the Bogda samples (Figs. 6B, 7A), argues against the
role of accumulation or flotation of plagioclase in the genesis of the
Bogda HABs.



Fig. 9. (A, B) Diagrams of normative En–Fs–Wo for clinopyroxene (Cpx) and An–Ab–Or for plagioclase (Pl). Pyroxene discrimination lines are from Polderraart and Hess (1951). Di,
diopside; En, enstatite; Ab, albite; An, anorthite. (C) The observed vs. predicated values for the Cpx components calculated by the clinopyroxene–liquid thermobarometers proposed
by Putirka et al. (2003). (D, E) Back-scattered electron images of sector zoning and oscillatory zoning of clinopyroxene phenocrysts from the Bogda low-MgO basalt. Analysis spot
numbers are shown in the images. The variation of Mg#, KDFe−Mg

Cpx−liquid, and pressure are also shown alongside.
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Through wet melting experiments and direct measurements of H2O
in melt inclusions, many workers believe that water (H2O N 2%) plays a
dominate role in the formation of calc-alkaline HAB (Ariskin, 1999;
Beard and Lofgren, 1992; Grove et al., 2012; Kelley et al., 2010; Sisson
and Grove, 1993a, 1993b). Nevertheless, others proposed that a tholei-
ite HAB is close to an anhydrous composition in which high pressure
suppresses plagioclase fractionation (Bartels et al., 1991; Crawford
et al., 1987; Draper and Johnston, 1992; Eason and Sinton, 2006;
Grove et al., 1982; Le Voyer et al., 2010; Sisson and Bronto, 1998).
Based on studying on the Aleutian magmas, Zimmer et al. (2010) pro-
posed to use the Tholeiitic Index (THI) to calculate the magmatic
water. Their formula is used to calculate THI of the Bogda HABs, which
is 1.05. Corresponding pre-eruptive magmatic H2O is 1.93 wt%. Water
content in arc basaltic magma can be also estimated by plagioclase–
liquid hygrometer (e.g., Ushioda et al., 2014). Assuming that whole
rock composition after deducting compositions of phenocrysts to
represent the liquid content (Appendix A4), the application of this
hygrometer on sample TC-14 with the highest An (73.7) yields 1.95%
as the maximum pre-eruptive magmatic H2O of the Bogda HABs. This
estimate is in good agreement with that obtained by the empirical
method of Zimmer et al. (2010), testifying the robustness of calculation.
The plausible lowwater content (H2O b 2%) is in agreementwith lack of
hydrous phases in the BogdaHABs, and further highlights themajor role
of pressure in the generation of the Bogda HABs.

Numerous studies have suggested that the high-MgO anhydrous or
slightly hydrous tholeiite HAB can be generated by some extents of
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crystal fractionation from primary magma with higher Mg# at high
pressure (5–10 kbar) near the arc crust–mantle boundary (Bartels
et al., 1991; Falloon and Green, 1987; Fujii and Scarfe, 1985; Green
et al., 1967; Gust and Perfit, 1987). This contrasts with the low crystalli-
zation pressure (1–2 kbar) and high water content (2–4 wt%) proposed
for low-MgO calc-alkaline HAB (Sisson and Grove, 1993a). The estimat-
ed crystallization pressure of the Bogda low-MgO HAB with low H2O
(b2%) is from 4.8 to 0.8 kbar. Similar or higher crystallization pressures
than 4.8 kbar can thus be reasonably inferred for the Bogda high-MgO
HAB, which account for the high Al contents in these lavas (Fig. 13).
Calculation by MELTS program (Asimow and Ghiorso, 1998; Ghiorso
and Sack, 1995) further lends supports to the idea that high Al content
is due to delayed plagioclase nucleation by high crystallization pressure
(Fig. 6).

6.4. Implication for regional tectonic evolution

Two different main models have been proposed for the evolution of
the B–H belt: 1) a Carboniferous island arc that was subsequently
superimposed by a Permian post-collisional orogenic belt (Chen et al.,
2011; Laurent-Charvet et al., 2003; Ma et al., 1997; Shu et al., 2011;
W.-J. Xiao et al., 2004; Yuan et al., 2010); 2) a Carboniferous–Permian
continental rift associated with a mantle plume (Gu et al., 2000, 2001;
Xia et al., 2008, 2012). The secondmodel is built on the basis of Carbon-
iferous bimodal volcanism (Gu et al., 2000, 2001). However, the occur-
rence of bimodal volcanism just implies an extensional environment
rather than being exclusively associated with a continental rift. A rift
Fig. 11. (A) Th–Hf–Nbdiscrimination diagram (Wood, 1980). (B) Th/Yb versusNb/Yb diagram (
of DM with GLOSS or UCC. (C, D) Plots of εNd(t) versus Sm/Nd and (206Pb/204Pb)t versus Si
Carboniferous HAB. In Figs. A and B, the latest fields of CFB (continental flood basalts), OIB ar
cited from Salters and Stracke (2004), Sun and McDonough (1989), and Plank and Langmuir (
from Rudnick and Gao (2003). Modern arcs: Singer et al. (2007) and Simon et al. (2014). La
et al. (2006), and Hawkesworth et al. (1995).
model is also favored byXia et al. (2008, 2012) given the angular uncon-
formity between the Carboniferous and the pre-Carboniferous strata.
They attributed the arc-like trace compositions to crustal contamina-
tion. As discussed above, we, however, suggest that the concerned
samples were essentially unaffected by crust-level processes.

To further assess the nature of Late Carboniferous volcanics, we
compare them with those of Permian large igneous provinces, notably
the Siberia traps (Hawkesworth et al., 1995), Emeishan traps (Qi and
Zhou, 2008; L. Xiao et al., 2004; Xu et al., 2001; Zhang et al., 2006),
and Tarim basalts (Li et al., 2012; Wei et al., 2014; Zhou et al., 2009).
The latter are widely interpreted to be the melting products of mantle
plumes. The comparison suggests that the Bogda Late Carboniferous
HABs are different from the mantle plume-related basalts in many
aspects:

1) In general, the Bogda HABs have higher Al2O3 (16.1–21.1%), SiO2

(48.8–56%), and lower FeOT (7.65–11.4%), TiO2 (0.94–1.82%) than
mantle plume-related basalts (Figs. 5, 6).

2) In Fig. 11A, B, the BogdaHABs plot in thefield of arc basalts, whereas,
except for some Siberian samples, the Tarim and Emeishan basalts
plot in the field of continental flood basalts. Furthermore, the
Bogda HAB have lower Nb/La (b0.5, except one sample) and higher
Pb/Ce (N0.1) than those mantle plume-related basalts (Nb/La =
0.6–1.7, Pb/Ce = 0.04–0.1; Fig. 12). Low-Ti lavas from the Siberian
and Emeishan Traps also show depletion in Nb–Ta. However, these
low-Ti basalts have higher Nb/La and lower Pb/Ce ratios than the
Bogda HABs and are interpreted to be derived from the enriched
modified fromPearce, 2014). AFCwith GLOSS/UCC=assimilation fractional crystallization
O2 to assess the effect of crustal contamination on the compositions of the Bogda Late
e cited from C. Li et al. (2015). Data sources: DM (depleted mantle), OIB and GLOSS are
1998), respectively. UCC (upper continental crust) and LCC (lower continental crust) are
rge igneous provinces: Zhou et al. (2009), Wei et al. (2014), L. Xiao et al. (2004), Zhang
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continental lithospheric mantle (Hawkesworth et al., 1995; L. Xiao
et al., 2004).

3) The Bogda HABs have higher εNd(t) (5.87–8.25) than those mantle
plume-related basalts (εNd(t) b 5; Figs. 8, 12). They also have higher
εHf(t) and lower (207Pb/204Pb)t and (208Pb/204Pb)t ratios than the
mantle plume-related basalts (Fig. 8).

In addition, the volume of the basaltic lavas in the Chinese North
Tianshan is much smaller than those of the Siberian, Emeishan, and
Tarim basalts (e.g., Hawkesworth et al., 1995; Wei et al., 2014; Xu
et al., 2001). All these indicate that the “plume hypothesis” cannot
adequately be applied to the Carboniferous magmatism in the Tianshan
orogenic belt (Zhu et al., 2009).

HAB commonly occurs in arc settings, with modern examples at
Aleutian, NE Japan, South Sandwich, Izu–Bonin–Mariana, Vanuatu,
Tonga–Kermadec, and Kurile–Kamchatka island arcs (Crawford et al.,
1987; Kuno, 1960;Ozerov, 2000; Sisson andGrove, 1993a and references
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(Eason and Sinton, 2006). Our new zircon SHRIMP U–Pb ages for the
felsic ignimbrites (319 ± 3 Ma and 315 ± 2 Ma) suggest that the
Bogda HABs were formed in the Late Carboniferous. Therefore, the B–H
belt was most likely an island arc system during the Late Carboniferous
(W.-J. Xiao et al., 2004), rather than an intraplate setting. Other
supporting evidence for a Carboniferous arc setting include (a) in the
B–H belt, it lacks Cambrian and Precambrian strata. The oldest sedimen-
tary strata are the Ordovician to Silurian marine strata (Huangcaopo
Group; Ma, 1999). (b) Devonian to Carboniferous arc tholeiite and calc-
alkaline basalt–andesites are widespread in the region (Ma et al.,
1997). The Kelameili and Bayinggou ophiolites nearby the B–H belt are
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(Jian et al., 2005; Wang et al., 2009; Xu et al., 2006a, 2006b). They
probably represent remnants of the Paleo-Tianshan Ocean (Han et al.,
2010; W.-J. Xiao et al., 2004; Xiao et al., 2008). Thus, the B–H belt could
be a Devonian to Carboniferous island arc system related with
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Fig. 13. Idealized schematic model for the generation of the Bogda HABs beneath the Bogda island arc system in Late Carboniferous period.
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S-dipping subduction of the Paleo-Tianshan Ocean (Fig. 13;
Laurent-Charvet et al., 2003; Ma et al., 1997; W.-J. Xiao et al., 2004;
Yuan et al., 2010).

However, Han et al. (2010) restricted the closure of Paleo-Tianshan
Ocean at the end of Early Carboniferous and suggested a subsequent
post-collisional orogenic setting. Their argument was built on a ca.
316 Ma “stitching pluton” which displays some characteristics of post-
collisional A-type granites (Chen et al., 2011; Han et al., 2010; Zhang
and Zou, 2013). However, this “stitching pluton” shows a wide SiO2

range (58–74%) with a metaluminous I-type affinity (Si et al., 2014).
In addition, they have restricted zircon saturation temperature (TZr =
792–842 °C) in the overlapping region of the typical A-type granite
and I-type granite (King et al., 1997; Liu et al., 2013; Zhong and Xu,
2009). In fact, most of Late Carboniferous felsic rocks in the Chinese
Tianshan Orogenic Belts belong to I-type granitoids (Liu et al., 2013;
Tang et al., 2010, 2014; Tong et al., 2010; Yan et al., 2013; Zhang et al.,
2015; Zhu et al., 2009). In contrast, A-type granitoids mainly occurred
in the Early Permian (N.-B. Li et al., 2015; Tang et al., 2010; Yuan et al.,
2010; Zhang and Zou, 2013). We therefore favor for an arc setting for
the Late Carboniferous in the Tianshan belt, consistent with recent find-
ings of subduction-related assemblages in the western Jungar area
(Tang et al., 2012). Moreover, if Han et al. (2010) were correct, the
HABs identified in this study may have occurred in a post-collision or
an intraplate setting. However, so far no HABs have been observed in
these settings.

Nevertheless, abundant A-type granites occurred toward the end of
the Carboniferous and the Early Permian. Therefore, the tectonic transi-
tion from a subduction to an intraplate setting is inferred to have taken
place during the Late Carboniferous and the Early Permian, although the
exact timing is difficult to determine. Such a transitionwasmost likely a
gradual rather than abrupt process and may be transient in different
places in the Tianshan Orogenic belt. At some stages, subduction and lo-
cally extended setting (arc retreating) occur together and gradually
evolve to an intraplate setting. This explains the co-existence of HABs
and A-type granites in this area.

7. Conclusions

The HABs from the Upper Carboniferous Liushugou Formation in the
Bogda Mountains (315–319 Ma) have been investigated to constrain
the Carboniferous tectonic evolution in the CAOB. The MORB-like
Nd–Hf–Pb isotopes and arc-like trace element compositions indicate
that the Bogda HABs may have been generated from a mantle wedge,
metasomatized by sediment-derived melts. Dominant fractioning
phases are olivine and high-CaO (18–22% CaO) clinopyroxene, while
plagioclase nucleation was likely delayed by the high crystallization
pressure. The sector and oscillatory zoning in clinopyroxene pheno-
crysts is attributable to rapid dynamic crystallization during magma
ascent. The occurrence of the Bogda HABs suggests an island arc
environment, probably related to S-dipping subduction of the
Paleo-Tianshan Ocean during the Late Carboniferous. This contrasts
with the previously proposed model involving intraplate large igneous
provinces.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.lithos.2016.04.005.
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