
Lithos 245 (2016) 223–242

Contents lists available at ScienceDirect

Lithos

j ourna l homepage: www.e lsev ie r .com/ locate / l i thos
Underplating of basaltic magmas and crustal growth in a continental arc:
Evidence from Late Mesozoic intermediate–felsic intrusive rocks in
southern Qiangtang, central Tibet
Lu-Lu Hao a,b, Qiang Wang a,c,⁎, Derek A. Wyman d, Quan Ou a,b, Wei Dan a, Zi-Qi Jiang a,e, Fu-Yuan Wu f,
Jin-Hui Yang f, Xiao-Ping Long a, Jie Li a

a State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
b University of Chinese Academy of Sciences, Beijing 10069, China
c CAS Center for Excellence in Tibetan Plateau Earth Sciences, China
d School of Geosciences, The University of Sydney, NSW 2006, Australia
e School of Earth Science, Guilin University of Technology, Guilin 541004, China
f Institute of Geology and Geophysics, Chinese Academy of Science, Beijing 100029, China
⁎ Corresponding author at: Key Laboratory of
Geochemistry, Guangzhou Institute of Geochemistry,
Guangzhou 510640, China.

E-mail address: wqiang@gig.ac.cn (Q. Wang).

http://dx.doi.org/10.1016/j.lithos.2015.09.015
0024-4937/© 2015 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 8 April 2015
Accepted 16 September 2015
Available online 28 September 2015

Keywords:
Crustal growth
Underplating
Adakites
Late Mesozoic
Qiangtang
Tibet
Phanerozoic growth of continental crust has widely been considered as an important geological phenomenon
and mainly occurs in an arc setting. However, the crustal growth models (mantle-derived basalt underplating
or accretion of island or intra-oceanic arc complexes or oceanic plateau) have been disputed. Here we present
new zircon LA–ICPMS U–Pb age, whole-rock major and trace element, Sr–Nd and zircon Hf isotopic data for
Late Mesozoic intermediate–felsic intrusive rocks in the Rena Co area in southern Qiangtang, central Tibet. LA–
ICP–MSzirconU–Pbdating for two granodiorite and three diorite samples and one granodiorite porphyry sample
gives ages of ca. 150 Ma, ca. 112 Ma, respectively, indicating they were generated in the Late Jurassic–Early Cre-
taceous. All rocks are sub-alkaline in composition and belong to the high-K cal-alkaline series. The ~150 Ma dio-
rites (SiO2 = 57.9–61.2 wt.%) exhibit relatively highMgO (3.13–3.88wt.%) and Cr (52.4–282 ppm) contents and
Mg# (47–51) values, similar tomagnesian diorites. They are geochemically characterized by uniformly low εNd(t)
(−5.5 to −5.2), high (87Sr/86Sr)i (0.7071 to 0.7078) and Th/La (0.22–0.32), and variable zircon εHf(t) (−8.7 to
+4.8) values. They were probably generated by melting of oceanic sediment diapirs, followed by interaction
with the surrounding mantle during the northward subduction of Bangong–Nujiang Oceanic lithosphere. The
~150 Ma granodiorites and ~112 Ma granodiorite porphyries are characterized by low MgO (b3 wt.%) contents
andMg# (b45) values, high Al2O3 (N15%wt.%) and Sr (N400 ppm) and lowY (b18 ppm) and Yb (b1.9 ppm) con-
tents, and high Sr/Y and La/Yb ratios, which are similar to those of typical adakites. The granodiorites have low
εNd(t) (−7.6 to −3.7) and zircon εHf(t) (−9.8 to +0.2) and high (87Sr/86Sr)i (0.7069 to 0.7086) values, and
were likely produced by partial melting of a thickened and heterogeneous ancient lower continental crust. The
relatively depleted isotope compositions [(87Sr/86Sr)i = 0.7054–0.7065; εNd(t) = −0.61 to +0.25; zircon
εHf(t)=+4.7 to+9.7] of the granodiorite porphyries indicate that theyweremost probably generated bypartial
melting of newly underplated and thickened basaltic lower crust. Taking into account ophiolites in the Bangong–
Nujiang Suture and LateMesozoicmagmatic rocks in the southern Qiangtang sub-block, we suggest that this area
was located in a continental arc setting. Moreover, from the Late Jurassic to Early Cretaceous, the ancient lower
crust in the southern Qiangtang sub-block was gradually replaced by mantle-derived juvenile materials. The
crustal evolution indicates that, in a continental arc, basaltic magma underplating plays a key role in vertical
crustal growth.

© 2015 Elsevier B.V. All rights reserved.
Isotope Geochronology and
Chinese Academy of Sciences,
1. Introduction

One of the Earth's unique features when compared with other
planets in our Solar System is the presence of the continental crust
(Rudnick, 1995). However, the growth and evolution of the continental
crust remains the topic of considerable debate (e.g., Hawkesworth and
Kemp, 2006; Jahn, 2004). It is widely accepted that the formation of
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the continental crust was essentially complete in the Precambrian
(Condie, 1998; Taylor and McLennan, 1995). However, in recent de-
cades, this idea was challenged by isotope investigations in western
North America (Sierra Nevada, Peninsular Range, and Canadian
Cordillera) (Lee et al., 2007; Samson et al., 1989), South America
(Andean) (Mišković and Schaltegger, 2009), eastern Australia (Lachlan
and New England Fold belts) (Collins, 1998; McCulloch and Chappell,
1982), the central Asian Orogenic Belt (also known as the Altaid
Tectonic Collage) (e.g., Jahn, 2004; Kröner et al., 2014; Sengör et al.,
1993) and south Tibet (Gangdese belt) (e.g., Chu et al., 2006; Ji et al.,
2009; Ma et al., 2013a; Mo et al., 2008; Zhang et al., 2014c; Zhu et al.,
2011), which revealed that a substantial proportion of Phanerozoic
crust is juvenile. Phanerozoic continental crustal growth primarily oc-
curs in subduction zones by lateral accretion of island or intra-oceanic
arc complexes and oceanic plateaus or by vertical addition by under-
plating of basaltic magmas in the crust–mantle interface (Chen and
Arakawa, 2005; Jahn, 2004; Rudnick, 1995).

Numerous studies in southern Tibet indicate that Jurassic–Early
Eocene Gangdese granitoids with high and positive εNd(t) have
important implications for Gangdese crustal growth (e.g., Chu et al.,
2006; Ji et al., 2009; Ma et al., 2013a; Zhang et al., 2014c). Geochemical
investigations of Early Cretaceous igneous rocks along an east–
west traverse in central and northern Lhasa sub-block reveal basalt
underplating-related vertical crustal growth, plausibly triggered by
break-off in a continent–continent collision setting in central Tibet
(e.g., Sui et al., 2013; Zhu et al., 2009, 2011). Recently, however,
Zhang et al. (2014a) reported the occurrence of a Meso-Tethyan
oceanicplateau in the Bangong–Nujiang Ocean, in the Late Mesozoic
(193–173 Ma and 128–104 Ma), indicating lateral crustal growth by
accretion of oceanic plateau. Therefore, we suggest that the mecha-
nism and tectonic setting for Late Mesozoic crustal growth in central
Tibet remains unclear.

Granitoids are the main components of continental crust. Much
work has been done on their Sr–Nd isotopic compositions to better un-
derstand their genesis and thus the origin and evolution of the conti-
nental crust (e.g., Jahn, 2004). Phanerozoic granitoids that originated
from juvenile crust have rather different initial Sr–Nd isotopic composi-
tions compared to those derived from ancient crust because juvenile
crust (middle oceanic ridge basalt (MORB), oceanic island basalt
(OIB), and newly underplated basalts) have positive εNd(t) and low
(87Sr/86Sr)i, while old continental crustal rocks generally have negative
εNd(t) and high (87Sr/86Sr)i (e.g., Chen and Arakawa, 2005). Recently,
Hf isotope analyses on zircons have beenwidely used to trace the source
regions of their host magmas. Due to the mineral's physiochemical re-
sistance, the isotopic data can readily distinguish the involvement
of newly derived mantle melts from the remelting of old mature
crust (Griffin et al., 2002; Kemp et al., 2007; Yang et al., 2007; Zhu
et al., 2011).

Mesozoic intermediate–felsic intrusive rocks are widely distributed
in the southern Qiangtang, central Tibet (e.g., Kapp et al., 2005; Li
et al., 2014a). In this study, we report zircon LA–ICPMS U–Pb age,
whole-rock major and trace element, Sr–Nd and zircon Hf isotopic
data for Late Jurassic granodiorites and diorites and Early Cretaceous
granodiorite porphyries in the Rena Co area, north of Gerze County in
southern Qiangtang. We systematically investigate their petrogenesis
and tectonic setting and trace the temporal variations of their
source regions, with important implications for crustal growth in cen-
tral Tibet.

2. Geological setting and petrographical characteristics

The Tibetan plateau consists of five blocks (from north to south:
Qaidam, Songpan–Ganze–Hoh Xil, Qiangtang, Lhasa, and Himalaya),
mainly separated by four sutures (Anyimaqin–Kunlun–Muztagh, Jinsha,
Bangong–Nujiang and Indus–Yalu Sutures, respectively. Fig. 1a) (Chung
et al., 2005; Yin and Harrison, 2000). The Qiangtang block is located in
central Tibet, and is bounded by the Jinsha Suture (JS) to the north
and the Bangong–Nujiang Suture (BNS) to the south (Yin and
Harrison, 2000). It is divided into southern and northern Qiangtang
sub-blocks by Longmu–Shuanghu suture (Li et al., 2006; Pan et al.,
2004).

The Bangong–Nujiang Suture Zone (BNSZ), which extends over
2000 km across central Tibet, is characterized by mainly Jurassic–
Cretaceous flysch, mélange and scattered ophiolitic fragments
representing remnants of the Bangong–Nujiang ocean basin (Kapp
et al., 2003; Pan et al., 2004). The main strata exposed in southern
Qiangtang sub-block consist of Carboniferous and Permian interbedded
sandstone and shale, Triassic limestone, and Jurassic sandstone (Pan et
al., 2004) (Fig. 1c). LateMesozoicmagmatic rocks arewidely distributed
in the southern Qiangtang from the Rotug to Amdo area (Fig. 1b). These
rocks are dominated by intermediate–felsic magmatic rocks and cur-
rently available geochronological data (e.g., Chang et al., 2011; Guynn
et al., 2006; Kapp et al., 2005; Li et al., 2011, 2013, 2014a,b; Liu et al.,
2012, 2014; Zhang et al., 2012a) indicate that they were emplaced be-
tween 183 and 101 Ma.

The Rena Co (lake) area, approximately 40 km north of Gerze Coun-
ty, is located in the southern Qiangtang sub-block (Fig. 1b) and includes
five unnamed intermediate-felsic plutons. As numbered in Fig. 2,
plutons ① and ②, ③ and ④, and ⑤ consist of granodiorites, diorites
and granodiorite porphyries, respectively.

Granodiorites contain amphibole (5–10 vol.%), biotite (10–15
vol.%), plagioclase (60–65 vol.%), and quartz (10–15 vol.%) with ac-
cessory zircon, apatite and Fe–Ti oxides (Fig. 2a–d). Diorites contain
amphibole (10–15 vol.%), biotite (20–25 vol.%), plagioclase (55–60
vol.%), and quartz (~5 vol.%) with accessory zircon, apatite, titanite,
and Fe–Ti oxides (Fig. 2e–h). Granodiorite porphyries are typically
porphyritic, with 40–50 vol.% phenocrysts of plagioclase, biotite
and quartz and matrix composed mainly of K-feldspar and quartz
(Fig. 2i–j).
3. Analytical methods

The samples used for geochemical analyses were powdered to
~200-mesh size in an agate mortar. Major element oxides were ana-
lyzed on fused glass beads using a Rigaku RIX 2000 X-ray fluorescence
spectrometer at the State Key Laboratory of Isotope Geochemistry,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
(SKLaBIG, GIGCAS). Calibration lines used in quantification were pro-
duced by bivariate regression of data from 36 reference materials
encompassing awide range of silicate compositions (Li et al., 2004). An-
alytical uncertainties are between 1% and 5%. Trace elements were ana-
lyzed using an Agilent 7500a ICP–MS at GIGCAS. Analytical procedures
were similar to those described by Li et al. (2004). A set of USGS and
Chinese national rock standards, including BHVO-2, GSR-1, GSR-2,
GSR-3, AGV-2, W-2 and SARM-4were chosen for calibration. Analytical
precision typically is better than 5%. The major and trace element data
are listed in Table 1.

Sr and Nd isotope analyses were performed using a Micromass
Isoprobe multi-collector mass spectrometer (MC–ICPMS) at SKLaBIG,
GIGCAS. Analytical procedures are described by Li et al. (2004). The
87Sr/86Sr ratio of the NBS987 standard and 143Nd/144Nd ratio of the
Shin Etsu JNdi-1 standard measured were 0.710251 ± 6 (n = 19, 2σ)
and 0.512087 ± 3 (n = 11, 2σ), respectively. All measured
143Nd/144Nd and 86Sr/88Sr ratios are fractionation corrected to
146Nd/144Nd = 0.7219 and 86Sr/88Sr = 0.1194, respectively. The
Sr–Nd isotope data are presented in Table 1.

Zircon crystals were separated from six rock samples using standard
density and magnetic separation techniques. Zircon grains were
handpicked and mounted in an epoxy resin disk, and then polished
and coated with gold. Cathodoluminescence (CL) images were taken
at SKLaBIG, GIGCAS with a JEOL JXA-8100 Superprobe for inspecting



Fig. 1. (a) Tectonic framework of the Tibetan Plateau (modified from diagrams of Chung et al. (2005) and Yin and Harrison (2000)). Main suture zones between major blocks: AKMS,
Ayimaqen–Kunlun–Mutztagh suture; JS, Jinsha suture; BNS, Bangong–Nujiang suture; and IYS, Indus–Yalu suture. (b) Map of the central Tibetan Plateau showing the distribution of
LateMesozoic igneous rocks in southernQiangtang and central andnorthern Lhasa sub-blocks. LMF, Luobadui–MilanshanFault. (c) Simplifiedgeologicmap showing outcrops ofmagmatic
rocks in the Rena Co area, southern Qiangtang, central Tibet. Literature age data are from Kapp et al. (2005) and Chang et al. (2011).
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internal morphology of individual zircons and for selecting positions for
U–Pb age and Lu–Hf isotope analyses.

Zircon U–Pb dating was conducted at the MC–ICPMS laboratory of
the Institute of Geology and Geophysics, Chinese Academy of Sciences
(IGGCAS) in Beijing, China. Detailed operating conditions for the laser
ablation system and the ICP–MS instrument and data reduction were
the same as those described in Xie et al. (2008). An Agilent 7500a
quadruple (Q)–ICPMS and a Neptune multi-collector (MC)–ICPMS
with a 193 nm excimer ArF laser-ablation system (GeoLas Plus) at-
tached were used for simultaneous determination of zircon U–Pb
ages. Uncertainties on individual analyses in the data tables are re-
ported at a 1σ level. Mean ages for pooled U/Pb and Pb/Pb analyses
are quoted with 2σ and/or 95% confidence intervals. 207Pb/206Pb
and 206Pb/238U ratios were calculated using the ICPMSDataCal soft-
ware (Liu et al., 2009), using the zircon standard 91500 as an external
standard. Common Pb was corrected according to the method pro-
posed by Andersen (2002). The weighted mean U–Pb ages and
concordia plots were processed using the Isoplot/Ex v.3.0 program
(Ludwig, 2003). LA–ICP–MS zircon U–Pb isotopic data are presented
in the Supplementary Data.

In situ Hf isotope measurements were subsequently undertaken
using LA–ICPMS with a beam size of 60 μm and laser pulse frequency
of 8 Hz at the MC–ICPMS laboratory of IGGCAS. Lu–Hf isotopic analyses
were conducted on the same zircons that were previously analyzed for
U–Pb isotopes. Details of instrumental conditions and data acquisition
were given in Wu et al. (2006). Our determined 176Hf/177Hf ratios for
zircon standards MUD (0.282504 ± 0.000002) and GJ-1 (0.282018 ±
0.000004) were in good agreement within errors with the reported
values (e.g., Wu et al., 2006). Zircon Hf isotopic data are listed in the
Supplementary Data.
4. Results

4.1. Zircon U–Pb dating results

Zircons from six samples including three diorite samples, two
granodiorite samples and one granodiorite porphyry sample are
mostly euhedral to subhedral, with lengths of 80–250 μm, and length
to width ratios of 1:1 to 4:1 (Fig. 3). Most grains show oscillatory
zoning (Fig. 3), which is characteristic of igneous zircons
(Belousova et al., 2002). Zircon U–Pb age data for six samples are
shown in Fig. 3.

Eighteen and twenty-one zircon U–Pb analyses for diorite samples
13GZ09-1 and 13GZ11-1 yield weighted mean 206Pb/238U ages of
153.0 ± 1.9 Ma, 152.7 ± 1.4 Ma, respectively (Fig. 3a–b). Nine ana-
lyses for one diorite sample 13GZ15-1 are concordant and give a
weighted mean 206Pb/238U age of 148.4 ± 2.5 Ma and the remaining
five analyses produce slightly younger and discordant ages (Fig. 3c)
due to significant radiogenic Pb loss probably caused by the later
tectono-thermal events. Nineteen analyses for a granodiorite sample
13GZ03 yield a weighted mean 206Pb/238U age of 151.7 ± 1.3 Ma
(Fig. 3d). In Fig. 3e, three zircons of the granodiorite sample 13GZ25
exhibit variable 207Pb/235U ages so that they deviate from the concordia
curve (Fig. 3e). This is most likely due to inaccurate radiogenic 207Pb
measurements because of its low concentration in these zircons (e.g.,
Ma et al., 2013a). However, their 206Pb/238U ages are nearly concordant
with a weighted mean age of 148.1 ± 1.5 Ma that could represent
the emplacement age. Twenty-one analyses of one granodiorite
porphyry sample (13GZ20-1) yield a weighted mean 206Pb/238U age of
111.7 ± 0.9 Ma (Fig. 3f), apart from one spot that shows an inherited
age of 145 Ma.



Fig. 2. Field photos (left) and corresponding thin section photomicrographs (right) of the Rena Co intrusive rocks. (a–b) the granodiorite from the pluton①. (c–d) the granodiorite from
the pluton②. (e–f) the diorite from the pluton③. (g–h) the diorite from the pluton④. (i–j) the granodiorite porphyry from the pluton⑤. Abbreviations: Pl = plagioclase. Amp= am-
phibole, Kfs = K-feldspar, Bi = biotite, and Qt = quartz.
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In summary, (1) the granodiorites and diorites were generated
in the Late Jurassic (ca. 150 Ma), with ages similar to those
obtained for (~145–160 Ma) intrusive rocks near the Rena Co
area by the single zircon U–Pb ion microprobe and 40Ar–39Ar
dating (Kapp et al., 2005); (2) the granodiorite porphyries were
formed in the late Early Cretaceous (ca. 112 Ma), similar to
volcanic rocks in the Rena Co area (Chang et al., 2011; Kapp et al.,
2005).
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4.2. Major and trace elements

The studied samples include diorites, granodiorites and granodiorite
porphyries (Fig. 4a), all of which plot within the high-K cal-alkine field
on the diagram of K2O versus SiO2 (Fig. 4b).

The Rena Co diorites have SiO2 ranging from 57.9 to 61.2 wt.%
(volatile-free) and low FeO/MgO ratios (Fig. 4f). They exhibit high
Table 1
Major, trace elemental and Sr–Nd isotopic compositions for the Rena Co plutons.

Sample 13GZ02 13GZ03 13GZ04 13GZ05

Type Granodiorite

No. ① ① ① ①

GPS 84.084°E 84.084°E 84.084°E 84.083°E

32.889°N 32.889°N 32.889°N 32.889°N

Age (Ma) 151.70

SiO2 64.14 64.35 64.55 66.07
TiO2 0.70 0.68 0.66 0.60
Al2O3 17.12 16.89 16.81 16.42
Fe2O3 T 4.72 4.63 4.92 3.99
MnO 0.08 0.08 0.12 0.07
MgO 1.26 1.21 1.20 1.01
CaO 4.68 4.75 4.73 4.30
Na2O 3.22 3.69 3.22 3.46
K2O 2.90 2.71 2.79 3.02
P2O5 0.21 0.21 0.20 0.17
L.O.I. 0.50 0.32 0.32 0.40
Total 99.51 99.52 99.51 99.51
Mg# 35 34 33 33
A/CNK 1.01 0.96 0.99 0.98
T Zr(°C) 823 826 696 821
Sc 4.44 4.11 4.27 3.57
V 25.2 26.6 23.5 22.9
Cr 190 42.9 43.2 21.4
Co 7.42 6.45 6.93 5.51
Ni 15.4 3.51 4.56 3.11
Cu 19.6 3.78 4.44 3.43
Zn 105 112 115 103
Ga 25.8 26.1 26.5 25.0
Ge 1.87 2.14 2.19 1.84
Cs 4.37 4.98 4.55 3.77
Rb 101 101 97.3 99.5
Ba 751 658 696 676
Th 10.8 13.2 12.5 9.13
U 1.40 1.70 1.21 1.43
Nb 20.7 23.2 22.0 22.7
Ta 1.48 1.68 1.50 1.68
La 37.6 47.4 47.1 33.4
Ce 77.3 97.1 93.9 66.8
Pb 17.7 18.1 17.2 17.9
Pr 8.96 11.6 11.2 8.24
Sr 654 634 640 610
Nd 33.4 43.9 41.9 32.0
Zr 290 323 63 287
Hf 7.33 8.44 1.83 7.50
Sm 6.24 7.83 7.35 6.32
Eu 1.84 2.03 1.96 1.78
Gd 4.77 5.60 5.22 4.71
Tb 0.54 0.60 0.54 0.53
Dy 2.32 2.35 2.08 2.11
Y 8.51 7.86 6.80 6.94
Ho 0.35 0.32 0.27 0.28
Er 0.73 0.63 0.52 0.52
Tm 0.09 0.08 0.06 0.06
Yb 0.55 0.46 0.35 0.34
Lu 0.08 0.06 0.05 0.05
87Sr/86Sr 0.708150 0.7082
±2σ 0.000006 0.0000
(87Sr/86Sr)i 0.70717 0.7072
143Nd/144Nd 0.512346 0.5123
±2σ 0.000004 0.0000
εNd(t) −4.0 −3.9
T2DM (Ma) 1274 1267
compatible element concentrations with variable Cr (52.4–282 ppm)
and Ni (11–33 ppm) contents. They are characterized by MgO
contents (3.13 to 3.88 wt.%) and Mg# (47–51) [Mg# = Mg2+ /
(Mg2+ + Fe2+) × 100], that are higher than those of metabasaltic and
eclogite experimental melts (Fig. 4c–d) (Rapp et al., 1999), but
similar to those of magnesian andesites (e.g., Kelemen et al., 2014;
McCarron and Smellie, 1998), such as the Duogecuoren magnesian
13GZ08-1 13GZ08-2 13GZ19 13GZ22-1

① ① ② ②

84.048°E 84.048°E 84.048°E 84.025°E

32.889°N 32.889°N 32.889°N 32.768°N

63.26 63.62 64.78 66.18
0.73 0.72 0.63 0.47

17.29 17.09 16.59 16.26
5.03 5.12 4.67 3.27
0.08 0.11 0.10 0.08
1.31 1.29 1.57 0.91
5.05 4.91 3.77 3.16
3.33 3.23 3.14 3.77
2.75 2.77 3.37 3.26
0.22 0.21 0.14 0.10
0.46 0.45 0.76 2.07

99.51 99.52 99.51 99.54
34 33 40 35
0.98 0.99 1.06 1.05

816 824 776 810
4.86 4.80 8.93 3.91

28.2 24.4 48.4 17.5
232 68.8 244 71.1

7.91 7.19 9.01 4.83
18.5 4.27 24.7 4.14
23.2 4.20 28.9 3.61

108 113 75.2 91.6
25.9 26.2 20.3 24.2
2.05 2.13 1.85 1.45
3.61 3.66 8.92 2.61

100 104 126 107
621 647 923 748
11.9 12.6 7.64 10.3
1.70 1.67 1.26 1.35

20.6 20.6 13.4 16.2
1.48 1.42 0.96 1.01

40.7 47.4 26.1 34.8
84.5 92.1 51.1 63.5
17.0 17.8 21.3 20.8
9.75 11.1 5.98 7.00

651 635 613 635
37.1 41.5 22.3 24.4

286 305 158 227
7.27 7.77 4.39 5.94
6.79 7.40 4.04 3.78
1.92 1.94 1.18 1.07
5.05 5.41 3.13 2.71
0.57 0.58 0.41 0.28
2.43 2.36 2.06 1.17
8.81 7.98 9.23 4.63
0.36 0.33 0.38 0.19
0.78 0.66 0.94 0.43
0.10 0.08 0.14 0.06
0.57 0.48 0.82 0.36
0.08 0.07 0.13 0.05

11 0.708021 0.707960 0.707983
07 0.000009 0.000007 0.000008
0 0.70701 0.70669 0.70694
62 0.512363 0.512340 0.512315
04 0.000005 0.000004 0.000005

−3.7 −4.2 −4.3
1247 1287 1302

(continued on next page)



Sample 13GZ23 13GZ24-1 13GZ24-2 13GZ25 13GZ09-1 13GZ09-2 13GZ10-1 13GZ10-2

Type Granodiorite Diorite

No. ② ② ② ② ③ ③ ③ ③

GPS 84.023°E 84.022°E 84.022°E 84.021°E 84.204°E 84.204°E 84.204°E 84.204°E

32.768°N 32.768°N 32.768°N 32.769°N 32.79°N 32.79°N 32.784°N 32.784°N

Age (Ma) 148.10 153.00

SiO2 63.53 65.74 65.94 64.95 60.14 59.90 60.18 60.43
TiO2 0.62 0.49 0.49 0.60 0.81 0.82 0.87 0.86
Al2O3 17.15 16.41 16.05 16.73 16.54 16.60 16.48 16.50
Fe2O3 T 4.43 3.30 3.45 4.39 7.08 7.03 6.90 6.79
MnO 0.08 0.06 0.10 0.09 0.21 0.18 0.16 0.15
MgO 1.60 0.93 0.90 1.60 3.10 3.20 3.12 3.09
CaO 4.24 3.27 2.97 4.00 5.26 5.28 5.13 5.45
Na2O 3.51 3.91 3.79 3.22 2.74 2.69 2.44 2.48
K2O 2.91 3.17 3.52 3.03 2.66 2.75 2.78 2.73
P2O5 0.13 0.10 0.11 0.13 0.18 0.18 0.20 0.19
L.O.I. 1.33 2.14 2.23 0.91 0.79 0.87 1.25 0.82
Total 99.52 99.52 99.54 99.64 99.52 99.51 99.51 99.50
Mg# 42 36 34 42 46 47 47 47
A/CNK 1.03 1.04 1.04 1.06 0.98 0.98 1.01 0.97
T Zr(°C) 786 816 808 796 762 770 780 776
Sc 7.11 3.83 3.80 6.53 16.7 17.4 17.6 18.5
V 32.0 20.0 18.3 35.8 111 117 106 104
Cr 43.4 247 42.4 38.8 101 72.2 282 198
Co 7.80 6.08 4.44 7.90 14.2 14.3 14.0 13.7
Ni 5.68 19.5 6.03 6.72 15.6 15.2 27.9 24.7
Cu 4.35 23.8 4.61 6.25 6.98 7.65 27.0 23.7
Zn 87.4 92.9 68.7 83.1 87.8 90.3 84.7 86.7
Ga 22.8 24.9 23.2 22.4 20.1 20.5 19.5 19.4
Ge 1.51 1.44 1.50 1.60 2.47 2.47 2.49 2.42
Cs 4.47 2.96 2.13 5.43 7.40 7.45 6.58 6.30
Rb 104 106 121 113 107 110 103 102
Ba 683 737 755 671 615 638 624 568
Th 8.79 10.9 10.7 10.4 7.37 7.70 11.1 7.42
U 1.36 1.47 1.45 1.54 0.65 0.68 1.19 1.08
Nb 12.1 16.8 15.9 11.5 13.8 14.2 12.5 12.5
Ta 0.82 1.05 1.00 0.76 1.05 1.06 0.96 0.98
La 25.9 36.0 35.0 30.8 24.0 24.0 38.0 25.6
Ce 49.2 64.9 64.0 58.8 50.0 48.1 74.1 54.3
Pb 19.8 20.4 19.5 22.4 17.5 18.0 15.9 16.0
Pr 5.74 7.26 7.13 6.68 5.94 6.01 8.93 6.63
Sr 534 656 615 475 460 459 456 422
Nd 21.1 25.1 24.8 23.8 23.2 23.9 33.4 26.3
Zr 189 250 227 201 166 183 194 194
Hf 5.00 6.63 5.93 5.61 4.42 4.79 5.26 5.19
Sm 3.87 3.94 3.89 4.09 4.77 4.90 6.07 5.27
Eu 1.09 1.12 1.07 1.09 1.33 1.34 1.56 1.56
Gd 3.14 2.77 2.77 3.25 4.25 4.35 5.10 4.65
Tb 0.40 0.28 0.28 0.40 0.63 0.65 0.72 0.69
Dy 1.99 1.21 1.19 2.02 3.49 3.64 3.97 3.94
Y 8.27 4.84 4.73 9.39 16.8 17.4 18.8 19.0
Ho 0.35 0.19 0.19 0.35 0.69 0.73 0.78 0.79
Er 0.82 0.45 0.44 0.85 1.84 1.90 2.06 2.12
Tm 0.12 0.06 0.06 0.12 0.28 0.28 0.31 0.32
Yb 0.70 0.38 0.37 0.73 1.74 1.81 1.96 2.02
Lu 0.10 0.06 0.05 0.11 0.27 0.28 0.30 0.31
87Sr/86Sr 0.709809 0.710030 0.708556 0.708577 0.708924
±2σ 0.000007 0.000005 0.000007 0.000008 0.000007
(87Sr/86Sr)i 0.70861 0.70856 0.70712 0.70710 0.70743
143Nd/144Nd 0.512163 0.512158 0.512285 0.512300 0.512289
±2σ 0.000004 0.000003 0.000004 0.000005 0.000005
εNd(t) −7.6 −7.6 −5.5 −5.2 −5.4
T2DM (Ma) 1571 1568 1397 1373 1386

Sample 13GZ11-1 13GZ11-2 13GZ13-1 13GZ13-2 13GZ15-1 13GZ15-2 13GZ20-1 13GZ20-2

Type Diorite Granodiorite porphyry

No. ③ ③ ④ ④ ④ ④ ⑤ ⑤

GPS 84.199°E 84.199°E 84.234°E 84.234°E 84.234°E 84.234°E 84.173°E 84.173°E

32.777°N 32.777°N 32.714°N 32.714°N 32.708°N 32.708°N 32.723°N 32.723°N

Age (Ma) 152.70 148.4 ± 2.5 111.72

SiO2 56.91 57.13 59.20 59.41 58.38 58.30 67.09 68.24
TiO2 0.98 1.01 0.91 0.88 0.87 0.85 0.45 0.44

Table 1(continued)
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Table 1 (continued)

Sample 13GZ11-1 13GZ11-2 13GZ13-1 13GZ13-2 13GZ15-1 13GZ15-2 13GZ20-1 13GZ20-2

Type Diorite Granodiorite porphyry

No. ③ ③ ④ ④ ④ ④ ⑤ ⑤

GPS 84.199°E 84.199°E 84.234°E 84.234°E 84.234°E 84.234°E 84.173°E 84.173°E

32.777°N 32.777°N 32.714°N 32.714°N 32.708°N 32.708°N 32.723°N 32.723°N

Age (Ma) 152.70 148.4 ± 2.5 111.72

Al2O3 17.16 17.06 16.76 16.61 16.49 16.67 15.31 15.32
Fe2O3 T 7.89 7.87 7.38 7.12 7.43 7.64 3.81 3.68
MnO 0.18 0.18 0.15 0.15 0.18 0.18 0.08 0.07
MgO 3.54 3.50 3.39 3.66 3.81 3.77 0.34 0.49
CaO 6.08 6.22 5.49 5.39 5.61 5.54 2.11 1.70
Na2O 2.74 2.62 2.52 2.50 2.40 2.51 5.47 4.85
K2O 2.49 2.46 2.63 2.78 2.92 2.90 3.03 2.90
P2O5 0.24 0.25 0.21 0.18 0.22 0.20 0.14 0.14
L.O.I. 1.30 1.21 0.87 0.83 1.19 0.95 1.68 1.67
Total 99.52 99.51 99.51 99.50 99.51 99.50 99.51 99.52
Mg# 47 47 48 50 50 49 15 21
A/CNK 0.94 0.93 0.99 0.98 0.95 0.96 0.95 1.08
T Zr(°C) 754 759 768 766 766 762 751 766
Sc 21.1 21.4 19.0 19.4 20.8 21.4 6.81 6.80
V 128 127 125 119 141 144 64.1 51.1
Cr 90.9 52.4 202 67.6 102 117 263 209
Co 14.9 14.5 16.7 17.0 18.3 17.9 7.07 6.90
Ni 13.5 11.2 32.7 20.3 22.6 21.0 41.4 24.1
Cu 5.95 8.22 21.8 7.45 15.8 15.7 39.4 33.0
Zn 103 102 88.2 89.1 91.4 90.1 37.3 39.4
Ga 20.6 20.5 20.6 20.3 20.7 20.4 11.2 12.0
Ge 2.75 2.73 2.51 2.61 2.75 2.64 1.39 1.45
Cs 5.44 4.77 8.74 5.70 5.65 5.68 3.33 4.23
Rb 90.6 89.5 105 107 114 108 76.1 85.3
Ba 564 553 624 655 691 641 980 917
Th 6.54 6.57 8.69 8.13 12.0 9.66 8.65 8.57
U 1.22 1.10 1.08 0.98 1.51 1.13 1.72 1.85
Nb 12.8 13.2 14.3 13.9 16.0 16.3 6.81 6.91
Ta 0.92 0.91 1.03 0.99 1.18 1.17 0.58 0.59
La 29.9 29.7 33.3 29.7 39.7 33.1 21.5 21.8
Ce 62.0 64.2 65.8 57.9 75.2 63.3 39.0 41.0
Pb 13.5 13.2 14.6 15.1 16.3 13.7 15.4 16.0
Pr 8.13 8.13 7.79 7.22 8.94 7.59 4.52 4.57
Sr 497 443 467 474 459 428 438 472
Nd 32.5 32.7 29.9 27.7 33.7 28.8 16.0 16.3
Zr 172 183 178 176 189 177 131 130
Hf 4.57 4.77 4.53 4.54 4.97 4.64 3.40 3.43
Sm 6.47 6.65 5.77 5.44 6.29 5.49 2.74 2.82
Eu 1.67 1.69 1.48 1.48 1.53 1.40 0.73 0.75
Gd 5.64 5.89 5.03 4.81 5.47 4.86 2.33 2.42
Tb 0.83 0.87 0.75 0.70 0.79 0.71 0.33 0.33
Dy 4.67 4.87 4.16 3.99 4.50 4.08 1.85 1.87
Y 21.8 23.7 20.0 19.3 21.6 19.9 8.62 8.61
Ho 0.92 0.97 0.82 0.80 0.91 0.82 0.36 0.38
Er 2.41 2.52 2.17 2.13 2.42 2.22 0.97 1.01
Tm 0.35 0.37 0.32 0.31 0.36 0.33 0.15 0.15
Yb 2.20 2.33 2.02 1.99 2.27 2.10 0.96 1.00
Lu 0.34 0.35 0.31 0.30 0.35 0.32 0.15 0.16
87Sr/86Sr 0.708883 0.708761 0.708678 0.707265 0.707359
±2σ 0.000008 0.000008 0.000006 0.000008 0.000008
(87Sr/86Sr)i 0.70776 0.70738 0.70714 0.70646 0.70653
143Nd/144Nd 0.512296 0.512288 0.512279 0.512577 0.512583
±2σ 0.000004 0.000004 0.000004 0.000004 0.000004
εNd(t) −5.2 −5.3 −5.4 0.1 0.2
T2DM (Ma) 1374 1383 1389 904 895

Sample 13GZ21-1 13GZ21-2

Type Granodiorite porphyry

No. ⑤ ⑤

GPS 84.173°E 84.173°E

32.724°N 32.724°N
Age (Ma)

SiO2 65.33 66.04
TiO2 0.56 0.58
Al2O3 14.86 15.13

(continued on next page)
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Table 1 (continued)

Sample 13GZ21-1 13GZ21-2

Type Granodiorite porphyry

No. ⑤ ⑤

GPS 84.173°E 84.173°E

32.724°N 32.724°N
Age (Ma)

Fe2O3 T 4.79 4.56
MnO 0.08 0.07
MgO 0.58 0.91
CaO 3.76 3.38
Na2O 4.20 4.00
K2O 2.77 2.96
P2O5 0.20 0.16
L.O.I. 2.39 1.74
Total 99.53 99.52
Mg# 19 28
A/CNK 0.89 0.95
T Zr(°C) 730 743
Sc 10.1 10.1
V 114 106
Cr 331 310
Co 10.9 9.99
Ni 45.5 41.3
Cu 68.1 61.9
Zn 45.0 45.9
Ga 14.1 14.7
Ge 1.71 1.64
Cs 6.05 6.22
Rb 91.4 104.5
Ba 1029 964
Th 7.73 7.96
U 1.77 2.07
Nb 5.95 6.39
Ta 0.44 0.47
La 24.0 24.1
Ce 44.9 43.8
Pb 11.8 12.4
Pr 5.12 5.02
Sr 484 502
Nd 18.6 18.1
Zr 112 118
Hf 2.94 3.11
Sm 3.14 3.01
Eu 0.81 0.78
Gd 2.57 2.42
Tb 0.33 0.32
Dy 1.82 1.75
Y 8.46 8.23
Ho 0.35 0.35
Er 0.93 0.92
Tm 0.14 0.14
Yb 0.87 0.87
Lu 0.13 0.13
87Sr/86Sr 0.706252
±2σ 0.000007
(87Sr/86Sr)i 0.70538
143Nd/144Nd 0.512537
±2σ 0.000004
εNd(t) −0.6
T2DM (Ma) 966

Corrected formula as follows (Chu et al., 2006):
87Sr/86Sr(i) = 87Sr/86Sr− (87Rb/86Sr)* (eλT − 1)
87Rb/86Sr = (Rb/Sr) ∗ 2.8956
λ (Rb–Sr) = 0.0142 Ga−1;
εNd(T) = [(143Nd/144Nd)Sample(T)/(143Nd/144Nd)CHUR(T)− 1] ∗ 104

λ(Sm–Nd) = 0.00654 Ga−1

(143Nd/144Nd)Sample (T) = (143Nd/144Nd)Sample − (147Sm/144Nd)Sample ∗ (e λT − 1)
147Sm/144Nd = (Sm/Nd) ∗ 0.60456
(143Nd/144Nd)CHUR (T) = 0.512638–0.1967 ∗ (e λT − 1)
T2DM(Nd) = 1/λ ∗ ln{1 + [((143Nd/144Nd)Sample − [(147Sm/144Nd)Sample − 0.118] ∗ (eλT−1)−0.513151)/(0.118–0.2136)]}.
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Fig. 3. LA–ICP–MS zircon U–Pb concordia diagrams with CL images for the Rena Co intrusive rocks. (a–c): diorites, (d–e): granodiorites, and (f) granodiorite porphyry.
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andesites in central Qiangtang (Wang et al., 2008a). Li et al. (2014b) also
reported Late Jurassic dioritic rocks from the Larelaxin and Caima plu-
tons in the southern Qiangtang sub-block with similar magnesian an-
desite compositions. Therefore, we suggest the Rena Co diorites
belong to a regional magnesian diorite suite. It should be noted, howev-
er, that these magnesian andesites/diorites are slightly different from
typical high-Mg andesites/diorites (e.g., sanukites, Piip-type high-Mg
andesites and boninites) in that they have slightly lowerMgO contents.
The Rena Co magnesian diorites are dominantly metaluminous as indi-
cated by the uniform aluminum saturation index [A/CNK = Al2O3/
(CaO + Na2O + K2O)] (0.93–0.99) with the exception of one sample
(1.01) (Fig. 4e). They show light rare earth element (LREE)-enriched
distribution patterns with (La/Yb)N = 9.1–13.9 and slightly negative
Eu anomalies (Eu/Eu* = 0.79–0.97) (Fig. 6a). On the trace element spi-
der diagram (Fig. 6b), they exhibit a strong enrichment in large ion lith-
osphere elements (e.g., Cs, Rb, Th, U, K and Pb), a distinct depletion in
high field strength elements (e.g., Nb, Ta, Ti, P) and negative Ba anoma-
lies, consistent with typical characteristics of arc-type magmas
worldwide.

In the Rena Co area, the granodiorite porphyries (SiO2 = 67.2–
69.7 wt.%) are slightly higher in silica than the granodiorites
(SiO2 = 63.8–67.9 wt.%). Both the granodiorites and granodiorite



Fig. 4. (a) TAS classification diagram (Middlemost, 1994). (b) K2O versus SiO2 diagram. (c): Mg# versus SiO2. (d): MgO versus SiO2. Data for metabasaltic and eclogite experimentalmelts
(1–4.0 Ga) are fromRapp et al. (1999) and references therein. The fields of subducted oceanic crust-, delaminated lower crust-, and thickened lower crust-derived adakites are afterWang
et al. (2006a,b). Bold solid and dotted lines are two boundaries betweenmagnesian and normal diorites defined by Deng et al. (2009) andMcCarron and Smellie (1998), respectively. (e)
A/NK versus A/CNK. (f) SiO2 versus FeOT/MgO (Miyashiro, 1974).
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porphyries are metaluminous to peraluminous with A/CNK values of
0.96–1.08 and 0.89–1.08 (Fig. 4e), sodium-rich with the ratios of
Na2O/K2O of 0.93–1.36 and 1.35–1.80, respectively (Fig. 5a). They are
geochemically characterized by high Al2O3 (15.3–17.5 wt.%) (Fig. 5b),
low MgO (0.35–1.63 wt.%) and Mg# (15–42) values (Fig. 4c–d). The
granodiorites show subparallel patterns with distinctly enriched
light REEs (LREEs) ([La/Yb]N = 23–96) and negligible Eu anomalies
(Eu/Eu* = 0.92–1.03) on the chondrite-normalized rare earth element
diagrams (Fig. 6a), and a strong enrichment in large ion lithosphere
elements (e.g., Cs, Rb, Th, U, K, Pb) and a distinct depletion in high
field strength elements (e.g., Nb, Ta, Ti, P and heavy REEs) on the ex-
tended trace element diagrams (Fig. 6b). The granodiorite porphyries
also show LREE enrichments ([La/Yb]N = 16–20), slightly negative Eu
anomalies (Eu/Eu* = 0.87–0.89) and enrichment of large ion lithophile
elements (LILEs) and depletion of HFSEs (Fig. 6). Both the granodiorites
and granodiorite porphyries have low Y (4.7–9.4 ppm) and Yb
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(0.34–0.99 ppm) contents, high Sr (438–656 ppm) values, resulting
in high La/Yb (22–133) and Sr/Y (51–137) ratios. All the above geo-
chemical characteristics indicate they have adakitic affinities (Fig. 7a)
as defined by Defant and Drummond (1990).

4.3. Sr–Nd–Hf isotopes

The whole-rock Sr–Nd isotopic data of the Rena Co intrusive rocks
are listed in Table 1. The diorites have slightly variable and high initial
87Sr/86Sr isotopic ratios (0.7071–0.7078) and constant εNd(t) values of
−5.5 to −5.2 corresponding to two-stage Nd model ages (T2DM) of
1373–1397 Ma (Fig. 8). The granodiorite porphyries exhibit low and
highly variable (87Sr/86Sr)i values (0.7054 to 0.7065) but constant
εNd(t) values (−0.61 to +0.25) corresponding to T2DM of 895–966 Ma
(Fig. 8). The granodiorites, show variable and high (87Sr/86Sr)i values
(0.7069 to 0.7086) and low εNd(t) values (−7.6 to −3.7) (Fig. 8).

ZirconHf isotopic data are presented in the SupplementaryData. The
diorite samples (13GZ09-1, 13GZ11-1 and 13GZ15-1) have a wide
range of εHf(t) of −8.6 to +4.9, corresponding to Hf crustal model
ages (TC DM) of 895–1748 Ma (Fig. 9). The granodiorites show a wide
range of εHf(t) values extending from−9.7 to +0.2 with TC DM values
of 1190–1814Ma (Fig. 9). Except for one inherited zircon (145Ma)with
a low εHf(t) value (+1.0), the granodiorite porphyries have a narrow
range of εHf(t) of +4.6 to +9.7 with TC DM values of 550–874 Ma
(Fig. 9).

5. Discussion

5.1. Late Mesozoic magmatism in southern Qiangtang

Our new zircon U–Pb age data, together with currently available
high-quality zircon U–Pb geochronological data (e.g., Chang et al.,
2011; Kapp et al., 2005; Li et al., 2011, 2013, 2014a,b; Liu et al., 2012,
2014; Zhang, 2007; Zhang et al., 2012a), corroborate the presence
of a Middle Jurassic–Early Cretaceous continental arc extending ca.
1100 km along the length of southern Qiangtang sub-block from
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Rotug to Amdo (Fig. 11a). Nevertheless, it should be noted that this
170–102 Ma continental arc is younger than the arc proposed by
Guynn et al. (2006) on the basis of the 185–170 Ma granitoids from
theAmdo area. In fact, theAmdoblock has been interpreted as an isolat-
ed microcontinent in the Tethyan Ocean that experienced complex
tectono-thermal events, such as Jurassic (~190–170 Ma) high-
pressure granulite-facies metamorphism (e.g., Guynn et al., 2013;
Zhang et al., 2012b, 2014b). Therefore, the coeval (Early Jurassic)
magmatism in the Amdo microcontinent may have been related to
deep subduction of this microcontinent beneath southern Qiangtang
in a collisional setting rather than to northward subduction of the
Bangong–Nujiang Ocean (e.g., Guynn et al., 2013; Zhang et al., 2012b,
2014b).

Late Mesozoic magmatism in the region has been widely attributed
to the northward subduction of the Bangong–Nujiang oceanic litho-
sphere (Geng et al., 2011; Li et al., 2013, 2014a,b; Liu et al., 2014).
From ~140 to ~130 Ma, however, there is a noticeable magmatic gap
(Fig. 11a). Similar magmatic lulls occur in the Andes and southern
Gangdese areas in response to flat or low-angel subduction (e.g.,
Coulon et al., 1986;Ma et al., 2013a,b; Zhang et al., 2012a). The renewal
of magmatism following this gap is considered to be the result of slab
roll-back and rapid steepening of the subducting slab (e.g., Ma et al.,
2013a,b). During the transition process from flat- to normal angle sub-
duction, upwelling asthenospheric mantle would induce intense
magmatism. Therefore, we suggest that the slab roll-back process also
accounts for the renewed Early Cretaceous magmatism in southern
Qiangtang after the ~140 to ~130 Ma gap. In southern Qiangtang,
there appears to be a young age trend from north to south, consistent
with the slab roll-back model. It also should be noted that there is a
magmatic flare-up at 118 ± 6 Ma in Early Cretaceous (Fig. 11a).
5.2. Petrogenesis

5.2.1. Relationship between granodiorites and diorites
The Rena Co granodiorites and diorites are contemporaneous, how-

ever, they are unlikely to have originated from a common parent
magma based on the following evidence. First, if the granodiorites
evolved from the diorites by fractional crystallization, then the most
abundant phase in the diorites, plagioclase, should be a common frac-
tionated phase. However, although the Al2O3 contents of both the dio-
rites and granodiorites display decreasing trends with increasing SiO2

contents, the trends do not overlap to form a common trend, which is
inconsistent with a diorite fractionation origin for the granodiorites
(Fig. 5b) (e.g., Chen et al., 2010; Li et al., 2014b). Similarly, if diorites
and granodioriteswere derived froma common source, then the dioritic
magma should have higher Cr and Ni plus lower Cs and Rb than granitic
magma because the latterwould experiencemore fractionation ofmafic
minerals and plagioclase (e.g., Chen et al., 2010; Li et al., 2014b). How-
ever, in our study, they do not display such trends (Fig. 5c–f), indicating
that they were unlikely to have originated from a common parent
magma. In addition, some diorite samples are potassium-rich while
most granodiorites are sodium-rich, empirically suggesting that they
cannot have been derived from the same magma (Fig. 5a). Finally, the
diorites exhibit lower εNd(t) and higher initial 87Sr/86Sr and εHf(t) than
those of most of the granodiorites (Figs. 8, 9), which is inconsistent
with AFC (assimilation and fractional crystallization) or magmamixing
models. Therefore, the diorites and granodiorites could not have a com-
mon source.

5.2.2. Granodiorites
Several models have been proposed for the generation of adakitic

rocks such as the Rena Co granodiorites, including (a) melting of
subducted young and hot oceanic crust, generally followed by interac-
tion with the overlying mantle wedge (Defant and Drummond, 1990;
Rapp et al., 1999); (b) high-pressure fractional crystallization (involving
garnet) of basaltic melts (Macpherson et al., 2006); (c) crustal assimila-
tion and low pressure fractional crystallization process from parental
basaltic magmas (Castillo et al., 1999); (d) magma mixing between
felsic and basaltic magmas (Guo et al., 2007; Streck et al., 2007); (e)
melting of delaminated lower continental crust (Gao et al., 2004;
Wang et al., 2006b; Xu et al., 2002); (f) melting of the subducted conti-
nental crust (Wang et al., 2008a); and (g) melting of thickened mafic
lower continental crust (Atherton and Petford, 1993; Chung et al.,
2003; Wang et al., 2005). We consider these alternative processes in
the following sections with specific reference to the Rena Co adakitic
granodiorites.

First, the distinctive geochemical characteristics of the Rena Co
adakitic granodiorites indicate that they could not have been generated
by partial melting of subducted Bangong–Nujiang oceanic crust. The
geochemical compositions of oceanic slab-derived adakites are usually
controlled by the basaltic portions of the slabs rather than the overlying
sediments. For example, this type of adakite generally has mid-ocean-
ridge basalt (MORB)-like Sr–Nd isotopic compositions, and relatively
low K2O, Th and Th/La values (Wang et al., 2008a), even if in some
cases, particular slab-derived adakites were formed from the mixing
of melts from altered oceanic crust and sediment-derived melts (e.g.,
Tang et al., 2010). The Rena Co adakitic granodiorites, however, have
much more enriched Sr–Nd isotopic compositions, which are very dis-
tinct from those of Mesozoic oceanic basalts found in ophiolites along
the Bangong–Nujiang Suture (Fig. 8) (e.g., Bao et al., 2007; Zhang et
al., 2014a; Zhu et al., 2006b). Their K2O, Th and Th/La values are also
higher than those of MORB and slab-derived adakites (Tang et al.,
2010; Wang et al., 2007) (Fig. 7b). Their Sr–Nd isotopic compositions
likely represent those of their source because they have Mg# (32–42)
values that are lower than those (N47) of metabasaltic rock-derived ex-
perimentalmelts contaminated bymantle peridotites (Rapp et al., 1999).
Accordingly, interaction between felsic magmas and fertilized mantle
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was unlikely. In addition, some of the granodiorite samples in this study
are peraluminous (Fig. 4e) whereas slab-derived adakites are mainly
metaluminous (Wang et al., 2008a).
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Second, it is also unlikely that the Rena Co adakitic granodiorites
were generated by high- or low-pressure crystallization from parental
basaltic magmas. Suites of adakitic rocks derived from high-pressure
fractional crystallization involving a garnet-bearing assemblage will
have a wide range of SiO2 and generally exhibit distinct geochemical
trends (Macpherson et al., 2006). In such suites, the La/Y and Dy/Yb ra-
tios clearly increase with the increasing of SiO2 contents because crys-
tallization of garnet will cause a decrease in HREEs and Y contents.
However, the Rena Co adakitic granodiorites display a small range of
SiO2 of 63.8–67.9 wt.% and, rather than showing fractionation trends
on La/Y and Dy/Yb versus SiO2 diagrams (Fig. 7c,d), they define near-
vertical trends. During low-pressure fractional crystallization involving
olivine and pyroxene, the derivedmagmas should show a clear decrease
in Mg# values, Cr and Ni contents with the increasing SiO2 contents
(Castillo et al., 1999) but no such trends occur for the Rena Co adakitic
granodiorites (Figs. 4c, and 5e–f). The decreases of MgO and Fe2O3 con-
tents with increasing SiO2 suggest that these rocks probably underwent
amphibole fractionation (Fig. 4d) (Ma et al., 2013b). However, amphi-
bole fractionation is typically accompanied by plagioclase removal in
natural systems and the Rena Co granodiorites do not show the compo-
sitional trends consistent with the net effect of combined amphibole
and plagioclase fractionation (Ma et al., 2013b; Moyen, 2009). In addi-
tion, Moyen (2009) suggested that amphibole + plagioclase fraction-
ation has little or no potential to actually yield adakitic signatures in
the first place because the amount of amphibole that can be formed is
limited by the Fe and Mg budget to a small mass fraction (in the region
of 20%), strongly reducing its potential effect.
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Third, the Rena Co adakitic granodiorites could not be generated by
partial melting of the delaminated or subducted continental crust. As a
result of contamination by mantle peridotites, adakitic rocks derived
from the delaminated lower crust often have higher MgO contents
and Mg# values (Wang et al., 2006b; Xu et al., 2002), than those of the
Rena Co adakitic granodiorites. Moreover, lower crust delamination is
generally restricted to regions undergoing extension in a continental
setting (Wang et al., 2006a,b; Xu et al., 2002). In the Late Jurassic, how-
ever, the Rena Co area was in an arc setting related to oceanic subduc-
tion (Geng et al., 2011; Li et al., 2014a). In addition, the absence of
contemporaneous continental collision largely rules out the possibility
that melting of subducted continental crust formed the adakitic grano-
diorites. In addition, key geochemical characteristics (e.g., Th, Th/La)
also do not match those of adakitic rocks derived from subducted conti-
nental crust (Fig. 7b) (Wang et al., 2008a).

We therefore suggest that the Rena Co adakitic granodiorites were
generated by partial melting of thickened lower continental crust (e.g.,
Atherton and Petford, 1993; Chung et al., 2003; Wang et al., 2005).
Two distinct possible sources (ancient mafic lower crust or newly
underplated basaltic juvenile crust)may be delineated using the isotope
compositions of adakitic magmas. Ancient mafic lower crust often ex-
hibits more enriched isotopes (e.g., Wang et al., 2005, 2006a) whereas
newly underplated basaltic crust, involving mantle-derived materials,
often has depleted or less evolved Sr–Nd–Hf isotopic compositions
(Wang et al., 2007). In this study, all the granodiorites have enriched
Sr–Nd isotopic compositions nearly comparable to those of the existing
Larelaxin (Liu et al., 2014) and Charkang Co intrusive rocks (Zhang,
2007) in southern Qiangtang sub-block (Fig. 8) which are considered
to be derived from the partial melting of the ancient lower continental
crust. In this context, the Rena Co adakites probably indicate crustal
thickening. In the plot of La/Yb versus magmatic ages (Fig. 10) (Chung
et al., 2009), the La/Yb ratios of the Jurassic intermediate–felsic rocks
in southern Qiangtang gradually increased from 10 to 150 correspond-
ing to crustal thickening from 30 km to N50 km between ~170 Ma
and ~145 Ma. This gradual thickening was probably due to northward
subduction of the Bangong–Nujiang Ocean given that it is a common
geological phenomenon in arc settings. The same process occurred in
central and northern Lhasa as exemplified by the occurrence of
~112Ma adakitic rocks (Sui et al., 2013) and ~140Ma leucogranite pro-
duced by anatexis during crustal thickening (Ding and Lai, 2003). Nu-
merous Late Cretaceous (~90 Ma) magnesian andesites/diorites also
indicate the subsequent delamination of the thickened lithospheric fol-
lowing the final Lhasa–Qiangtang amalgamation (e.g., Wang et al.,
2014). Taking into account the closure of the Bangong–Nujiang Ocean
at ~ 100 Ma, it is likely that the lithosphere had probably already been
thickened during prior subduction, allowing for the generation of the
Rena Co adakitic granodiorites.

It should be noted that the variable Sr–Nd isotopes of these granodi-
orites can be attributed to either a heterogeneous lower continental
crust source or magma mixing between crust-derived melts and man-
tle-derivedmelts. In the latter case, strong correlations are expected be-
tween isotopes and chemical components but none are evident
between Sr, Nd isotopic compositions and SiO2, MgO or Sm/Nd. Given
the lack of mafic microgranular enclaves (MMEs) observed in the
field, we suggest the granodiorites were probably derived from a thick
and heterogeneous lower continental crust source. This scenario is
also supported by the overall negative εHf(t) values of zircons in the
granodiorites (Fig. 9), which demonstrate that the Rena Co adakitic
granodiorites could be generated from such a source.
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5.2.3. Diorites
In a continental arc, intermediate magmatic rocks are generally con-

sidered to form by the crystallization of mantle-derived basaltic
magmas or the interaction between hot basaltic magmas and felsic
magmas in MASH zones (melting, assimilation, storage, and homogeni-
zation) (Annen et al., 2006). In the case of high-Mg andesites (HMA)
and their Mg-rich diorite derivatives (Kamei et al., 2004; Shimoda
et al., 1998), however, a variety of models may account for their
petrogenesis, including hydrous melting of peridotites (Falloon and
Danyushesky, 2000; Tatsumi, 2001; Taylor et al., 1994),mixing between
mantle-derived basaltic magma and crust-derived felsic melt (Guo et
al., 2007; Streck et al., 2007), or the interaction between slab-derived
melts and mantle wedge peridotites (e.g., Shimoda et al., 1998; Tang
et al., 2010; Tatsumi, 2001; Tatsumi and Hanyu, 2003; Wang et al.,
2008b, 2011).

We argue that the first twomodels are not applicable to the Rena Co
magnesian/Mg-rich diorites based on the following observations. First,
although the coeval gabbroic enclaves reported by Li et al. (2014b) can-
not be considered to represent primary basaltic magma, they still
should have higher MgO contents than diorites because diorites proba-
bly experienced more extensive fractional crystallization of mafic min-
erals and plagioclase if diorites and gabbroic enclaves were derived
from a common mantle source. Therefore, the relatively lower MgO
contents of coeval gabbroic enclaves than the diorites could preclude
magmamixing and AFC for the formation of the Rena Comagnesian di-
orites. In addition, magnesian andesites/diorites formed by magma
mixing between mantle-derived basaltic and crust-derived felsic
magmas usually have adakitic affinities (Guo et al., 2007; Streck et al.,
2007), but the Rena Co diorites do not plot in the adakites field
(Fig. 7a). Moreover, the Rena Co diorites differ from boninites in the
Bonin Island (Japan), which are high-Mg magmas derived directly
from partial melting of the mantle wedge peridotites fluxed by slab-
derived H2O-rich fluids (Falloon and Danyushesky, 2000). The diorites
have higher TiO2 (0.82–1.02 wt.%) and Al2O3 (16.72–17.47 wt.%) con-
tents than boninites that typically have TiO2 b 0.5 wt.% and
Al2O3 b 15 wt.% (Taylor et al., 1994). In addition, the Rena Co diorites
have high Th (6.5–12 ppm) and Nb (12.5–16 ppm) contents and Th/
La (0.22–0.32) ratios, indicating the metasomatic agents are slab-
melts rather than slab-fluids because HFSEs are insoluble in fluids but
compatible in melts (e.g., Class et al., 2000).

Alternatively, the interaction between subducted-slab-derived
melts and overlying mantle peridotites has been increasingly consid-
ered as a possible mechanism for generation of magnesian magmas
(Kelemen et al., 2014; Shimoda et al., 1998; Tang et al., 2010; Tatsumi,
2001; Tatsumi and Hanyu, 2003; Wang et al., 2007, 2008b, 2011).
Such melts can be derived from either subducted sediments alone or
oceanic crust with variable proportions of overlying sediments.We sug-
gest the Rena Co magnesian diorites probably originated from sedi-
ment-derived melts for the following two reasons. On the one hand,
they exhibit relatively high initial 87Sr/86Sr and low εNd(t), which are
very distinct from those of Jurassic basalts (Fig. 8) or mixtures of ba-
salt-derived melts and oceanic sediment-derived melts (Tang et al.,
2010; Tatsumi, 2001; Tatsumi and Hanyu, 2003). On the other hand,
their Th contents (6.6–12 ppm) and Th/La ratios (0.22–0.32) are similar
to those of marine sediments or upper crust and they resemble those of
the Hohxil magnesian andesites, which are distinctly higher than those
of MORB (Wang et al., 2011). The Hohxil magnesian andesites were
generated by the interaction between subducting sediment-derived
melts and mantle wedge peridotites (Wang et al., 2011). Tatsumi
(2001) suggested that the composition of a sediment-derived melt
could change from rhyolitic to andesitic (or dioritic) as it dissolved oliv-
ine and clinopyroxene in mantle peridotites. Qian and Hermann (2010)
also proposed that the interaction of felsic melts with ultramafic mate-
rial can produce Mg-rich rocks.

Based on a recent experimental study, however, Mann and Schmidt
(2015) concluded that fluid-saturated melting of subducting sediments
at sub-arc depths is not sufficient to effectively transfer trace elements
such as LILE because of the stability of phengite. Fluid-absent melting,
however, requires high temperatures of N850 °C at sub-arc depths,
which are not reached in most subduction zones. Behn et al. (2011)
also suggested that the trace elements that form sediment melt signa-
ture are retained in the sediments until the rocks have experienced tem-
peratures exceeding 1050 °C. Thus, according to subduction zone
thermal models, these temperatures are much higher than those at
the surface of subducted slabs at the relevant pressures. Nonetheless,
a sediment imprint including high Th contents and Th/La ratios exists
in many arc rocks, including the Rena Co diorites. An alternative mech-
anism involves cold sediment diapirs that rise into the mantle wedge
and act as the source of the sediment signature in arc rocks (e.g., Behn
et al., 2011; Mann and Schmidt, 2015). In this model, subducted sedi-
ments detach from the downgoing slab at temperatures of 500–850 °C
to formbuoyant diapirs. The diapirs rise through the overlying hotman-
tle wedge, where temperatures exceed 1050 °C, undergo dehydration
melting, and release the trace elements that later form the sediment
melt signature in arc rocks (e.g., Behn et al., 2011; Marschall and
Schumacher, 2012). A wide range zircon εHf(t) values from −8.7 to
+4.8 (up to 13-ε units) in the Rena Comagnesian diorites is consistent
with the interaction of sediment diapirs-derived melts and astheno-
sphere mantle-derived melts and we therefore suggest that oceanic
sediment diapirs are a likely source for the Rena Co magnesian diorites.



Fig. 12. A conceptual model illustrating the tectonic andmagmatic rock evolution of central Tibet during the Late Mesozoic. (a) In the Late Jurassic, sediment diapirs melted and ascended
throughmantle wedge to form the Rena Comagnesian diorites. Meanwhile, mantle-derivedmagmas underplated and provided heat to prompt partial melting of the thickened and het-
erogeneous ancient crust to generate the Rena Co adakitic granodiorites. (b) In the Early Cretaceous, partial melting of the newly underplated basaltic crust at 118± 6Ma resulted in for-
mation of the Rena Co granodiorite porphyries. Magmatic flare-ups occurred in both southern Qiangtang and central and northern Lhasa sub-blocks as a result of slab roll-back.
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5.2.4. Granodiorite porphyries
The Early Cretaceous Rena Co adakitic granodiorite porphyries have

much in commonwith the Late Jurassic adakitic granodiorites discussed
above, whichmight suggest a similar petrogenesis. Their Sr–Nd isotopic
compositions, however, are distinct from those of the ancient lower
crust-derived Jurassic adakitic granodiorites in the Rena Co area, the
Cretaceous and Jurassic oceanic basalts in the Bangong–Nujiang Suture
Zone (Bao et al., 2007; Zhang et al., 2014a; Zhu et al., 2006b), or adakitic
granites in the Rutog area that were derived from subducted Bangong–
Nujiang Oceanic crust (Liu et al., 2014) (Fig. 8). Instead, their Sr–Nd iso-
topic compositions are similar to those of the Early Cretaceous andesites
in the Gerze area (ca. 124 Ma) and granodiorite porphyries in the
Duolong area (ca. 118 Ma), which recent studies link to fractionated
products of basaltic melts derived from mantle wedge peridotites (Li
et al., 2013; Liu et al., 2012). In addition, their εHf(t) values of +4.7 to
+9.7 are similar to those of the Early Cretaceous granodiorite porphy-
ries (ca. 118 Ma) in the Duolong area (Li et al., 2013) and rhyolites in
theRenaCo area (ca. 110Ma) (Chang et al., 2011) (Fig. 9) and consistent
with derivation from juvenile crust. An inherited zircon from sample
13GZ20-1 exhibits an slightly older age of 145 Ma and positive εHf(t)
of +1.0, which is also feature of the Rena Co rhyolites (ca. 110 Ma)
where numerous inherited zircons show slightly older ages of 160–
125Ma and positive εHf(t) values (Chang et al., 2011) (Fig. 9). This sug-
gests that the basaltic source rocks of these Early Cretaceous rocks,
which may have been underplated at the base of southern Qiangtang
sub-block since Late Jurassic, melt and produce the Early Cretaceous
felsic magmas. Hence, the characteristic of the Early Cretaceous rocks
would inherited from the juvenile basaltic source rocks. For example,
the Rena Co adakitic granodiorite porphyries show positive zircon
εHf(t) values of +4.7 to +9.7 and corresponding whole-rock
εNd(t) ranging from −0.61 to +0.25, indicating a decoupling of Hf
and Nd isotopic compositions from the mantle (Chauvel et al., 2008)
and crustal arrays (Vervoort et al., 1999). The same feature was also re-
ported in the Duolong granodiorite porphyries by Li et al. (2013) who
suggested that the decoupling probably inherited from newly
underplated basalts. This process can occur in a mantle wedge
metasomatized by slab-derived fluid andmelt where Nd has a high sol-
ubility compared to Hf (Kessel et al., 2005).

Based on the evidence summarized above, we propose a two-stage
model for the generation of the Early Cretaceous adakitic granodiorite
porphyries in the Rena Co area similar to that presented for the genera-
tion of theCordillera Blanca batholith (Atherton andPetford, 1993). This
model emphasizes the input of mafic magmas originating from a
metasomatized mantle, forming underplated basaltic lower crust. This
thickened juvenile crust later partially melted, producing the adakitic
magmas at ca. 112 Ma. It should be noted that there is a significant
change in whole-rock Sr–Nd isotopic compositions (Fig. 8) and zircon
εHf(t) (Fig. 9) from the Late Jurassic to the Early Cretaceous magmatic
rocks. This points to an increased contribution of a mantle or juvenile
crust component in the Early Cretaceous igneous rocks in southern
Qiangtang sub-block. A similar pattern was documented in central and
northern Lhasa by Zhu et al. (2009).

6. Geodynamic processes and implications for crustal growth

6.1. Geodynamic processes

The Bangong–Nujiang Oceanmust have survive until the Late Creta-
ceous because studies of ophiolitic mélanges on the Bangong–Nujiang
Suture identify numerous Early Cretaceous oceanic basalts (Bao et al.,
2007; Baxter et al., 2009; Xu et al., 2014; Zhang et al., 2014a; Zhu
et al., 2006b) where an angular unconformity separates the continental
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deposits of the Late Cretaceous Jingzhushan formation from the under-
lying ophiolitic mélanges (Geng et al., 2011; Xu et al., 2014). However,
the subduction polarities of the Bangong–Nujiang Ocean remain the
subject of debate. Although some authors have suggested that the
Bangong–Nujiang Ocean subducted southward beneath the central
and northern Lhasa (Pan et al., 2006; Sui et al., 2013; Zhu et al., 2006a,
2009, 2011, 2013), a larger number of studies have argued that the sub-
duction direction was northward (Ding et al., 2003; Geng et al., 2011;
Kapp et al., 2003; Qiu et al., 2005; Qu et al., 2009; Shi et al., 2004;
Zhang et al., 2012a) and that the Bangong–Nujiang Ocean began to sub-
duct beneath the southern Qiangtang sub-block in the Late Triassic–
Early Jurassic (Qiu et al., 2005; Qu et al., 2009; Shi et al., 2004; Zhang
et al., 2012a).

As discussed above, the presence of extensive (N1000 km long) Late
Mesozoic continental arcmagmatism (170–102Ma) along the southern
Qiangtang sub-block strongly indicates the northward subduction of the
Bangong–Nujiang ocean (Fig. 11a) (e.g., Kapp et al., 2005; Li et al.,
2014a,b; Liu et al., 2012, 2014). The present study provides additional
evidence for this northward subduction because the Rena Comagnesian
diorites formed by the interaction of oceanic sediments diapirs-derived
melts and mantle wedge peridotites.

In contrast to the evidence provided by the Rena Co rocks, an east–
west belt of Late Mesozoic magmatic rocks (164–102 Ma) in central
and northern Lhasa (Fig. 11b) have been attributed to the southward
subduction of the Bangong–Nujiang Ocean (e.g., Pan et al., 2006; Zhu
et al., 2006a, 2009, 2011). A slab break-off model has also been sug-
gested to explain a magmatic flare-up with an increased mantle contri-
bution at 110 ± 3 Ma (Fig. 11b) in the central and northern Lhasa sub-
block following the Lhasa–Qiangtang amalgamation at ca. 145 Ma (Sui
et al., 2013; Zhu et al., 2009, 2011). However, we note that an identical
magmatic flare-up, also accompanied by an increased contribution of a
mantle component, occurred in the southern Qiangtang sub-block at
118 ± 6 Ma (Figs. 9 and 10a). If the Bangong–Nujiang oceanic basin
remained open in the Early Cretaceous, as suggested above, then it is
difficult for a slab break-off model to account for contemporary mag-
matic flare-ups in both southern Qiangtang and central and northern
Lhasa sub-blocks during the Late Early Cretaceous.

The bidirectional subduction of the Bangong–Nujiang Ocean has re-
cently been suggested (Xu et al., 2014; Zhang, 2007; Zhu et al., 2016),
and such a scenario can better account for the twin magmatic flare
ups if slab break-off events did not occur. We suggest that, during Late
Mesozoic, the Bangong–Nujiang oceanic basinmost probably subducted
both northward under southern Qiangtang and southward under cen-
tral and northern Lhasa, respectively (Fig. 12). This model can account
for the formation of the Rena Co intrusive rocks, including the Late Ju-
rassic adakitic granodiorites andmagnesiandiorites and the Early Creta-
ceous adakitic granodiorite porphyries in the southern Qiangtang sub-
block, while still allowing for later final closure of the Bangong–Nujiang
oceanic basin (Fig. 12).

In this model, sediments detach from the downgoing slab during
northward subduction (from ~170 Ma to ~140 Ma) and form buoyant
diapirs (Fig. 12a). The diapirs rise, melt and interact with the surround-
ingmantle wedge to generate the Rena Comagnesian diorites. Contem-
poraneous basaltic magmas derived from themantle wedge underplate
the base of the southern Qiangtang sub-block crust, providing heat and
material for partialmelting of the older lower crust, resulting in the gen-
eration of intermediate-felsic magmas (Chang et al., 2011; Kapp et al.,
2005; Li et al., 2011, 2013, 2014a,b; Liu et al., 2012, 2014) and the
Rena Co adakitic granodiorites, given that local crustal thickness was
N45 km. The basaltic underplating would gradually replace the ancient
lower crust and accumulate to form juvenile crust. This newly
underplated basaltic crust would be heated further by the upwelling as-
thenosphere as a result of Early Cretaceous slab roll-back, resulting in,
melting and the generation of the RenaCo adakitic granodiorite porphy-
ries at ca. 112Ma (Fig. 12b). This mechanismmay also apply to the geo-
logical processes in central and northern Lhasa (Fig. 12b).
6.2. Implications for crustal growth

The Tibetan plateau is characterized by the thickest continental crust
(60–80 km) on Earth, twice as thick as average continental crust (Kind
et al., 1996; Mo et al., 2007). Crustal thickening is often largely attribut-
ed to tectonic effects (e.g., Ding et al., 2003; Harrison et al., 1992; Kapp
et al., 2005; Yin and Harrison, 2000) but magmatic contributions are
also important for the formation of thickened juvenile crust (e.g., Chu
et al., 2006; Chung et al., 2003; Ji et al., 2009; Ma et al., 2013a, 2013b;
Mo et al., 2007, 2008; Niu, 2009; Wang et al., 2005; Zhang et al.,
2014c; Zhu et al., 2009, 2011).

Previous Nd–Hf isotopic studies highlighted the importance of man-
tle and oceanic crust contributions to the crustal growth of southern
Tibet in associationwith the Neo-Tethyan Ocean northward subduction
and the India–Asia continental collision since the Mesozoic (Chu et al.,
2006; Chung et al., 2003; Ji et al., 2009; Ma et al., 2013a; Mo et al.,
2007; Zhang et al., 2014c). The geodynamics of Late Mesozoic crustal
growth in central Tibet, however, have not been clear. For example,
recent geochemical investigations have revealed that basalt
underplating-related vertical crustal growth may have occurred in the
continent–continent collision setting of the central and northern Lhasa
sub-block, central Tibet (Sui et al., 2013; Zhu et al., 2009, 2011).
Conversely, Zhang et al. (2014a) reported the occurrence of a
Meso-Tethyan oceanic plateau in the Bangong–Nujiang Ocean in Late
Mesozoic (193–173 Ma and 128–104 Ma), implying that oceanic
plateau accretion contributed to lateral crustal growth in the southern
Qiangtang sub-block.

In the present study, taking into account ophiolites in the Bangong–
Nujiang Suture (Bao et al., 2007; Zhang et al., 2014a; Zhu et al., 2006b)
and the nature of Late Mesozoic magmatic rocks (e.g., Kapp et al.,
2005; Li et al., 2014a,b; Liu et al., 2012, 2014; Sui et al., 2013; Zhu et
al., 2009, 2011, 2016; this study) in southern Qiangtang and central
and northern Lhasa sub-blocks, we suggest that both southern
Qiangtang and central and northern Lhasa sub-blocks were located in
continental arc settings related to bidirectional subduction of the
Bangong–Nujiang oceanic basin as outlined above (Zhu et al., 2016;
this study).

The data obtained in this study and in the literature (e.g., Chang et
al., 2011; Li et al., 2013, 2014a,b; Liu et al., 2012, 2014), together with
the foregoing discussion, indicate an important role for underplated ba-
saltic magmas in the vertical crustal growth in a continental arc, as ex-
emplified by the Reno Co Early Cretaceous granodiorite porphyries.

In terms of Nd–Hf isotopic compositions (Figs. 8, 9), the Jurassic in-
termediate–felsic intrusive rocks of the southern Qiangtang sub-block
primarily exhibit negative whole-rock εNd(t) and zircon εHf(t) (Li
et al., 2014a,b; Liu et al., 2014; this study), indicating that they were
largely derived from mature or recycled continental crust materials. In
contrast, the Early Cretaceous magmatic rocks from the southern
Qiangtang sub-blockmainly showpositive to near-zero εNd(t) and pos-
itive εHf(t) values (Chang et al., 2011; Li et al., 2013, 2014a; Liu et al.,
2012, 2014; this study), indicating they were probably derived from
the juvenile crust. These results imply that the ancient lower crust of
southern Qiangtang sub-block was gradually replaced by mantle-
derived juvenile materials between the Late Jurassic and Early Creta-
ceous and that the underplating of arc basaltic magmas played a key
role in vertical crustal growth.

7. Conclusions

(1) The Rena Co intrusive rocks from southern Qiangtang sub-block
contain adakitic granodiorites and granodiorite porphyries, and
magnesian diorites.

(2) LA–ICP–MS zircon U–Pb dating suggests that the Rena Co grano-
diorites and diorites have consistent ages of ca. 150Ma andwere
emplaced in Late Jurassic and that the granodiorite porphyries
were emplaced at ca. 112 Ma in Early Cretaceous.
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(3) The Jurassic magmatismwas related to northward subduction of
the Bangong–Nujiang Oceanic basin and the Early Cretaceous
magmatism was most plausibly the result of the slab roll-back.
The granodiorites were probably produced by partial melting of
a thickened and heterogeneous ancient mafic lower continental
crust whereas the diorites were derived from sediment diapirs
and the mantle wedge. The younger granodiorite porphyries
were generated by partial melting of newly underplated basaltic
crust.

(4) In southern Qiangtang, the pre-existing lower crust was gradual-
ly replaced by mantle-derived juvenile materials between the
Late Jurassic and Early Cretaceous. This process demonstrates
that, in a continental arc, underplating of arc basaltic magmas
plays a key role in vertical crustal growth.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.lithos.2015.09.015.
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