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Pacific subduction has been suggested as the trigger of the destruction of theNorth China Craton, but evidence for
it remains ambiguous. To further investigate this issue, we studiedWulian pyroxenemonzonite (123± 1Ma) in
the west and Rushan gabbro-diorite (115 ± 1 Ma) in the east of the Sulu orogen, East China. The rocks of both
locations are characterized by low TiO2 but high SiO2 and K2O, fractionated REE patterns with notable negative
Ta-Nb-Ti anomalies, and by high initial 87Sr/86Sr ratios and strongly negative εNd (t) and εHf (t) values. These geo-
chemical and isotopic characteristics can be interpreted to be formed by partial melting of enriched lithosphere
mantle refertilized by recycled crustal materials that were associatedwith the Sulu orogeny. Oxygen fugacities of
the Rushan gabbro-diorites, estimated based on magnetite-ilmenite equilibration, are significantly higher than
those of Wulian pyroxene monzonite. This lateral difference is mirrored by lower F and F/Cl but higher Cl in bi-
otite in the Rushan gabbro-diorite compared to Wulian pyroxene monzonite. All these data suggest a spatially
heterogeneous Cretaceous mantle source in terms of halogens and water contents beneath the Sulu orogen,
which was most likely caused by the subduction processes of the Pacific plate. H2O-rich fluid in the mantle
beneath the east of the Sulu orogen closer to the mantle wedge was prominently from early dehydration of
subducted slab at shallow depth, while F-bearing fluid to further west was released by dehydrated deeper slab
or stagnant oceanic slab within the mantle transition zone.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Pacific subduction has been regarded as one of principal triggers of
the destruction of the east North China Craton (NCC) (Xu, 2014; Xu
et al., 2009; Zhu et al., 2012a, 2012b). Seismic tomography studies re-
vealed a stagnant oceanic slab within the mantle transition zone that
extends sub-horizontally westward beneath the East Asian continent
to the NNE-trending Daxing’anling-Taihangshan Gravity Lineament
(DTGL; Fig. 1a) (Fukao et al., 1992; Zhao et al., 2004). Recycling of
these subducted components has been recognized in late Cretaceous
and Cenozoic basalts in east China (Sakuyama et al., 2013; Xu, 2014;
Xu et al., 2012; Zhang et al., 2009). Thus, the influence of Pacific subduc-
tion can be traced back in time at least to late Cretaceous. However, it re-
mains less well assessed as to the role of the Pacific subduction in the
destruction of the North China Craton which took place during the
Early Cretaceous (Zhu et al., 2012b) or perhaps initiated in Jurassic
(Wu et al., 2006).
86 20 85291510.
The destruction of the NCC has been attributed to rapid delamina-
tion within the early Cretaceous (e.g., Deng et al., 2007; Gao et al.,
2004a; Wu et al., 2005; Xu et al., 2006a, 2006b; Yang et al., 2003,
2005b) or protracted thermo-chemical/mechanical erosion from
late Triassic–early Jurassic to late Cretaceous–early Cenozoic
(e.g., Li et al., 2014; Menzies and Xu, 1998; Xu, 2001, 2014;
Xu et al., 2004a, 2004b, 2009). Basal hydration by subduction-released
fluids (Niu, 2005) is also a long-lasting process, which emphasizes
the role of water-rich fluids derived from the transition zone (ca.
660 km) associated with the “remote” western Pacific subduction
systems (Niu, 2005). The evidence for delamination such as adakitic
magmatism or eclogites in the NCC (e.g., Gao et al., 2004a; Gu et al.,
2013; Guo et al., 2006; Liu et al., 2009, 2012b; Ma et al., 2013;
Wang et al., 2007; Xu et al., 2006a, 2006b; Zhang et al., 2010a,
2010b) is restricted to periphery orogens of the craton (Huang
et al., 2012a; Zhai et al., 2007). The destruction of the lithosphere in
the southeastern NCC was likely initiated from weakened lithospheric
zones such as the Dabie-Sulu orogen and Tan-Lu fault zone along the
cratonic margins, and then expanding towards the interiors (Gu et al.,
2013; Huang et al., 2012a; Xu et al., 2009). Understanding the nature
of lithospheric mantle beneath weakened lithospheric zones is thus
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Fig. 1. (a) Simplified tectonic framework in eastern China; the North China Craton is cut by the Tan-Lu fault zone (TLFZ) to the east and the Daxinganling-Taihangshan Gravity Lineament
(DTGL) to the west; (b) Distribution of the Mesozoic intrusive and eruptive rocks in Shandong Province and the locations of the Rushan and Wulian mafic intrusions (modified after
the geological maps of Shandong Province in 1/1,500,000 scale from the Geological Atlas of China); (c) Geologic sketch map of Rushan area (modified after the Rushan geological map
of 1/200,000 scale); (d) Geologic sketch map of the Wulian area (modified after the Rizhao geological map of 1/200,000 scale). The insert geochronology histogram shows the four
episodes of Mesozoic magmatism in the Jiaodong Peninsula. Age data are based on the literatures (Cai et al., 2013; Chen et al., 2003; Goss et al., 2010; Guo et al., 2005; Hu et al., 2007;
Huang et al., 2006; Li et al., 2012; Liu et al., 2008, 2009, 2011; Liu et al., 2012a, 2012b; Ma et al., 2013, 2014a; Meng et al., 2006; Miao et al., 1997; Qiu et al., 2001; Tang et al., 2009,
2014; Wang et al., 2014; Yang et al., 2005a, 2005b; Zhang and Zhang, 2007; Zhang et al., 2006, 2010b; Zhao et al., 1997; Zhou et al., 2003).
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an essential step to gain insight into the processes and mechanism of
lithospheric thinning beneath the southeastern NCC.

The Sulu orogen in eastern Shandong witnessed the lithospheric
thinning processes in the southeastern NCC for its widespread
magmatism throughout the Mesozoic (Fig. 1b). The geochronology
data show four episodes of Mesozoic magmatism (Late Triassic, Late
Jurassic, Early Cretaceous and Late Cretaceous) in the Jiaodong
Peninsula, and the Early Cretaceous magmatism would be the most
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significant according to its wide range of rock types and extensive out-
crops (Fig. 1b). However, the petrogenesis of the Early Cretaceous mag-
matic rocks in the Sulu orogen remains ambiguous, particularly with
regard to their source material and geodynamic setting (Tang et al.,
2009; Zhang et al., 2010b). These rocks might be ultimately associated
with post-orogenic processes subsequent to the collision between the
NCC and the Yangtze Craton (e.g., Guo et al., 2004, 2005, 2006;
Li et al., 2002; Yang et al., 2005a, 2005b) or the Paleo-Pacific subduction
tectonics (Goss et al., 2010; Lan et al., 2011; Ma et al., 2013; Ma et al.,
2014a, 2014b). Here we carried out an integrated study on the Early
Cretaceous mafic-intermediate intrusions at theWulian and Rushan lo-
cations in the Sulu orogeny (Fig. 1b). With newly acquired zircon U-Pb
ages, whole-rock geochemistry and Sr-Nd-Hf isotope data, zircon Lu-Hf
isotope data and mineral compositions of biotite and Fe-Ti oxides, we
constrain the magma sources involved in petrogenetic processes of
the rocks. We show a W-E lateral variation in oxygen fugacity and
volatile contents in magma source, which is tentatively related to
the subduction of paleo-Pacific plate underneath the eastern Asian
continental margin.
2. Geological background and description of samples

The North China Craton (NCC; Fig. 1a), bounded by the Qinling–
Dabie–Sulu orogen to the south and the Central Asia orogen to the
north, is the oldest and largest cratonic block in China with widespread
Archean to Paleoproterozoic basement (e.g., Zhao et al., 2005). The
eastern NCC, east of the DTGL, is considered to have encountered
tectonothermal remobilization during Phanerozoic time, and was
marked by considerable Mesozoic lithospheric thinning (Fan et al.,
2000; Gao et al., 2002; Griffin et al., 1998; Menzies and Xu, 1998;
Menzies et al., 1993; Xu, 2001, 2007; Zheng et al., 2007). Shandong
Province, located in the central part of the eastern NCC, is separated
by the left-lateral Tan-Lu fault zone (TLFZ) into two parts (Fig. 1a, b).
The western part is the Luxi area where Ordovician diamondiferous
kimberlites are situated, and the eastern part is the Jiaodong Peninsula
mostly consisting of the Sulu orogen and the Jiaobei terrain (Fig. 1b).

The Sulu orogen formed by the Triassic northward subduction of the
Yangtze Craton (YC) beneath the NCC (e.g., Zheng et al., 2003, 2006).
The UHP metamorphic rocks in the Sulu orogen are mainly composed
of Neoproterozoic granitic gneisses with subordinate coesite-bearing
eclogites, schist, and quartzite (Huang et al., 2006; Zheng et al., 2003).
Mesozoic igneous rocks in the Sulu orogeny predominantly consist of
granitoid rocks with minor mafic rocks (Fig. 1b). Mafic rocks often
occur as dikes or small-scale intrusions (Fan et al., 2001; Guo et al.,
2004; Meng et al., 2005). The most representative mafic intrusions
occur within the Kunyushan suite in the east part and the Qibaoshan
intrusive complex in the northwest part of the Sulu orogen (Fig. 1b).

The Kunyushan suite in the Rushan region is composed of the
Middle Jurassic granodiorite (Duogushan), Late Jurassic monzogranite
(Kunyushan), Early Cretaceous granite (Sanfoshan) and Early Creta-
ceous gabbro-diorite-monzonite (Fig. 1c). The gabbro-diorite intruded
into the Middle Jurassic granodiorite at Gongjia village or the Late
Jurassic monzogranite at Shangkou village (Fig. 1c), with total outcrop
surface of about 2 km2. The studied gabbro-diorite samples collected
from a quarry at Gongjia village (Fig. 1c) mainly consist of plagioclase
(40–50 %), clinopyroxene (15–25 %) and biotite (5–20 %) with minor
orthopyroxene (b3 %), amphibole (b5 %) and Fe-Ti oxides (1–5 %).
Accessory minerals include zircon, apatite and titanite. Subhedral-
anhedral Fe-Ti oxides occur as inclusions in silicate minerals, especially
in clinopyroxene and biotite (Fig. 2a, b). Amphibole is present
often around clinopyroxene as the reaction rim (Fig. 2a). Biotite is inter-
stitial to plagioclase and clinopyroxene or as reaction rim around
clinopyroxene or Fe-Ti oxides (Fig. 2a, b). Both orthopyroxene and
clinopyroxene occur as subhedral-anhedral crystals partially rimed by
amphibole or biotite (Fig. 2a, b).
TheQibaoshan intrusive complex in theWulian region,with outcrop
surface of about 12 km2, is bounded by the early Creataceous volcanic
sequences of Qingshan Formation (Fig. 1d) and comprised of an intru-
sive association of pyroxenemonzonite-dioritic porphyrite. The studied
pyroxene monzonite samples consist of clinopyroxene (~10–25 %),
plagioclase (~25–40 %), alkali feldspar (~20–35 %) and biotite
(~5–15 %) with minor Fe-Ti oxides (1–5 %). Fe-Ti oxides are all
anhedral grains enclosedwith the silicateminerals, especially pyroxene
and biotite (Fig. 2c, d). Biotite occurs as subhedral crystal coexisting
with euhedral-subhedral clinopyroxene, or as anhedral interstitial crys-
tal between tabular plagioclases (Fig. 2c, d). Alkali feldspar, present
as large anhedral crystal, embeds other silicate minerals such as
clinopyroxene, plagioclase and biotite (Fig. 2c, d). Fe-Ti oxides, apatite,
zircon and titanite are common accessory minerals in all samples.
Fe-Ti oxides in the Rushan and Wulian samples are all intergrowth
of ilmenite andmagnetite (Fig. 2e, f), with magnetite more abundant
in mode than ilmenite.

3. Analytical methods

Zircons were separated using conventional heavy liquid and
magnetic techniques and purified by hand-picking under a binocular
microscope. They were mounted together with the standard zircons
(TEMORA) in epoxy resin. Themount was polished to ensure the expo-
sure of the interiors of the grains and then was gold-coated. Internal
structure of zirconswas examined using cathodoluminescence (CL) im-
aging technique prior to U-Pb isotopic analyses. Zircon U-Pb analyses
were performed on a CAMECA IMS-1280 ionmicroprobe at the Institute
of Geology and Geophysics, Chinese Academy of Sciences (IGG-CAS) in
Beijing, China. Analytical procedures are similar to those described by
Li et al. (2009). U-Th-Pb isotopic ratios and absolute abundances were
determined relative to the standard zircon 91500 (Wiedenbeck et al.,
1995). Measured Pb isotopic compositions were corrected for common
Pb using 204Pb signal. Uncertainties on individual analyses are reported
at a 1σ level (Supplemental Table 1); data reduction was carried out
using Isoplot (ver. 3.23) program (Ludwig, 2003).

Geochemical and Sr-Nd-Hf isotopic analyses were carried out at
the Guangzhou Institute of Geochemistry, Chinese Academy of
Sciences (GIG-CAS). Samples were sawed into slabs and the central
parts (N200 g) were used for bulk-rock analyses. The rocks were
crushed into small size (b0.5 cm in diameter) before further cleaned
with deionized water in an ultrasonic bath and pulverized in a
corundum mill.

Bulk rock major element oxides were analyzed using a Rigaku RIX
2000 X-ray fluorescence spectrometer (XRF). Calibration lines used in
quantification were produced by bivariate regression of data from 36
referencematerials encompassing awide range of silicate compositions.
Calibrations incorporated matrix corrections based on the empirical
Traill-Lachance procedure, and analytical uncertainties are mostly be-
tween 1% and 5%. Trace elements were obtained using inductively
coupled plasma-mass spectrometry (ICP-MS) after acid digestion of
samples in high-pressure Teflon vessels. An internal standard solution
containing the single element Rh was used to monitor signal drift. The
US Geological Survey and Chinese National standards BCR-1, AGV-2,
GSR-1, GSR-2,MRG-1,W-2 andG-2were chosen for calibrating element
concentrations of measured samples. Analytical precision of REE
and other incompatible elements of the standard samples is typically
1–5 %. In-run analytical precision for Nd is less 2.5 % RSD (relative
standard deviation).

Sr-Nd-Hf isotopic analyses were performed on a subset of whole
rock samples using a Neptune Plus multi-collector ICP-MS (MC-ICP-
MS). The Sr-Nd isotopic analytical methods follow the analytical
procedures described by Li et al. (2006). REE were separated using cat-
ion exchange columns, and Nd fractions were further separated by
HDEHP-coated Kef columns. Measured 143Nd/144Nd ratios were nor-
malized to 146Nd/144Nd = 0.7219. Reference standards were analyzed
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Fig. 2. Petrographic characteristics: (a, b) Rushan porphyry gabbro-diorite, consisting of relatively fine plagioclase (Pl, elongate grains with multiple twinning), alkali feldspar (Kfs),
clinopyroxene (Cpx), biotite (Bt), amphibole (Amp), orthorpyroxene (Opx) and Fe-Ti oxides (FTO); Amphibole as the reaction rim around clinopyroxene. Biotite (Bt) is interstitial to
plagioclase (Pl) and clinopyroxene (Cpx) or as reaction rim around Cpx or Fe-Ti oxides (FTO); (c, d) Wulian pyroxene monzonite, alkali feldspar (Kfs) as large anhedral crystal
with inclusions of clinopyroxene (Cpx), plagioclase (Pl), biotite (Bt) and Fe-Ti oxides (FTO); (e) the intergrowth of magnetite (Mag) and ilmenite (Ilm) in the Rushan gabbro-diorite;
(f) Fe-Ti oxides in the Wulian pyroxene monzonite (Mag), ilmenite is semi-packed by magnetite (Ilm).
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along with samples and gave 87Sr/86Sr = 0.710243 ± 14 (2σ, the last 2
digits) for NBS987 and 143Nd/144Nd = 0.512124 ± 11 (2σ) for Shin
Etsu JNdi-1, which are comparable to the recommended values of
NBS987 (87Sr/86Sr = 0.710248; McArthur, 1994) and Shin Etsu JNdi-1
(143Nd/144Nd = 0.512115 ± 7; Tannaka et al., 2000).

For Hf isotope analysis, the mixture of about 100 mg rock powder
and 200 mg Li2B4O7 was fused in a Pt–Au alloy crucible at 1200 °C for
15 minutes in a high-frequency furnace. Quenched piece of alkali glass
was dissolved in 2mol/L HCl. Hf fractionwas separated by using amod-
ified single-column Ln extraction chromatography method. Measured
176Hf/177Hf ratios were normalized to 179Hf/177Hf= 0.7325, and report-
ed 176Hf/177Hf ratios were further adjusted relative to the standard JMC-
475 of 0.282160. Reference standard was analyzed along with samples
and give 176Hf/ 177Hf = 0.282191 ± 3 (2σ) for JMC475.
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In-situ zircon Hf isotopic analyses were carried out on the dated
spots using a Neptune MC-ICPMS, equipped with a 193 nm laser, at
the IGG-CAS. Spot sizes of 40 μm with a laser repetition rate of 8 Hz
were used, which yielded a typical signal intensity of ~ 5 V at mass
180Hf with the energy density of 15 J/cm2. The detailed analytical
technique and data correction procedures are described in Wu et al.
(2006). The mean βYb (172Yb/173Yb) value obtained from zircon itself
was applied for the interference correction of 176Yb and 176Lu on 176Hf
(Wu et al., 2006; Xie et al., 2008). 176Yb/172Yb = 0.5886 and
176Lu/175Lu = 0.02655 were used for the elemental fractionation cor-
rection (Chu et al., 2002). Due to the extremely low 176Lu/177Hf in zircon
(normally b 0.003 in the studied samples; Supplemental Table 2), the
isobaric interference of 176Lu on 176Hf is negligible (Iizuka and Hirata,
2005). No relationship between 176Yb/177Hf and 176Hf/177Hf ratios
was observed in the studied samples, indicating that the correction
of 176Yb interference on 176Hf is precise for obtaining accurate
176Hf/177Hf values. During analysis of the samples, the zircon stan-
dard 91500 applied for the instrumental mass fractionation gave
176Hf/177Hf = 0.282292 ± 14 (2σ), which is identical with the
176Hf/177Hf ratios of 0.282284 ± 22 reported by Griffin et al. (2006).
The uncertainties of calibrated isotope ratios include those from the
sample, standards, and reference values, which are given at ±2σ in
Supplemental Table 2.

Mineral compositions were carried out using a JEOL JXA-8100
Superprobe at the GIG-CAS. The operating conditions are: 15 kV acceler-
ating voltage, 20 nA beam current, 1 − 2 μm beam diameter, and 20 s
peak counting time for most elements (60 s for F and Cl, 7 s for Na
and 8 s for K in mica, 40 s for Cr, Ti and V in Fe-Ti oxides). The data
reduction was done using ZAF correction.
Fig. 3. (a, b) Concordia diagrams for SIMS zircon U-Pb chronology of the Wulian and
Rushan mafic intrusive rocks. MSWD and Probability of concordance are at the 1σ level.
The scale bar of CL images is 100 μm. (c) Plot of zircon ɛHf(t) vs. age of the Wulian and
Rushan mafic intrusions; ages are apparent 206Pb/238U ages by U-Pb dating; the
evolution of depleted mantle (DM) is drawn using a present-day 176Hf/177Hf = 0.28325
and 176Lu/177Hf = 0.0384 (Griffin et al., 2000); the fields of Mesozoic intrusions in
western Shandong Province (Tongshi, Yinan and Jinan-Zouping areas) are after Huang
et al. (2012a); the field of the TTG in the southern North China Craton (SNCC) is compiled
from the data in Huang et al. (2010, 2012b, 2013).
4. Analytical Results

4.1. Zircon U-Pb geochronology and Hf isotopes

The pyroxene monzonite sample WL-15 from Wulian and gabbro
sample RS-22 from Rushan were selected for zircon U-Pb dating
(Supplemental Table 1) and Lu-Hf isotopic analyses (Supplemental
Table 2). The zircon Lu-Hf isotopic analyses were conducted on the
same spots that had previously been dated for U-Pb ages using a
CAMECA IMS-1280 (Supplemental Table 2). Initial Hf isotope ratios
were calculated at their apparent 206Pb/238U ages (Supplemental
Table 2). Although zircon grains are entirely of fragments due to over-
crushing, their CL images show oscillatory zoning structure (inset in
Fig. 3), indicating a magmatic origin.

The zircons of sampleWL-15 fromWulian (Fig. 1c) containsmoder-
ate to high Th and U contents (170 − 1150 ppm and 167 − 586 ppm,
respectively) with high Th/U ratios of 1.01 − 1.96 (Supplemental
Table 1). All U-Pb results show a tight grouping of concordant to near
concordant apparent 206Pb/238U ages, with a weighted mean value of
123 ± 1 Ma (2σ error; Fig. 2a), reflecting the crystallization age of the
Wulian pyroxene monzonite. This age is nearly identical to that of the
Shichang-Fangzi monzodiorite-monzogranite complex (122 ± 2 Ma;
Yang et al., 2005a) on South Wulian city. Fourteen zircon grains from
sample WL-15 have a relatively narrow range of 176Hf/177Hf ratios
(0.282276 − 0.282381) that yield negative εHf(t) values (-15.3 to
-11.6) (Supplemental Table 2).

The zircons of sample RS-22 from Rushan contain variable Th and U
contents (161 − 2221 ppm and 170 − 1609 ppm, respectively) with
high Th/U ratios of 0.79 − 1.89 (Supplemental Table 1). All analyses
show similar apparent 206Pb/238U ages and yield a weighted mean
value of 115 ± 1 Ma (2σ; Fig. 3b), representing the crystallization age
of Rushan mafic intrusion. Compared to the data of sample WL-15, the
zircons of sample RS-22 have overlapping but broadly slightly lower
176Hf/177Hf ratios (0.282262 − 0.282340) corresponding to negative
εHf(t) values from -16.0 to -13.3 (Supplemental Table 2).
4.2. Major and trace elements

Bulk rock analyses of 16 samples are presented in Supplemental
Table 3 and plotted in Fig. 4, which include seven gabbro-diorite sam-
ples from Rushan and nine pyroxene monzonite samples fromWulian.

The Rushan gabbro-diorite samples have variable SiO2 (53.48 −
59.58 wt%), MgO (2.61 − 5.50 wt%), Fe2O3 (6.10 − 8.38 wt%), CaO
(4.64 − 7.66 wt%), high Na2O (3.70 − 4.18 wt%) and K2O (2.71 −
3.85 wt%) with low TiO2 (0.85 − 1.08 wt%). The major elements of
studied samples are comparable with the literature data of the
gabbro-diorite from the same locality (Hu et al., 2007; Meng et al.,
2005; Tang et al., 2009) (Fig. 4). The samples have fractionated REE
patterns ([La/Yb]N = 22.3 − 30.1; Supplemental Table 3) with weak
negative Eu anomalies (Eu/Eu* = 0.77 − 0.92; Supplemental Table 3)
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(Fig. 5a), and are characterized by pronounced negative Nb-Ta and Ti
anomalies and positive Sr and Pb anomalies in the primitive mantle-
normalized multi-element diagram (Fig. 5b).

The Wulian pyroxene monzonite samples have relatively narrow
ranges of SiO2 (52.48 − 55.36 wt%), MgO (3.25 − 4.17 wt%), Fe2O3

(6.70 − 7.70 wt%), CaO (5.13 − 6.57 wt%) and K2O (3.62 − 4.62 wt%)
with low TiO2 (0.80 − 1.02 wt%). These pyroxene monzonite samples
have higher CaO, MgO and Na2O but lower SiO2 than the data of the
Wulian monzonite reported in Liu et al. (2009, 2011) (Fig. 4). Overall,
the Wulian pyroxene monzonite and dioritic porphyrite have much
higher K2O but lower CaO than the Rushan mafic-intermediate
intrusion (Fig. 4d, f). The Wulian samples also show fractionated
REE patterns ([La/Yb]N = 50.3 − 74.9; Supplemental Table 3) with
moderate negative Eu anomalies (Eu/Eu*= 0.62− 0.85; Supplemental
Table 3) (Fig. 5a). In the primitivemantle-normalizedmulti-element di-
agram (Fig. 5b), the Wulian samples all exhibit pronounced negative
Nb-Ta-Ti anomalies and positive Sr and Pb anomalies. They have overall
higher Ba, Th, U, K, Pb, Sr, Zr, Hf and LREE than the Rushan samples
(Fig. 5).

4.3. Bulk-rock Sr-Nd-Hf Isotopes

The Rushan gabbro-diorites have high initial 87Sr/86Sr ratios
(0.7075− 0.7082) and variable negative εNd(t) (-12.9 to -7.6) (Supple-
mental Table 4). TheWulian pyroxene monzonites have more negative
εNd(t) (-15.0 to -13.7) than the Rushan gabbro-diorites in similar
initial 87Sr/86Sr ratios of 0.7078 − 0.7082 (Supplemental Table 4). The
depleted mantle Nd model ages (TDM) of the Rushan gabbro-diorites
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vary from 1.34 Ga to 1.58 Ga (Supplemental Table 4), whereas the
Wulian pyroxene monzonites samples have similar Nd model ages
(TDM = 1.47–1.58 Ga; Supplemental Table 4). Initial 87Sr/86Sr ratios of
the Wulian and Rushan rocks are much higher than those of the Early
Cretaceous gabbros in the Jinan region (Fig. 6), located to the west of
the TLFZ (Fig. 1a).

TheWulian pyroxene monzonite samples have negative εHf(t) values
clustered around -15.5 to -12.1, whereas the Rushan gabbro-diorite sam-
ples have more variable εHf(t) values from -19.4 to -8.7 (Supplemental
Table 4). The Nd-Hf isotopic compositions for the Rushan samples scatter
along the mantle array line (Chauvel et al., 2008), while theWulian sam-
ples plot all above the array line (Fig. 6b). Following Chauvel et al. (2008),
we calculate the ΔεHf values (the difference in εHf relative to the εNd–εHf
mantle array, defined as ΔεHf = εHf − 1.59εNd − 1.28) to evaluate the
degree of Nd–Hf decoupling of theWulian and Rushan rocks. The Rushan
samples exhibit variable ΔεHf values from -3.6 to +9.2, while the
Wulian samples have overall higher ΔεHf values from +6.0 to +9.7
(Supplemental Table 4)

4.4. Mineral compositions

Biotites in the Rushan gabbro-diorite, Wulian pyroxene monzonite
and Jinan gabbro are compositionally heterogeneous within sample
(Supplemental Table 5; Fig. 7). The biotites in the Rushan samples
have lower MgO, TiO2 and F concentrations, F/Cl ratios and Mg# values
but higher FeO, MnO and Cl than those in the Wulian samples and
Jinan gabbro (Fig. 7). The biotites in the Wulian samples contain wide
range of fluorine (up to 1.81wt%; Table 5)withwide range of F/Cl ratios
(Fig. 7a, b). For all data from the Rushan andWulian samples, there is a
pronounced negative correlation betweenMgO and FeOT (Fig. 7e) and a
weak positive correlation between Mg# and fluorine (Fig. 7d).

The pairs of intergrown ilmenite and magnetite (Fig. 2e, f) were
examined for the estimation of oxygen fugacity (Supplemental Table 6
and Fig. 8). For comparison,we alsomeasured those from the Jinan gab-
bro in the interior of the NCC (Huang et al., 2012a) and the Tekesi gab-
bro associatedwith the Tarim plume in the Southwest Tianshan orogen,
NW China (He et al., 2013). Magnetite in the Wulian samples is
titanomagnetite with Fe3+/Fe2+ ratios from 1.31 to 1.59 and TiO2

from 3.31 to 7.13 wt% (Supplemental Table 6; Fig. 8). By contrast,
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magnetite in the Rushan samples contains extremely low TiO2 with
high Fe3+/Fe2+ ratios close to 2 (Fig. 8a). There is a negative correlation
between TiO2 and Fe3+/Fe2+ of all magnetites (Fig. 8a). Ilmenite in the
Wulian samples also has relatively higher TiO2 but lower Fe3+/Fe2+

ratio than that in the Rushan samples, defining a negative correlation
between TiO2 and Fe3+/Fe2+ (Fig. 8b). Oxygen fugacity and tempera-
ture of Fe–Ti oxide crystallization were estimated using the ilmenite–
magnetite geothermobarometry program (ILMAT120; Lepage, 2003).
Calculated temperature and oxygen fugacity (logfO2) are listed in Sup-
plemental Table 4 and plotted in a temperature vs. logfO2 diagram
(Fig. 8c), which shows that Fe-Ti oxides of the Wulian samples were
formed in relatively lower oxygen fugacity but higher temperature in
comparison with those of the Rushan samples (Fig. 8c). Overall, the
Fe-Ti oxides of the Wulian samples are similar to those of the Jinan
and Tekesi gabbros (Fig. 8).

5. Discussion

5.1. Petrogenesis of the Wulian and Rushan mafic-intermediate complexes

5.1.1. Fractional crystallization
The Wulian pyroxene monzonites exhibit almost uniform Sr-Nd-Hf

isotopes (Fig. 6), indicating that variable concentrations of major and
trace elements (Figs. 5, 6) would be primarily attributed to varying de-
grees of fractional crystallization. The low Cr, Co, Ni and MgO but high
SiO2 and Al2O3 of the Wulian pyroxene monzonites (Supplemental
Table 3) suggest extensive fractionation of mafic minerals in the early
magma stage. However, for narrow ranges of CaO, MgO, Cr, Co and Ni
(Figs. 4, 9), olivine or clinopyroxene fractional crystallization would
not be a primary process inducing geochemical variation within
the Wulian samples. The negative Eu anomalies of the REE patterns
(Fig. 5a) and positive correlations between Eu/Eu* and Sr/Sr*
(=2 × SrPM/[SmPM + NdPM]), Sr/Y or Ba (Fig. 9d, e, f) indicate varying
extents of plagioclase and alkali feldspar fractionation.

TheRushan gabbro-diorite samples have overall lowMgO andNi but
show positive correlation between MgO and Ni, suggesting fractional
crystallization of olivine (Fig. 9a). Clinopyroxene fractionation is indi-
cated by positive correlations between MgO and Cr or CaO (Fig. 9b, c),
consistent with abundant clinopyroxene phenocrysts in the Rushan
samples. Plagioclase fractionation is responsible for moderate negative
Eu anomalies (Fig. 5a) according to positive correlation between
Eu/Eu* and Sr/Sr* or Sr/Y in the Rushan samples (Fig. 9d, e).

5.1.2. Crustal contamination
Both the Rushan andWulian samples exhibit significant depletion of

Nb, Ta and Ti (Fig. 5b) and have strongly negative bulk-rock εNd(t) and
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εHf(t) values, high initial bulk-rock 87Sr/86Sr ratios (Fig. 6) and negative
zircon εHf(t) values (Fig. 3c). Crustal contamination might be a possibil-
ity for negative Ta-Nb-Ti anomalies and enriched Sr-Nd-Hf isotopes.
Extensive crustal contamination would be required for the strong de-
pletion of Nb, Ta and Ti and strongly negative εNd(t) values, high initial
87Sr/86Sr ratios in the Wulian and Rushan samples. However, for an ex-
tensive crustal contamination, Sr-Nd-Hf isotope compositionswould be
correlatedwith SiO2,MgO and/or Nb/La, which are not observed in both
suites (Fig. 10). This, in turn, precludes the possibility of extensive crust-
al contamination.

5.1.3. Mantle source metasomatized by Triassic continental subduction
Partial melting of an unmodified upper mantle peridotite cannot

adequately produce the strongly negative Nb-Ta-Ti anomalies and pro-
nounced enrichment of incompatible elements seen in Fig. 5b. Fraction-
al crystallization of Ti-bearing minerals such as rutile or amphibole has
notable effect on Ta-Nb-Ti depletion (Klemme et al., 2005; Tiepolo et al.,
2000). Relatively high and constant Dy/Yb ratios of the Rushan and
Wulian samples ([Dy/Yb]N = 1.39–1.78; Supplemental Table 3) would
argue against the notable effect of amphibole crystallization. Both the
Rushan and Wulian samples have chondritic or slightly subchondritic
Nb/Ta ratios of 15.7–17.8 (Supplemental Table 3) (chondritic Nb/Ta
ratio = 17.4; Sun and McDonough, 1989), distinctly contradicting
with rutile crystallization thatwill result in superchondritic Nb/Ta ratios
in the residual melts (Klemme et al., 2005).

Collectively, geochemical and isotopic characteristics of the Rushan
and Wulian rocks are most likely derived from a mantle source that
was enriched in Sr-Nd-Hf isotopes but depleted in Ta-Nb-Ti. The enrich-
ment degree of LREE and LILE for the Rushan andWulian rocks is higher
than those for the coeval igneous rocks from the interior of the NCC, for
example the Jinan and Zouping gabbros (Figs. 5, 6). This suggests that
the mantle source for the Rushan and Wulian rocks have experienced
more intensive metasomatism. Such a mantle source may have been
formed by hybridization of the mantle source by recycled terrigenous
sediments (Conticelli and Peccerillo, 1992; Hawkesworth et al., 1993)
or by fluid released from supra-subduction zone (Donnelly et al.,
2004; Tatsumi, 1986).

According to zircon SIMS U-Pb dating results, both the Wulian
(123.0 ± 1.4 Ma) and Rushan (114.5 ± 0.5 Ma) rocks were formed im-
mediately after or simultaneous with the northwestward drifting of Pa-
cific plate at ~125 − 122 Ma (Sun et al., 2007). While a recent oceanic
crust subduction accounts for the enrichment of large-ion-lithophile
(LIL) elements and depletion of high-field-strength (HFS) elements, it
cannot account for radiogenic Sr and unradiogenic Nd and Hf isotopic
compositions observed in the Rushan and Wulian samples (Fig. 6).

Some samples from the Rushan intrusion and all samples from the
Wulian intrusion exhibit variable degrees of decoupling between Hf
and Nd isotopes (Fig. 6b). For a given εNd value, oceanic crust has a
lower while the global subducted sediment (GLOSS) has a higher εHf
value relative to the mantle array (Fig. 6b; Chauvel et al., 2008). The
involvement of oceanic crust and/or subducted sediment can generate
the decoupling between Hf and Nd isotopes in the mantle source
(e.g., Chauvel et al., 2008; Li et al., 2014). If so, strongly negative εNd
and εHf of the Rushan andWulian rocks would require the involvement
of ancient (N1.0 Ga) oceanic crust and/or subducted sediment (Fig. 6b).
It is noteworthy that the Rushan and Wulian rocks have much more
unradiogenic Hf–Nd isotopic compositions than the marine sediments
from the northwestern Pacific (Vervoort et al., 2011) (Fig. 6b). This
suggests that the decoupling between Hf and Nd isotopes cannot be
due to the western Pacific subduction beneath East Asia in the Early
Cretaceous, but is likely attributed to ancient crustal materials recycled
into mantle source.

Widespread adakitic rocks in Jiaodong area, mainly formed during
the Late Jurassic to Early Cretaceous (Fig. 11a, b), were mostly related
to post-collisional processes of the Sulu orogen. The high-MgO adakitic
rocks in the Early Cretaceous (Fig. 11c) were probably due to the litho-
spheric delamination (Liu et al., 2009), while other low-MgO adakitic
rocks in the Late Jurassic to Early Cretaceous (Fig. 11) were likely de-
rived from partial melting of thickened lower crust (Hou et al., 2007;
Liu et al., 2009; Ma et al., 2013; Yang et al., 2003; Zhang et al., 2010b).
Therefore, Mesozoic adakitic rocks in Jiaodong area, characterized by
overall high initial 87Sr/86Sr, remarkably negative bulk-rock εNd(t) and
zircon εHf(t) values (Figs. 6a, 11d), would hold the geochemical features
of the ancient crustal materials in the mantle source beneath the Sulu
orogen. Both the Rushan and Wulian intrusions, located at the Sulu
orogen, are tectonically and geochemically affiliated to the southern
margin of the NCC. Consistently, bulk-rock Sr-Nd isotopes and zircon
Hf isotopes of the Rushan and Wulian rocks were all similar to those
of Late Jurassic to Early Cretaceous adakitic rocks in the Sulu orogen
(Figs. 6a, 11d), which indicates that themetasomatismofmantle source
was most likely associated with the processes responsible for the Sulu
orogeny. Accordingly, the decoupling between Hf and Nd isotopes of
the Rushan and Wulian rocks would be due to subduction/collision or
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post-orogenic collapse in the Sulu orogen. The Wulian samples show
overall larger degree of decoupling between Hf and Nd isotopes than
the Rushan samples (Fig. 6b), indicating a more extensive crustal mate-
rials recycled into mantle source, consistent with higher potassium of
the rocks (Fig. 4f).

5.2. Hydration of the mantle source by Pacific subduction

The Paleo-Pacific subduction is regarded as one of principal triggers
of the destruction of theNCC (Xu, 2014; Xu et al., 2004a, 2012; Zhu et al.,
2012a, 2012b). The widespread NNE-trending basins in the eastern
NCC, mainly formed during the Cretaceous–Paleogene (Ren et al.,
2002), may have been induced by the Pacific subduction. Such a
geodynamic process is supported by thefindings of significant contribu-
tion of recycled oceanic crust (ROC) in the genesis of b 90 Ma basalts
(Sakuyama et al., 2013; Xu, 2014; Xu et al., 2012; Yu et al., 2010;
Zhang et al., 2009). Essentially, geochemical evidence of ROC was
based on the studies on the OIB-type basalts derived from partial melt-
ing of asthenosphere source (Sakuyama et al., 2013; Xu, 2014; Xu et al.,
2012; Zhang et al., 2009). Involvement of large amounts of lithosphere
materials in the source during the dominant destruction of the NCC in
the early Cretaceous would cause difficulties in evaluating the compo-
nent of ROC. However, if the Mesozoic geodynamics was controlled by
the Pacific subduction, the lithospheric mantle source underneath the
eastern NCC may have been hydrated similar to the overlying mantle
wedge above the subducting plate.

Fluorine and chlorine are ubiquitous volatile components inmantle-
and crust-derived magmas and continental crystalline rocks (e.g., Aoki
et al., 1981; Bucher and Stober, 2010; Zhang et al., 2012) and thus rep-
resent the potential tracer for recycled oceanic crust and volatile-rich
mantle source. Cl is most likely to escape in hydrous slab fluids during
slab devolatilization, whereas F is largely returned to the deep mantle
(e.g., Dixon et al., 2002; Ito et al., 1983; Schilling et al., 1978; Zhu and
Sverjensky, 1991). Thus, Cl and H2O would be efficiently fractionated
from F during the subduction process (Straub and Layne, 2003). As a re-
sult, island arc basalts have lower F/Cl ratios than the subducted crust
(Ito et al., 1983; Straub and Layne, 2003), while OIB source mantle is
enriched in F through recycling of subducted oceanic crust (Kovalenko
et al., 2006). Hydrous minerals such as amphibole and biotite can be
used to decipher halogen concentrations in themelts, which might illu-
minate the source variations of Cl and F. The presence of abundant bio-
tites in the Rushan and Wulian mafic intrusions implies a hydrous
source. The biotites in the Rushan samples have lower F and F/Cl but
overall higher Cl than those in the Wulian samples, which would be
due to distinct mantle sources with respect to halogens or different
extents of fractional crystallization of hydrousmineral apatite or amphi-
bole. Both the Rushan and Wulian rocks show the REE patterns of pro-
gressive decrease in HREE with increasing atomic number (Fig. 5a),
arguing against significant amphibole fractionation. At low melt Cl
contents, Cl is slightly incompatible and F is compatible with respect
to apatite (Mathez and Webster, 2005). Thus, apatite fractionation will
deplete the residual melt in F concentration and F/Cl ratio. However,
apatite as an accessory mineral is impractical for producing significant
variation on halogens in the residual melt. On the other hand, both F
concentrations and F/Cl ratios of the Wulian samples are much higher
than those of the Rushan samples despite of overlaps of major elements
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(Fig. 4), suggesting that the fractional crystallization of minerals includ-
ing apatite cannot bemajor process for the contrastive F and Cl concen-
trations between Wulian and Rushan rocks. Thus, contrasting mantle
sources with respect to halogens would be the essence of different bio-
tites of the two areas. In other words, mantle source in the eastern Sulu
orogen contains more aqueous fluid than that in western Sulu orogen,
consistent with the geometry of Pacific subduction system (Fig. 12).
Within this scheme, H2O-rich fluid in the mantle beneath the Rushan
area, closer to mantle wedge, was most likely released from subducted
slab at shallow depth, while F-bearing fluid in the mantle beneath the
Wulian area, far away from mantle wedge, was dominantly derived
through recycling of subducted oceanic crust (Fig. 12). Consistently,
mantle source for the Jinan gabbro in the western Shandong, typical of
the predominant ancient cratonic mantle beneath the interior of the
southeastern NCC (Huang et al., 2012a), would be characterized by rel-
atively higher F and F/Cl but lower Cl in comparison with that for the
Rushan gabbro-diorite according to their halogens in the biotites
(Fig. 7).

Such a lateral variation in fluid composition in mantle source be-
neath the Sulu orogen is consistent with the distinct redox states of
the two mafic intrusions (Fig. 8c). The oxygen fugacities of the Wulian
pyroxenemonzonite calculated based onmagnetite-ilmenite equilibra-
tion are lower than the nickel-nickel oxide buffer, similar to those of the
Jinan gabbro in the interior of the NCC and the Tekesi gabbro in the
Southwest Tianshan orogen, NW China (Fig. 8c). The Jinan gabbros
were derived from partial melting of dominant proto-lithospheric
mantle and subordinate asthenosphere (Huang et al., 2012a), while
the Tekesi gabbro would be genetically related to the Tarim mantle
plume (He et al., 2013), which are all irrelevant to dehydration of
subducted oceanic crust. However, the oxygen fugacities of the
Rushan gabbro-diorite are close to the hematite-magnetite buffer
(Fig. 8c). If the oxidation is related to the addition of H2O from the
subducted slab (Kelley and Cottrell, 2009), the observed lateral var-
iation in oxygen fugacity for the studied rocks is most likely caused
by fluid processes associated with the subduction of paleo-Pacific
plate.

It has been proposed that the Pacific subduction beneath the NCC
was initiated in the Middle Jurassic (Engebretson et al., 1985; Wu
Fig. 12. Cartoon showing the roles of the Pacific oceanic subduction on lithospheric thin
et al., 2007) and had changed from highly oblique to orthogonal in the
Late Jurassic to Early Cretaceous (Engebretson et al., 1985; Isozaki,
1997; Ratschbacher et al., 2000). Since that the Rushan gabbro-diorite
formed ~8 Ma later than the Wulian pyroxene monzonite (Fig. 4),
their diverse mantle sources might reflect the enhanced influence of
the Pacific subduction. In this scenario, the mantle source for the mafic
rocks at ~ 128–130 Ma in the interior of the NCC (Huang et al., 2012a)
would not be directly hydrated by subducted Pacific platewithin aman-
tle wedge. Nevertheless, it does not exclude the effect of fluids released
from the stagnant oceanic slab within the mantle transition zone, and
the influence of Pacific subduction can be traced back in time at least
to Early Cretaceous.

5.3. Mechanism for magmatism during the principal lithosphere destruction
in the Sulu orogenic belt

The geochronology data show four episodes of Mesozoic magmatism
in the Jiaodong Peninsula: Late Triassic, Late Jurassic, Early Cretaceous
and Late Cretaceous (Fig. 1b).

Late Triassic rocks are characterized by extremely high K2O contents
(Fig. 11a) and have relatively low initial 87Sr/86Sr ratios, εNd(t) values
and zircon εHf(t) values (Figs. 6a, 11b and 11c). The syenites have
affinities with A-type granite, which are post-orogenic magmatism in
an extensional setting of the Sulu orogenic belt (Yang et al., 2005a)
after the continental collision.

Late Jurassic magmatism, dominantly recorded by the Linglong and
Kunyushan granites (Fig. 1b) (Hou et al., 2007; Ma et al., 2013; Zhang
et al., 2010b), have affinities with adakite in high Sr/Y and [La/Yb]N ra-
tios and low Y and Yb contents (Fig. 11). They are characterized by
low MgO, high SiO2 and negative bulk-rock εNd(t) values and zircon
εHf(t) values (Fig. 11), likely derived from partial melting of a thickened
lower crust in the Sulu orogenic belt.

Early Cretaceous magmatism, extensively in the Jiaodong Peninsula,
exhibitswide compositionwith variable bulk-rock εNd(t) values and zir-
con εHf(t) values (Fig. 11) (Hu et al., 2005, 2007; Huang et al., 2006; Lan
et al., 2011; Liu et al., 2008, 2009; Meng et al., 2005, 2006; Tang et al.,
2009; Yang et al., 2005b). Most Early Cretaceous rocks, including the
Rushan gabbro-diorite andWulian pyroxenemonzonite, have relatively
ning beneath the Sulu orogenic belt and Tan-Lu fault zone in the early Cretaceous.
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high K2O and show wide ranges of SiO2 and MgO, belong to Shoshonite
series or high-potassium calc-alkaline series (Fig. 11a). The high-Ti
lamprophyre dikes in the Jiaojia gold deposit might originate from par-
tial melting of a convective asthenospheric mantle (Ma et al., 2014a). In
addition, a small amount of Early Cretaceous rocks, such as some volca-
nic rocks in the Wulian area (Liu et al., 2009) and granitic rocks at
Sanfoshan (Zhang et al., 2006, 2010b) and Guojialing (Hou et al.,
2007; Yang et al., 2003), have overall high SiO2 but relatively low K2O,
and show affinities with adakite (Fig. 11). Some Early Cretaceous
adakitic rocks have low MgO and high SiO2 similar to the Late Jurassic
adakites, which would be derived from partial melting of a thickened
lower crust (Zhang et al., 2010b), while some with high-MgO contents
(Fig. 11) would be related to the lithospheric delamination (Liu et al.,
2009).

Late Cretaceousmagmatism is recorded bymafic dikes in the Jiaobei
terrain. The dikes show variable initial 87Sr/86Sr values with positive
bulk-rock εNd(t) values and zircon εHf(t) values (Fig. 11), which was
interpreted to be from a newly accreted depleted lithospheric mantle
source (Cai et al., 2013).

Collectively, four episodes of Mesozoic magmatic rocks in the
Jiaodong Peninsula record a tectonic transformation of the Sulu Orogen,
as the sequence of lithospheric evolution. The notable transformation of
mantle source from enriched lithosphere in the Early Cretaceous to de-
pleted mantle source in the Late Cretaceous indicates that the destruc-
tion of the lithosphere beneath the Sulu orogenic belt and periphery
region took place principally during the Early Cretaceous. The Early Cre-
taceous mafic and intermediate rocks are all ultrapotassic or potassic
(Fig. 11a), likely derived from partial melting of predominant enriched
lithosphere mantle and minor upwelling asthenosphere. Furthermore,
high initial 87Sr/86Sr, low negative bulk-rock εNd(t) and εHf(t) values
and zircon εHf(t) values of the Rushan and Wulian rocks (Figs. 6 and
11) require significant old crustalmaterials recycled intomantle source,
probably through the collision between SCB and NCC and subsequent
orogenic collapse in the Late Triassic. The lower crustal delamination,
if occurring in the early Cretaceous, would also be partially responsible
for enrichment of mantle source. A holistic delamination of subconti-
nental lithosphere is not a viable mechanism to induce the destruction
of the lithosphere within the North China Craton, but it is possible that
the delamination occurred on the marginal orogens (Gu et al., 2013;
Huang et al., 2012a; Li and Huang 2013; Windley et al., 2010). There-
fore, continental collision between the SCB and NCC and consequent
post-collisional processes in the Dabie and Sulu orogens and periphery
region had exerted important influence on lithospheric thinning in the
southeastern NCC (e.g., Huang et al., 2012a; Liu et al., 2012b; Xu et al.,
2009; Yang et al., 2012a, 2012b; Zhang and Gao, 2002; Zhang et al.,
2002).

However, it is enigmatic that the most extensive magmatism (Early
Cretaceous; Fig. 1b) coeval with the dominant lithospheric thinning is
more than 100 Ma after the continental collision between the SCB and
NCC. It is interesting to note that there is a spatially heterogeneousman-
tle source with respect to halogens contents and oxygen fugacity be-
neath the Sulu orogenic belt in the Early Cretaceous (Fig. 12). The
lateral variation is consistent with the geometry of Pacific subduction
system, indicating that the juxtaposition of Pacific subduction would
be the most likely mechanism for the extensive magmatism in the
Early Cretaceous. Such a geodynamic process would not only trigger
the partial melting of mantle wedge, but also induce asthenosphere
convection in the interior of the NCC due to wedge-suction (Niu,
2005; Niu et al., 2015) (Fig. 12). The weakened lithospheric zones
such as the Dabie-Sulu orogens and Tan-Lu fault zone along the cratonic
margins would became the favorable site for extensive magmatism
(Gu et al., 2013; Huang et al., 2012a; Xu et al., 2009) with melting of
hybrid mantle sources such as metasomatism lithospheric mantle and
ascending asthenosphere. Therefore, magmatic rocks in the early
Cretaceous have much wide ranges of Nd-Hf isotopes than other
episodes of magmatic rocks (Fig. 11).
6. Conclusions

The Rushan gabbro-diorite and Wulian pyroxene monzonite in the
Early Cretaceous (115 ± 1Ma and 123± 1Ma, respectively) represent
typical mafic magmatism in the Sulu orogen during the dominant de-
struction of theNCC. They are characterized by high potassium, high ini-
tial 87Sr/86Sr, strongly negative εNd(t) and εHf(t), as well as notable
negative Ta, Nb and Ti anomalies, predominantly attributed to partial
melting of enriched lithosphere mantle refertilized by recycled crustal
materials responsible for the Sulu orogeny.

Consistentwith the geometry of Pacific subduction system, there is a
spatially heterogeneous Cretaceous mantle source with respect to
halogens and water contents beneath the Sulu orogen. The Pacific
subduction played an important role in the dominant destruction of
the NCC since the Early Cretaceous.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.lithos.2016.02.008.
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