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ABSTRACT

High-Mg andesites (HMAs) and adakitic rocks are purported to occur exclusively in subduction
zones in the modern Earth. In the North China Craton, early Cretaceous HMAs and adakitic dacites

were erupted in a continental setting, apparently unrelated to subduction given their location distal

(>1000 km) to the trench at that time. Here we report petrological, mineralogical and geochemical

data for these rocks with the aim of constraining their petrogenesis and elucidating the role of

water in intraplate magmatism and cratonic destruction. The HMAs can be subdivided into olivine

(Ol-)HMAs and clinopyroxene (Cpx-)HMAs. The former have high MgO (>9�8 wt %) and Mg# (>71),

with rare high-Fo (up to 91) olivine phenocrysts, corresponding to (near-)primary magmas that
equilibrated with mantle peridotite. The latter have moderate MgO (7�8–8�8 wt %) and Mg# (mostly

<70) and low-Fo (mostly<83) olivine phenocrysts. The Cpx-HMAs are interpreted as magmas dif-

ferentiated from the Ol-HMAs by olivine-dominated fractionation at lower-crust levels. P–T–XH2O

estimations show that the primary HMAs are melts of shallow (1�1–1�2 GPa), hot (�1250�C) and wet

(H2O>3 wt %) lithospheric mantle. The coexisting adakitic dacites are hydrous (H2O� 5 wt %) mag-

mas with high SiO2 (>63 wt %), Sr/Y ratios (�39) and YbSN (source-normalized), low (Sm/Yb)SN,
and negligible Eu anomalies. They also have unradiogenic whole-rock Nd [eNd(t)¼ –19 to –9] and

zircon Hf [eHf(t)¼ –23 to –21] isotopic compositions consistent with derivation by melting of ancient

lower crust at depths< 40 km. Melting may have been induced by heating and addition of H2O

from underplated HMAs. Mixing between Cpx-HMAs and low-Mg adakitic dacites in magma cham-

bers produced high-Mg adakitic rocks. The petrogenetic model presented here explains the occur-

rence of intraplate HMAs and adakitic magmas elsewhere in the North China Craton. The P–T–XH2O

conditions inferred for HMA generation imply that the subcontinental lithospheric mantle beneath
the craton was hot and hydrous in the early Cretaceous, which may have triggered the destruction

of the cratonic root. The occurrence of young HMAs and adakitic rocks in an intraplate extensional

environment also casts doubts on the common use of a similar igneous rock association as an

indicator of subduction processes in Archean time.
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INTRODUCTION

High-magnesium andesites [HMAs; synonymous with

the primitive andesite of Kelemen et al. (2003) and the

primitive magnesian andesite of Grove et al. (2002)] and

related magmas such as ‘adakites’ (Defant &

Drummond, 1990; Martin, 1999; Martin et al., 2005)

have attracted increasing attention even though they

are volumetrically minor in the modern Earth. HMAs

are defined as andesites with high MgO [>5 wt %,

Tatsumi (2008); or >8 wt %, Crawford et al. (1989)] and

low FeOT/MgO (<1�0, where FeOT is total iron as FeO;

Tatsumi, 2008). They share striking compositional simi-

larities with the bulk continental crust (Tatsumi, 2006)

and form a recognizable part of the continental crust as

sanukitoids in Archean cratons (Shirey & Hanson,

1984). Their origin thus provides insights into the for-

mation of continental crust on Earth (Kelemen et al.,

2003; Tatsumi, 2006). Previous petrological, geochem-

ical and experimental studies (e.g. Tatsumi, 1982, 2006;

Crawford et al., 1989; Yogodzinski et al., 1995; Shimoda

et al., 1998; Grove et al., 2002; Wood & Turner, 2009;

Weaver et al., 2011; Weber et al., 2012) have suggested

that HMA magmas can be generated by melting of

strongly hydrated mantle peridotite or by interaction of

slab-derived melts with an ultramafic mantle wedge.

Sufficient supply of hydrous components (Grove et al.,

2012) and a high geotherm in the mantle wedge

(Crawford et al., 1989; Tatsumi, 2006) are two key fac-

tors in the generation of HMAs in subduction zones.

Originally, adakites were defined as a group of

intermediate–felsic igneous rocks found in modern sub-

duction zones; they are characterized by high Sr/Y (>40)

and La/Yb (>20), depletion in Nb–Ta relative to light

rare earth elements (LREE) and large ion lithophile

elements (LILE), and absence of obvious Eu anomalies;

they are proposed to be a product of melting of sub-

ducted basaltic oceanic crust that has been transformed

to eclogite (Defant & Drummond, 1990). As they are

compositionally similar to the Archean tonalite–

trondhjemite–granodiorite (TTG) suites (Martin, 1999)

that make up a large proportion of the continental crust,

clarification of their origins can potentially improve our

understanding of crustal evolution (Martin et al., 2005;

Castillo, 2006, 2012). Currently, the term adakite is used

for a wide variety of igneous rocks, whose sole com-

mon feature is high Sr/Y and La/Yb ratios (Castillo,

2006, 2012; Moyen, 2009). This loose geochemical def-

inition may not be appropriate; the term adakite must

be restricted to true slab melt, and other rock types with

adakitic signatures should be termed adakitic rocks

(Castillo, 2006, 2012; Ma et al., 2015). Various models

have been proposed to account for the origin of

intermediate–felsic igneous rocks with adakitic signa-

tures (Martin et al., 2005; Castillo, 2006, 2012; Lee et al.,

2007; Richards & Kerrich, 2007), with general emphasis

on melting depth (Defant & Drummond, 1990; Gao
et al., 2004), inheritance from source composition (Qian

& Hermann, 2013; Ma et al., 2015) and magma

generation processes (Castillo et al., 1999; Chen et al.,

2013; Chiaradia, 2015).

The bulk of HMAs and adakitic rocks in the modern

Earth are closely associated with subduction environ-

ments, which provide possibilities for both hydrous
melting of the mantle and high-pressure melting of sub-

ducted oceanic crust. In recent years, igneous rocks

with compositions similar to HMAs and adakitic rocks

have been identified in intra-continental settings, such

as in the North China Craton (NCC) (e.g. Zhang et al.,

2003; Gao et al., 2004; Xu et al., 2008; Ma et al., 2015).

Because these magmas have no obvious relationship to
a subduction process (e.g. >1000 km away from a con-

temporary subduction zone), alternative models have

been put forward. These intraplate high-Mg diorites or

andesites (hereafter HMAs) have geochemical charac-

teristics typical of partial melts formed in the crust (e.g.

high SiO2, enrichment in LILE, and depletion in Nb and
Ta) as well as in the mantle (e.g. high MgO, Ni and Cr),

leading to a popular model involving interaction of

melts, derived from foundered lower crust, with mantle

peridotite as they ascended (Xu et al., 2008). However,

the formation of these HMAs may also have involved

mixing of felsic and basaltic magmas (Zhang & Shao,
2008; Chen et al., 2013) or assimilation of ultramafic

rocks at crustal depths (Qian & Hermann, 2010); this

new model questions their relevance to delamination

and melt–peridotite interaction processes. Melting of

lithospheric mantle metasomatized by slab melts has

also been proposed for the origin of HMAs in the north-

ern margin of the NCC (Zhang et al., 2003). The debates
surrounding their petrogenesis are mainly caused by

the ambiguity of the geochemical evidence and the lack

of studies on primary HMA magmas that have equili-

brated with mantle peridotite (e.g. Zhang et al., 2003).

Moreover, the roles of H2O and high temperatures, two

crucial factors in the generation of HMA melts in mod-
ern arcs (Parman & Grove, 2004; Tatsumi, 2008; Grove

et al., 2012), have not been fully considered in these

models, probably owing to lack of appropriate thermo-

barometers and hygrometers. The high-Mg diorites in

the NCC contain abundant hydrous minerals [e.g. up to

40% amphibole; Qian & Hermann (2010); Chen et al.

(2013)], indicative of H2O-rich magmas and involvement
of hydrous components in their source.

Adakitic magmas in continental settings were origin-

ally inferred to be the products of a thickened or foun-

dered lower crust (Xu et al., 2002; Chung et al., 2003;

Gao et al., 2004). These premises are built on experi-

ments and modeling of a mid-ocean ridge basalt
(MORB)-like source, which show that adakitic geochem-

ical signatures can be produced by high-pressure melt-

ing (�1�5 GPa, Defant & Drummond, 1990; Xiong et al.,

2005; Nair & Chacko, 2008). Recent studies have high-

lighted the importance of source inheritance in the for-

mation of intraplate adakitic magmas (Qian & Hermann,

2013; Ma et al., 2015) and proposed that the Mesozoic
adakitic rocks in the NCC were generated at depths

<40 km (Ma et al., 2012, 2015). Melting of the nearly
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anhydrous and essentially refractory lower crust of the

craton can be attributed to heating by episodic under-

plating of basaltic magma (e.g. Yang & Li, 2008; Ma

et al., 2015) and/or by thinning of the lithosphere and

upwelling of the asthenosphere (Yang et al., 2008).
However, herein lies a problem: models of heat transfer

show that high-temperature basalts emplaced into the

base of the crust cannot provide enough heat to melt

mafic lower crust (even if it is amphibolite) extensively

(Annen & Sparks, 2002; Annen et al., 2006), because of

the high dehydration-melting temperature of amphibole

in mafic rocks (�950�C). Thus, the possibility of crustal
melting involving the presence of a free H2O phase

should be considered along with the question of where

the water comes from.

To address the petrogenesis of intraplate HMAs and

adakitic rocks, we present a combined petrological,

mineralogical and geochemical study of these two igne-
ous rock types coexisting in the Liaodong Peninsula in

the NCC. The P–T–XH2O conditions for generating HMA

magmas are estimated using the thermobarometer de-

veloped by Lee et al. (2009) and hygrometer–barometer

developed by Wood & Turner (2009). Based on these

data, we elucidate the importance of water in the gener-
ation of intraplate HMA and adakitic magmas and illus-

trate the probable geodynamic implications of these

rocks.

GEOLOGICAL SETTING

The NCC (Fig. 1a) is one of the oldest Archean cratons
in the world and preserves �3�8 Ga crustal remnants

(Liu et al., 1992). It experienced a series of tectono-

thermal events in the late Archean and

Paleoproterozoic, and stabilized in the late

Paleoproterozoic (�1�85 Ga; Zhao et al., 2001). From the

late Paleoproterozoic (�1�85 Ga) to the Paleozoic

(�250 Ma) this block was stable without significant
tectono-thermal events (except emplacement of minor

Ordovician kimberlites) and was covered by a thick se-

quence of sediments. The NCC was affected by subduc-

tion and collision with surrounding blocks during

Phanerozoic time (Windley et al., 2010), including the

Paleozoic southward subduction of the Paleo-Asian oce-
anic plate (Xiao et al., 2003), the Triassic deep subduc-

tion of the Yangtze continental crust (Li et al., 1993) and

the Mesozoic–Cenozoic (and still continuing) subduc-

tion of the (Paleo-)Pacific plate (Müller et al., 2008; Xu,

2014). As a result of the first two subduction and/or col-

lision episodes, the NCC was amalgamated with the

Siberian and South China blocks, leading to the forma-
tion of the Central Asian Orogenic Belt to the north and

the Qingling–Dabie–Sulu Orogenic Belt to the south, re-

spectively. Studies of xenoliths and separated minerals

from Paleozoic kimberlites have revealed that the NCC

had a cold (�40 mW–2), thick (�200 km) and ancient

(>2�5 Ga) cratonic lithospheric mantle at that time
(Griffin et al., 1998; Xu, 2001; Gao et al., 2002; Zheng

et al., 2006). In contrast, the lithospheric mantle beneath

the eastern NCC in the Cenozoic was warmer (�80 mW

m–2), thinner (60–80 km), younger and more fertile (Xu

et al., 1995; Menzies & Xu, 1998; Xu et al., 1998; Xu,

2001; Gao et al., 2002; Wu et al., 2003; Zheng et al.,

2006). The eastern part of the NCC appears to have lost
its lithospheric keel (>100 km) during the Mesozoic and

Cenozoic, and represents the best example of craton-

root destruction (Menzies et al., 1993; Griffin et al., 1998;

Xu, 2001; Carlson et al., 2005; Zheng et al., 2007).

The Liaodong Peninsula is located in the northeast-

ern segment of the NCC (Fig. 1a) and consists of

Archean to Paleoproterozoic basement rocks overlain
by unmetamorphosed Mesoproterozoic to Paleozoic

sediments and Mesozoic to Cenozoic sedimentary and

igneous rocks. Mesozoic volcanic and intrusive rocks

are widely developed in this region, and mostly formed

in the late Jurassic (180–150 Ma) and early Cretaceous

(135–117 Ma) (Wu et al., 2005a, 2005b), although minor
Triassic magmatism (233–210 Ma) is also recorded

(Yang et al., 2007a). The Triassic igneous rocks, includ-

ing mafic dikes, syenite, diorite, monzogranite and

mafic enclaves, probably formed in a post-collisional

extensional environment following the assembly of the

North China and Yangtze blocks (Yang et al., 2007a).
The Jurassic intrusive rocks consist of quartz diorite,

tonalite, granodiorite and monzogranite and were

mainly derived from partial melting of ancient crustal

materials (Wu et al., 2005b). The tectonic setting in

which the Jurassic magmatism of the eastern NCC

occurred is controversial. Wu et al. (2005b) suggested

that the Jurassic granites formed in an active compres-
sive continental margin, resulting from subduction of

the Paleo-Pacific plate beneath the East Asia plate.

Some other studies suggested that the Jurassic mag-

matism developed in an intraplate contractional envir-

onment (e.g. Zhang et al., 2007) or in a post-collisional

setting (e.g. Mao et al., 2003; Zhang et al., 2010). The
early Cretaceous igneous rocks developed coevally

with late Mesozoic metamorphic core complexes (MCC)

and occur as plutonic intrusions in the lower plates of

the complexes and as volcanic rocks in the supra-

detachment basins of the MCC (Fig. 1b; Liu et al., 2013).

The MCC were the consequence of crustal or litho-

spheric extension, which was probably induced by col-
lapse of crust over-thickened as a result of earlier

orogenic processes (Wang et al., 2012) or by retreat of

the subducting Paleo-Pacific plate beneath the East Asia

plate (Liu et al., 2013). Although early Cretaceous tec-

tonism in the Liaodong Peninsula was probably related

to far-field effects of Paleo-Pacific plate subduction, the
contemporary magmatism should be regarded as of

intraplate type, considering that this area was too far

(>1000 km) from the trench of this subduction system at

that time. The intrusions include dolerite, diorite, grano-

diorite, I- and A-type granite, and syenite. Detailed geo-

chemical and isotopic studies have shown that they

were derived from multiple sources, including depleted
mantle, enriched lithospheric mantle, ancient lower

crust and juvenile crust (Yang et al., 2004, 2006, 2008;
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Wu et al., 2005a). The volcanic rocks, including andesite,

dacite, rhyolite, volcanic breccia and tuff, are termed the

Guiyunhua volcanic rocks (K1g; LBGMR, 1989). Previous

field and geochronological studies have shown that the

volcanic rocks were erupted in early Cretaceous times

(132–106 Ma) and were interlayered with lacustrine sedi-

ments in fault-bounded extensional basins.

PETROGRAPHY

Samples of the Guiyunhua volcanic rocks, including

HMAs (see ‘Whole-rock chemistry’, below) and dacites,

were collected from the Shihuiyao–Dachaokou section
near Dalian City (Fig. 1c and d). The HMAs are porphy-

ritic with phenocrysts of euhedral olivine, clinopyrox-

ene and rare orthopyroxene in a groundmass of

fine-grained plagioclase, clinopyroxene and minor

magnetite. They are phenocryst-poor (<11%; Table 1)

andesites, characterized by a lack of plagioclase pheno-
crysts (Fig. 2a and b), thus resembling sanukitoids from

the Setouchi volcanic belt, southwestern Japan

(Tatsumi, 2006). Based on modal composition, these

HMAs can be subdivided into Ol-HMAs with olivine

phenocrysts more abundant than pyroxene phenocrysts

(Fig. 2a) and Cpx-HMAs with olivine phenocrysts less

abundant than pyroxene (Fig. 2b). Orthopyroxene is

found only in Ol-HMAs. Unlike the HMAs, the Guiyunhua

dacites (Fig. 2c) are phenocryst-rich (>25%; Table 1) with
plagioclase, amphibole and clinopyroxene phenocrysts,

in decreasing order of abundance. Amphibole pheno-

crysts are euhedral and are commonly transformed at

the rims into a fine-grained association of pyroxene,

plagioclase and opaque oxides (Fig. 2c). The ground-

mass consists of fine-grained plagioclase, K-feldspar,
quartz, clinopyroxene and magnetite.

ANALYTICAL METHODS

Geochemical data presented here include mineral and

whole-rock compositions, Sr–Nd isotopes and zircon U–

Pb and Hf isotopes, which are listed in Tables 1–4.
Major element compositions of minerals were deter-

mined by electron microprobe analysis (EPMA) using a

Fig. 1. Simplified geological maps showing (a) major tectonic units of eastern China, (b) Mesozoic magmatism in the Liaodong
Peninsula, (c) location and (d) geological cross-section of the Guiyunhua volcanic rocks in the Shihuiyao area. The structural outline
and distribution of Mesozoic magmatism in the Liaodong Peninsula in (b) are modified from Liu et al. (2013) and Yang et al.
(2007a), respectively. The U–Pb ages of zircons from the Guiyunhua volcanic rocks are from Liu et al. (2011), Shen et al. (2011) and
this study.
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Table 1. Major and trace elements and modal compositions of the early Cretaceous Guiyunhua volcanic rocks in the Liaodong
Peninsula

Sample no.: SHY-01 SHY-02 SHY-03 SHY-04 SHY-05 SHY-06 SHY-07 SHY-08
Rock type: Cpx- Ol- Ol- Cpx- Ol- Cpx- Cpx- Cpx-

HMA HMA HMA HMA HMA HMA HMA HMA

Major elements (wt %)
SiO2 54�21 54�27 54�31 55�55 54�05 52�85 54�12 54�68
TiO2 0�76 0�71 0�72 0�77 0�72 0�71 0�70 0�75
Al2O3 14�24 13�64 13�71 14�66 13�68 13�73 13�30 14�40
Fe2O3

T 7�05 7�80 7�81 7�19 7�78 7�91 7�49 7�63
MnO 0�10 0�11 0�11 0�09 0�11 0�09 0�09 0�10
MgO 8�63 10�24 9�93 7�50 10�11 8�14 7�99 7�64
CaO 7�74 7�73 7�53 7�61 7�51 6�68 7�09 7�79
Na2O 3�01 3�00 3�05 3�14 3�00 2�69 2�92 3�09
K2O 1�35 1�32 1�35 1�45 1�34 2�68 1�37 1�37
P2O5 0�16 0�16 0�16 0�17 0�16 0�16 0�15 0�17
LOI 2�67 1�41 1�25 2�30 1�67 4�78 4�70 1�49
Total 99�92 100�39 99�93 100�43 100�13 100�42 99�92 99�12
FeOT 6�3 7�0 7�0 6�5 7�0 7�1 6�7 6�9
FeO/MgO 0�74 0�69 0�71 0�86 0�69 0�87 0�84 0�90
Mg# 70�8 72�2 71�6 67�4 72�0 67�1 67�9 66�5
Trace elements (ppm)
Li 11�2 13�2 13�6 11�8 14�8 15�1 27�0 12�6
Be 1�04 0�91 0�89 0�96 1�02 0�94 1�24 1�18
Sc 24�0 21�9 22�2 22�2 22�9 23�3 22�5 24�2
V 185 168 170 173 179 104 73�3 181�9
Cr 612 531 541 524 576 583 551 596
Co 51�9 50�6 46�0 43�9 50�0 42�2 42�2 40�3
Ni 289 295 302 234 303 267 249 307
Cu 68�8 43�5 38�2 70�0 51�5 54�5 54�1 55�8
Zn 71�0 69�6 69�7 63�6 70�1 75�2 65�5 74�2
Ga 18�3 16�8 17�0 17�5 17�9 17�6 17�7 18�8
Rb 34�9 33�3 33�8 38�1 35�3 46�2 14�8 33�6
Sr 468 447 463 455 463 391 441 466
Y 14�9 14�3 15�2 17�7 15�4 15�2 15�4 16�0
Zr 103 93�5 95�4 105 101 98�6 99�9 98�9
Nb 4�91 4�59 4�54 5�27 4�79 4�65 4�87 4�85
Cs 0�85 3�84 3�23 1�18 2�93 0�44 0�31 1�82
Ba 454 451 483 473 440 633 491 469
La 16�5 16�0 16�4 19�7 16�1 15�9 15�6 18�3
Ce 33�2 34�0 34�5 32�7 33�8 31�4 32�1 34�2
Pr 4�27 4�18 4�22 4�80 4�18 4�18 4�04 4�62
Nd 17�5 17�5 18�1 20�5 16�9 16�9 16�2 19�6
Sm 3�59 3�47 3�75 4�18 3�58 3�35 3�30 3�92
Eu 1�14 1�06 1�11 1�22 1�05 1�08 1�01 1�17
Gd 3�25 3�08 3�18 3�69 3�14 3�09 2�93 3�57
Tb 0�47 0�47 0�48 0�55 0�44 0�45 0�43 0�49
Dy 2�68 2�63 2�80 3�18 2�50 2�67 2�46 2�89
Ho 0�51 0�52 0�53 0�60 0�49 0�49 0�47 0�56
Er 1�38 1�40 1�55 1�79 1�35 1�33 1�36 1�54
Tm 0�20 0�20 0�22 0�24 0�19 0�20 0�19 0�24
Yb 1�36 1�27 1�36 1�53 1�28 1�26 1�25 1�52
Lu 0�20 0�20 0�21 0�24 0�19 0�21 0�20 0�23
Hf 2�58 2�55 2�63 2�85 2�38 2�36 2�24 2�66
Ta 0�31 0�32 0�30 0�36 0�29 0�27 0�26 0�29
Pb 7�26 6�94 6�78 9�04 6�94 7�19 7�81 8�34
Th 3�10 3�03 3�07 3�55 2�90 2�86 2�76 3�20
U 0�74 0�92 0�94 0�85 0�87 0�25 0�19 0�89
Modal composition (vol. %)
Ol 4�2 7�8 5�8 1�6 5�6 3 2�1
Cpx 6�8 3�2 3�8 7�4 2�7 6�4 8�8
Opx — — — — — — —
Mag 0�1 — — 0�3 — — 0�2
Am — — — — — — —
Pl — — — — — — —
GM Pl þ Cpx þ Pl þ Cpx þ Pl þ Cpx þ Pl þ Cpx þ Pl þ Cpx þ Pl þ Cpx þ Pl þ Cpx þ

Mag Mag Ol þMag Mag Mag Mag Mag

(continued)
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Table 1. Continued

Sample no.: SHY-09 SHY-10 SHY-11 SHY-12 SHY-13 SHY-14 SHY-15 SHY-16
Rock type: Cpx- Ol- Ol- Ol- Ol- Adakitic Adakitic Adakitic

HMA HMA HMA HMA HMA dacite dacite dacite

Major elements (wt %)
SiO2 55�27 54�20 54�19 53�74 54�22 66�06 60�43 67�62
TiO2 0�72 0�71 0�71 0�70 0�73 0�54 0�55 0�60
Al2O3 14�11 13�42 13�48 13�29 13�53 15�55 15�98 15�45
Fe2O3

T 7�41 7�87 7�62 7�66 7�72 3�75 5�01 3�50
MnO 0�10 0�11 0�11 0�12 0�11 0�10 0�04 0�04
MgO 7�98 9�90 9�60 10�04 9�86 1�98 2�92 1�09
CaO 7�42 7�50 7�58 7�32 7�45 3�79 4�75 1�48
Na2O 3�12 2�92 3�02 2�96 3�04 4�68 3�02 3�98
K2O 1�42 1�31 1�35 1�33 1�34 1�94 2�82 3�67
P2O5 0�16 0�16 0�16 0�16 0�17 0�18 0�19 0�20
LOI 1�08 1�01 1�05 0�93 0�99 0�98 2�57 1�23
Total 98�79 99�11 98�88 98�23 99�14 99�55 98�28 98�85
FeOT 6�7 7�1 6�9 6�9 6�9 3�4 4�5 3�1
FeO/MgO 0�84 0�72 0�71 0�69 0�70 1�70 1�55 2�89
Mg# 68�1 71�4 71�4 72�2 71�7 51�2 53�6 38�2
Trace elements (ppm)
Li 14�5 15�7 25�2 15�5 26�2
Be 0�98 0�97 1�25 1�82 1�91
Sc 22�6 22�9 10�9 11�0 5�7
V 172�1 171�6 89�0 91�3 25�1
Cr 560 576 112 112 19
Co 43�7 43�0 17�5 17�6 23�1
Ni 309 310 53 53 6
Cu 49�0 30�9 17�2 29�8 5�7
Zn 71�8 72�8 60�2 63�3 52�1
Ga 17�7 17�8 17�8 20�0 19�2
Rb 33�5 32�3 40�6 83�6 78�9
Sr 452 448 485 669 647
Y 15�2 14�6 12�4 13�6 12�9
Zr 94�0 94�1 138�5 143�5 175�9
Nb 4�69 4�68 6�28 6�56 12�16
Cs 2�89 3�71 2�67 4�30 1�5
Ba 453 442 797 722 1427�7
La 16�1 16�0 25�0 26�1 48�41
Ce 33�8 34�0 46�8 48�3 88�9
Pr 4�11 4�11 5�63 5�83 9�54
Nd 17�3 17�1 21�5 22�3 33�25
Sm 3�57 3�52 3�74 4�01 5�12
Eu 1�06 1�08 1�08 1�17 1�47
Gd 3�24 3�29 3�15 3�18 3�85
Tb 0�45 0�45 0�41 0�42 0�47
Dy 2�71 2�55 2�26 2�42 2�23
Ho 0�54 0�51 0�43 0�47 0�38
Er 1�50 1�36 1�15 1�29 1�06
Tm 0�22 0�22 0�17 0�20 0�13
Yb 1�39 1�36 1�16 1�22 0�87
Lu 0�20 0�19 0�18 0�18 0�12
Hf 2�56 2�58 3�61 3�69 4�45
Ta 0�31 0�30 0�46 0�44 0�71
Pb 7�40 7�99 25�67 14�25 17�23
Th 3�01 3�09 5�64 5�89 9�88
U 0�91 0�91 1�70 1�66 1�06
Modal composition (vol. %)
Ol 2�8 5�2 5�0 4�8 6�9 — — —
Cpx 5�4 2�6 4�5 2�1 2�7 1�6 1�4 —
Opx — — 0�1 0�2 — — —
Mag — — — — — — — —
Am — — — — — 8�1 5�6 9�4
Pl — — — — — 15�6 22�5 19�2
GM Pl þ Cpx þ Pl þ Cpx þ Pl þ Cpx þ Pl þ Cpx þ Pl þ Cpx þ Pl þ Kfs þ Pl þ Kfs þ Pl þ Kfs þ

Mag Ol þMag Mag Mag Ol þMag Mag Mag Q þMag

Ol, olivine; Cpx, clinopyroxene; Pl, plagioclase; Mag, magnetite; GM, groundmass.
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Shimadzu 1600 electron microprobe at University of

Science and Technology of China (USTC) and a JEOL

JXA-8230 electron microprobe at the Guangzhou

Institute of Geochemistry, Chinese Academy of
Sciences (GIGCAS). The accelerating voltage was 15 kV

with a beam current of 20 nA and a beam diameter of

1–2 mm. The peak counting times are 30 s for Ca and Ni

in olivine, 7 s for Na and K, and 10 s for the rest of the

elements. Typical analytical uncertainties range from 1

to 5%, relative, except for Na, which may be up to 10%.

Major-element compositions of whole-rocks were
measured by X-ray fluorescence spectrometry (XRF)

using a Shimadzu XRF-1800 sequential XRF system

with a voltage of 40 kV and a current of 70 mA at the

(a)

1 mm

Ol

Cpx

(b)

1 mm

Ol

Cpx

(c)

1 mm

Am

(d)

A

B

0.5 mm

Fig. 2. Photomicrographs (plane-polarized light) showing the petrographic features of representative Ol-HMAs (a), Cpx-HMAs (b),
adakitic dacites (c) and green-cored clinopyroxene in Cpx-HMA SHY04 (d) from the Liaodong Peninsula, North China. Line A–B in
(d) shows the location of the compositional traverse in Supplementary Data Fig. S2 in Electronic Appendix 4. Cpx, clinopyroxene;
Ol, olivine; Am, amphibole.

Table 2. Sr and Nd isotopic compositions of the early Cretaceous Guiyunhua volcanic rocks in the Liaodong Peninsula

Sample no.: SHY-01 SHY-02 SHY-03 SHY-04 SHY-05 SHY-14 SHY-15 SHY-16
Rock type: Cpx-HMA Ol-HMA Ol-HMA Cpx-HMA Ol-HMA Adakitic dacite Adakitic dacite Adakitic dacite

87Sr/86Sr 0�706676 0�706639 0�706645 0�706595 0�706655 0�707995 0�708655 0�712125
2r, 10–6 4 4 4 4 4 7 7 10
143Nd/144Nd 0�512293 0�512289 0�512313 0�512330 0�512285 0�512104 0�512102 0�511590
2r, 10–6 3 4 3 3 3 4 3 1
87Rb/86Sr 0�216 0�216 0�211 0�242 0�221 0�242 0�361 0�353
147Sm/144Nd 0�1240 0�1199 0�1252 0�1233 0�1281 0�1050 0�1088 0�0930
(87Sr/86Sr)i 0�706290 0�706253 0�706267 0�706161 0�706260 0�707561 0�708008 0�711493
(143Nd/144Nd)i 0�512191 0�512190 0�512210 0�512228 0�512179 0�512018 0�512012 0�511513
eNd(t) –5�56 –5�57 –5�19 –4�83 –5�78 –8�94 –9�04 –18�78
TDM (Ga) 1�45 1�40 1�44 1�38 1�54 1�46 1�52 1�96
TDM

2 (Ga) 1�19 1�19 1�16 1�14 1�20 1�42 1�43 2�10

87Rb/86Sr and 147Sm/144Nd ratios are calculated using Rb, Sr, Sm and Nd contents by ICP-MS and measured 87Sr/86Sr and
143Nd/144Nd ratios by MC-ICP-MS; 147Sm/144Nd and 143Nd/144Nd ratios used in calculation of initial isotopic ratios, model ages (TDM)
and two-stage model ages (TDM

2) are 0�1967 and 0�512638 for CHUR, and 0�2137 and 0�51315 for depleted mantle (DM), respect-
ively; 87Rb/86Sr and 87Sr/86Sr are 0�0827 and 0�7045 for CHUR; initial isotopic ratios are calculated at 122 Ma for the lavas.
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Table 3. Zircon U–Pb data for the Guiyunhua dacite (SHY-16) in the Liaodong Peninsula

Spot no. Measured U–Pb ratios Calculated U–Pb ages (Ma)

207Pb/206Pb 1r 207Pb/235U 1r 206Pb/238U 1r 207Pb/206Pb 1r 207Pb/235U 1r 206Pb/238U 1r

1 0�0551 0�0040 0�198 0�014 0�0265 0�0006 417 156 183 12 168 3
2 0�0875 0�0082 0�219 0�019 0�0190 0�0006 1370 156 201 15 121 4
3 0�1148 0�0089 0�304 0�028 0�0195 0�0007 1876 157 269 22 124 4
4 0�1406 0�0190 0�365 0�047 0�0188 0�0008 2234 245 316 35 120 5
5 0�1066 0�0152 0�281 0�038 0�0191 0�0008 1741 276 251 30 122 5
6 0�1140 0�0132 0�267 0�026 0�0184 0�0006 1864 174 240 21 117 3
7 0�1051 0�0141 0�269 0�035 0�0186 0�0007 1716 261 242 28 119 4
8 0�1248 0�0122 1�018 0�096 0�0592 0�0014 2026 179 713 48 371 8
9 0�0625 0�0048 0�155 0�011 0�0185 0�0004 691 144 146 9 118 2
10 0�0953 0�0127 0�256 0�033 0�0195 0�0008 1534 264 231 26 124 5
11 0�0832 0�0122 0�227 0�032 0�0198 0�0007 1273 304 207 27 126 5
12 0�0904 0�0092 0�228 0�018 0�0197 0�0007 1435 144 209 15 125 4
13 0�0717 0�0105 0�191 0�027 0�0193 0�0007 977 317 178 23 123 4
14 0�0946 0�0151 0�240 0�037 0�0184 0�0007 1519 321 218 30 117 4
15 0�0844 0�0128 0�212 0�031 0�0182 0�0008 1302 315 195 26 116 5
16 0�1076 0�0109 0�268 0�022 0�0195 0�0007 1760 138 241 17 124 4
17 0�1065 0�0118 0�242 0�024 0�0192 0�0007 1741 173 220 19 123 4
18 0�0872 0�0080 0�230 0�016 0�0207 0�0008 1366 119 210 13 132 5
19 0�0979 0�0133 0�254 0�033 0�0188 0�0007 1585 268 230 27 120 5
20r 0�0804 0�0111 0�226 0�030 0�0204 0�0007 1208 288 207 25 130 4
20c 0�1062 0�0039 4�023 0�146 0�2675 0�0045 1734 60 1639 30 1528 23
21 0�0810 0�0113 0�205 0�027 0�0183 0�0008 1222 292 189 23 117 5
22 0�0909 0�0092 0�241 0�023 0�0202 0�0006 1445 177 219 19 129 4

Table 4. Hf isotopic data for zircons from the Guiyunhua dacite (SHY-16) in the Liaodong Peninsula

Spot no. 176Hf/177Hf 1r 176Lu/177Hf 176Yb/177Hf 176Hf/177Hfi eHf(t) 1r TDM (Ga) Tcrust (Ga)

2 0�282087 0�000008 0�000680 0�021298 0�282085 –21�6 0�3 1�63 2�54
3 0�282086 0�000008 0�000201 0�006750 0�282086 –21�6 0�3 1�61 2�54
4 0�282097 0�000009 0�000813 0�025400 0�282095 –21�3 0�3 1�62 2�52
5 0�282084 0�000006 0�000559 0�016723 0�282083 –21�7 0�2 1�63 2�54
6 0�282069 0�000008 0�000417 0�012313 0�282068 –22�2 0�3 1�64 2�58
7 0�282054 0�000010 0�000496 0�014566 0�282053 –22�8 0�3 1�67 2�61
9 0�282092 0�000010 0�001544 0�048055 0�282088 –21�5 0�3 1�66 2�53
10 0�282081 0�000007 0�000363 0�010659 0�282080 –21�8 0�3 1�62 2�55
11 0�282070 0�000009 0�000639 0�019186 0�282068 –22�2 0�3 1�65 2�58
12 0�282102 0�000006 0�000420 0�012313 0�282101 –21�1 0�2 1�60 2�50
13 0�282103 0�000006 0�000625 0�019804 0�282101 –21�1 0�2 1�60 2�50
14 0�282093 0�000005 0�000422 0�012384 0�282092 –21�4 0�2 1�61 2�52
15 0�282054 0�000006 0�000667 0�020437 0�282053 –22�8 0�2 1�67 2�61
16 0�282074 0�000008 0�000494 0�014525 0�282073 –22�1 0�3 1�64 2�57
17 0�282070 0�000005 0�000399 0�011566 0�282069 –22�2 0�2 1�64 2�57

Initial isotopic ratios and eHf(t) are calculated at 122 Ma for the lavas.

Table 5. P–T estimation by different thermobarometers for early Cretaceous Guiyunhua lavas in the Liaodong Peninsula

Sample: SHY13 SHY04 SHY15 SHY15 SHY15 SHY15
Rock type: Ol-HMAs Cpx-HMAs High-Mg High-Mg High-Mg High-Mg

adakitic dacite adakitic dacite adakitic dacite adakitic dacite

n 5 2 6 6 6 6
Thermobarometry Cpx–melt* Cpx–melt* Am Am Am Am
Reference Putirka et al. Putirka et al. Hollister et al. Johnson & Anderson & Ridolfi et al.

(2003) (2003) (1987) Rutherford Smith (1995) (2010)
(1989)

P (kbar) 9�2–10�9 6�6–7�5 3�1–4�8 2�5–3�7 3�6–5�0 1�4–2�2
T (�C) 1235–1250 1202–1209 836–895
H2O (wt %) 5�0–5�7

*Compositions of melt are assumed to be those of the whole-rocks.
n, number of estimation.
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China University of Geosciences, Wuhan (CUG). The

measurement procedure and data quality were moni-
tored by repeated samples and USGS standard AGV-2;

the analytical uncertainties are better than 3%. Detailed

sample fusion procedures and analytical precision and

accuracy have been described by Ma et al. (2012).

Trace-element concentrations of whole-rocks were

determined by inductively coupled plasma mass spec-

trometry (ICP-MS) at GIGCAS using a Perkin–Elmer
Sciex ELAN 600 system after acid digestion of the sam-

ples in high-pressure Teflon bombs, following the ana-

lytical procedures described by Liu et al. (1996).

Analytical uncertainties are better than 5% for most

trace elements and are better than 10% for others (Cr

and Pb).
Sr and Nd isotopic ratios of whole-rocks were ana-

lyzed by multicollector (MC)-ICP-MS using a Micromass

Isoprobe system after digestion in Teflon bombs with a

mixture of concentrated HF, HNO3 and HClO4 at

GIGCAS. Detailed sample digestion and separation pro-

cedure, and analytical techniques follow those of Wei
et al. (2002) and Li et al. (2004). The measured 87Sr/86Sr

and 143Nd/144Nd ratios were normalized to
86Sr/88Sr¼ 0�1194 and 146Nd/144Nd¼ 0�7219, respect-

ively. SRM NBS-987 yielded an average 87Sr/86Sr of

0�710243 6 14 (2r; n¼12). The La Jolla standard meas-

ured during the course of analysis yielded an average
143Nd/144Nd of 0�511847 6 3 (2r; n¼ 11), and BHVO-2
yielded 143Nd/144Nd of 0�512979 6 6 (2r; n¼3).
87Rb/86Sr and 147Sm/144Nd ratios were calculated using

measured 87Sr/86Sr and 143Nd/144Nd ratios by MC-ICP-

MS, and Rb, Sr, Sm and Nd contents by ICP-MS. Initial

isotopic ratios and eNd(t) were calculated using an age

of 122 Ma for the lavas.
Cathodoluminescence (CL) images, U–Pb dating and

Hf isotope analyses of zircon were conducted at CUG.

CL images of zircon were obtained prior to analysis,

using a JXA-8100 electron microprobe, to characterize

the internal structures and to select suitable sites for U–

Pb dating and Hf isotope analyses. In situ U–Pb isotope

analyses of zircon were conducted by LA-ICP-MS with a

beam diameter of 32 mm and zircon 91500 as external

standard. Zircon Lu–Hf isotope analyses were con-
ducted using a Neptune Plus MC-ICP-MS system in

combination with a Geolas 2005 excimer ArF laser abla-

tion (LA) system, using a beam diameter of 44 mm.

Detailed operating conditions and data reduction for zir-

con U–Pb dating and Hf isotope analyses have been

described by Liu et al. (2010) and Hu et al. (2012). U–Pb

age data were not subjected to a common-lead correc-
tion because the common-Pb concentrations were

lower than detection limits. Concordia diagrams and

weighted mean calculations were made using Isoplot/

Ex_ver3 (Ludwig, 2003). Calculation of initial Hf isotope

ratios and model ages used the 176Lu decay constant of

1�865� 10–11 (Amelin & Davis, 2005). The 176Hf/177Hf
and 176Lu/177Hf ratios of CHUR and depleted mantle are

0�282772 and 0�0332, and 0�28325 and 0�0384, respect-

ively (Blichert-Toft & Albarède, 1997; Griffin et al.,

2000). Initial isotopic ratios and eHf(t) were calculated

using an age of 122 Ma for the lavas.

RESULTS

Zircon U–Pb dating
Zircons from a dacite (SHY16) were used to constrain

the eruption age of the Guiyunhua volcanic rocks. The

zircon grains are euhedral, 100–350mm long and have

length/width ratios of 2:1 to 4:1. Most of them show

clear oscillatory zoning in CL images (Fig. 3), typical of
magmatic zircons. Inherited cores with older ages were

also observed in some grains. The magmatic zircon

grains yield apparent 206Pb/238U ages ranging from 116

to 132 Ma, with a weighted mean 206Pb/238U age of

122 6 2 Ma (MSWD¼ 1�3), which is interpreted as the

crystallization age of dacite SHY16. Similar early

Cretaceous ages (106–132 Ma) have also been reported
for the Guiyunhua lavas in different supra-detachment

basins in the MCC in the Liaodong Peninsula (Liu et al.,

2011; Shen et al., 2011; Fig. 1b).

Mineral chemistry
Olivine
Olivine phenocrysts in the Guiyunhua Ol-HMAs are

magnesian with Fo contents [Fo¼100�Mg/(MgþFe)]

varying from 84�4 to 90�8 (Fig. 4a and b). Calculated

Mg–Fe partition coefficients between the cores of the

most forsteritic phenocrysts (Fo> 90) and whole-rocks
range from 0�28 to 0�34 (Fig. 5a), consistent with experi-

mental values between olivine and basaltic melt of

0�30 6 0�03 (Roeder & Emslie, 1970). Their CaO contents

(0�08 wt %) are higher than those of olivine from mantle

xenoliths in the NCC (Fig. 5b), which suggests that they

precipitated from magmas, rather than being mantle
xenocrysts. The NiO contents of olivine in the Ol-HMAs

decrease with decreasing Fo content (Fig. 5c), which

0

0.1

0.2

0.3

0 1 2 3 4 5
207 235Pb/ U

20
6

23
8

P
b/

U
Intercepts at 1803±62 Ma

200

600

1000

1400

1800

0.1 0.3 0.5

0.015

0.02

180

150

120

Mean=121.6±2.1Ma
MSWD = 1.3

100 μm

AgeHf
Hf

core

core

core

Fig. 3. U–Pb concordia diagram and representative cathodolu-
minescence (CL) images for zircons from Guiyunhua dacite
SHY16 from the Liaodong Peninsula, North China.
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also distinguishes them from the array defined by man-

tle xenoliths (Sato, 1977).

Olivine phenocrysts in the Guiyunhua Cpx-HMAs

have lower Fo contents (74�1–88�3) than those in the Ol-

HMAs (Fig. 4c). One olivine falls within the equilibrium
field, whereas the remaining grains fall significantly

below the equilibrium field in an Fe–Mg equilibrium dia-

gram (Fig. 5a), suggesting that the analyzed olivines are

not equilibrium phenocrysts. They have higher CaO and

lower NiO contents than those in the Ol-HMAs (Fig. 5b

and c), which also suggests that they are late-
crystallizing grains.

Clinopyroxene
Clinopyroxenes in the Guiyunhua Ol-HMAs are mainly

augite and subordinate diopside (Supplementary Data

Fig. S1 in Electronic Appendix 4; supplementary data

are available for downloading at http://www.petrology.

oxfordjournals.org), with Mg# values ranging from 73�1
to 85�6 (Fig. 4d and e), and low Al2O3 (<4�5 wt %)
and Na2O (<0�6 wt %). Clinopyroxene phenocrysts in

the Ol-HMAs are euhedral and mostly homogeneous.

Some crystals exhibit weak compositional zoning

with cores having slightly lower Mg# than the rims.

Such textural and chemical variation probably reflects
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Fig. 4. Histograms of Fo content of olivine phenocrysts (a–c) and Mg-numbers of clinopyroxene (d–f) in early Cretaceous
Guiyunhua HMAs of the Liaodong Peninsula. For comparison, the compositions of phenocrysts from Ol-HMA SHY13 are also
shown in (b, c) and (e, f).
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rapid crystallization during magma ascent (Guo et al.,

2007).

Clinopyroxenes in the Guiyunhua Cpx-HMAs are

mainly diopside and subordinate augite

(Supplementary Data Fig. S1 in Electronic Appendix 4),
with variable Mg# (63�7–82�7; Fig. 4f) and low Na2O

(<0�8 wt %). These clinopyroxene phenocrysts have

more complex textural and chemical variation than

those from the Ol-HMAs. Green-cored, unzoned, nor-

mally zoned and weakly reverse zoned clinopyroxene

all are found in the Cpx-HMAs (Supplementary Data

Fig. S2 in Electronic Appendix 4). The green-cored Cpx
(<3%) has a resorbed green core surrounded by a color-

less mantle and thin rim (Fig. 2d). This type of clinopyr-

oxene has a low-Mg# (<70) core and shows an abrupt

increase in Mg# to> 75 in the mantle (Supplementary

Data Fig. S2 in Electronic Appendix 4). Some of them

are partially (core) or completely pseudomorphed by a
vermicular aggregate of fine-grained pyroxene, mag-

netite, plagioclase, olivine and albite (Supplementary

Data Fig. S3 in Electronic Appendix 4). Compositions of

the green, resorbed and low-Mg# (<70) cores are very

similar to those of clinopyroxenes from the lower crust

of the NCC (Supplementary Data Fig. S4 in Electronic
Appendix 4), and the morphologies, structure and com-

position of green-cored Cpx probably reflect over-

growth around lower crustal xenocrystic clinopyroxene.

The magmatic clinopyroxene phenocrysts from the

Cpx-HMAs have lower Mg# (72�9–82�7; Fig. 4f) and

higher Al2O3 (3�3–8�5 wt %) than those from the Ol-

HMA.
Clinopyroxene phenocrysts in the Guiyunhua dacites

are subhedral to euhedral and rimmed by amphibole.

They are diopside and augite (Fig. S1 in Electronic

Appendix 4) with compositions similar to the non-zoned

Cpx and the rim of zoned Cpx from the Cpx-HMAs.

Amphibole, plagioclase and magnetite
Amphibole phenocrysts in dacites are euhedral and

homogeneous and are classified as magnesio-

hastingsite of the calcic-amphibole group according to
the nomenclature of Leake et al. (1997). Their cores

have MgO, FeO and Al2O3 of 15�0–16�3 wt %, 10�2–

12�1 wt % and 8�4–9�9 wt %, respectively.

Plagioclase is present in the groundmass and the

reacted cores of green-cored Cpx in the Guiyunhua

HMAs. They are andesine with end-member compos-
itions of Ab28�5–44�5An58�1–70�5Or1�0–2�5. Plagioclase

phenocrysts in the Guiyunhua dacite (SHY15) are
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Fig. 5. (a) Fe/Mg equilibrium between olivine cores (Fo content)
and whole-rock compositions (Mg#) in early Cretaceous
Guiyunhua HMAs, where the Mg# of the whole-rocks was cal-
culated assuming 10% of total Fe as Fe3þ. The Fe/Mg exchange
partition coefficient between olivine and basaltic liquid is taken
as 0�30 6 0�03 (Roeder & Emslie, 1970). (b) Variation of CaO
and (c) Ni contents vs Fo content of olivine cores from early
Cretaceous Guiyunhua HMAs. The dashed line in (b) separates
magmatic and xenocrystic olivine in dry mafic magmas on the
basis of CaO content (Foley et al., 2013). Compositions of oliv-
ine in Archean peridotite xenoliths from Ordovician kimberlites
and those in lherzolite xenoliths from Cenozoic alkali basalts in
the NCC are from Gao et al. (2008). Compositions of olivine in
HMAs from the Setouchi volcanic belt, Japan (Setouchi HMAs)
in (b) are from Tatsumi et al. (2006). Compositions of olivine
from anhydrous melts in equilibrium with mantle lherzolite

and pyroxenite are from Straub et al. (2011). Fields of olivine
from Setouchi HMAs in equilibrium with mantle lherzolite
(HMAs-lher.) and harzburgite (HMAs-harz.) are modified from
Tatsumi et al. (2003). Olivine phenocrysts in calc-alkaline bas-
altic andesites and andesites from the central Mexican
Volcanic Belt (central MVB HMAs) are after Straub et al. (2008).
Red star in (c) indicates olivine in peridotite that has undergone
70% serial depletion (Straub et al., 2008).
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labradorite and andesine with end-member compos-

itions of Ab37�6–53�2An43�0–51�1Or1�7–9�0.
Fe–Ti oxides are rare in the Ol-HMAs and occur only

in the groundmass. However, more magnetite occurs

as phenocrysts and as a groundmass mineral in the

Cpx-HMAs (Supplementary Data Fig. S3 in Electronic

Appendix 4). They are titanomagnetite with a wide

range of TiO2, from �14�5 wt % in magnetite included in
the green-cored Cpx to �17�7 wt % in the groundmass

phase.

Whole-rock chemistry
The Guiyunhua high-Mg volcanic rocks encompass

medium-K basaltic andesites and medium-K to high-K

dacites (Fig. 6a and b). Major element compositions are

discussed in terms of weight per cent, normalized to

100% on a volatile-free basis.

High-Mg andesites
The basaltic andesites have high SiO2 (54�8–56�8 wt %),

high MgO (7�6–10�4 wt %; Fig. 6c), low FeOT/MgO (<1;

Fig. 6d) and high Mg# (67–72), corresponding to the

geochemical characteristics of HMAs (Crawford et al.,
1989; Le Bas, 2000; Tatsumi, 2006). They also exhibit

moderate CaO (7�1–8�0 wt %) and Al2O3 (13�7–14�9 wt

%), low TiO2 (<0�8 wt %) and P2O5 (<0�2 wt %), and high

Ni (234–310 ppm) and Cr (524–612 ppm) (Fig. 7), and

thus are similar to the Neogene HMAs in the Setouchi

volcanic belt of Japan (Tatsumi, 2006).
The chondrite-normalized REE patterns (Fig. 8a) of

the HMA show enrichment of LREE over heavy REE

(HREE) with negligible Eu anomalies [dEu¼ 0�9–1�0,

where dEu¼ 2�EuN/(SmNþGdN)] and fractionation of

middle REE (MREE) versus HREE (SmN/YbN� 3�0). They

are enriched in LREE, LILE (Rb, Ba and Th) and Pb, with
negative anomalies in high field strength elements

(HFSE; Nb, Ta and Ti) in the primitive mantle-

normalized trace element patterns (Fig. 8b).

Adakitic dacites
The dacites have high SiO2 (>63 wt %), Na2O (>3�2 wt

%) and K2O (>2�0 wt %). Compared with the coexisting
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HMAs, these dacites have lower MgO, FeO, CaO, Ni and

Cr, and higher Al2O3 (Fig. 7). They are characterized by
adakitic trace element signatures (Ma et al., 2015) with

high Sr (�485 ppm) and LREE, low Y (�14 ppm) and

HREE (Yb� 1�2 ppm), a lack of obvious Eu anomalies

(dEu¼ 0�9–1�0; Fig. 8a), and high Sr/Y (�39; Fig. 9a); in all
these features they are broadly similar to both modern

adakites and Archean TTG suites (Defant & Drummond,
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1990; Martin et al., 2005) and to experimental melts of

mafic lower crust at pressures of 1–1�25 GPa (Qian &

Hermann, 2013). They are enriched in LREE, LILE (e.g.

Rb, Ba and Th) and Pb, with negative anomalies in

HFSE (Nb, Ta and Ti) in primitive mantle-normalized
trace element patterns (Fig. 8b). Dacite SHY16, which

has the highest SiO2 (69�3 wt %), as well as Guiyunhua

dacite–trachydacite from the nearby Pulandian basin

(Fig. 1; Ji et al., 2015) are defined as low-Mg adakitic da-

cites in this study, based on their low MgO (<1�2 wt %),

Mg# (<41), Ni (<7 ppm) and Cr (<20 ppm). The remain-

ing two dacite samples (SHY14 and SHY15), defined as
high-Mg adakitic dacites in this study, have moderate

MgO (2�0–3�1 wt %) but higher Mg# (>51), Ni (�53 ppm)

and Cr (�112 ppm) than the low-Mg adakitic dacites and

experimental melts equilibrated with basaltic rocks at

1–4 GPa (Rapp et al., 1999; Qian & Hermann, 2013).

These high-Mg dacites have lower LREE and LILE and
higher HREE contents than the low-Mg dacites and plot

between HMA and low-Mg dacites in chondrite-

normalized REE (Fig. 8a) and primitive mantle-

normalized trace element (Fig. 8b) patterns.

Whole-rock Sr–Nd isotope compositions
Initial 87Sr/86Sr ratios and eNd(t) values have been calcu-

lated at 122 Ma, corresponding to the zircon U–Pb age

of the adakitic dacite, and are shown in a plot of eNd(t)

vs (87Sr/86Sr)i (Fig. 10a). The Sr–Nd isotopic compos-
itions of the Guiyunhua HMAs (both Ol- and Cpx-HMAs)

are homogeneous with (87Sr/86Sr)i of 0�7062–0�7063 and

negative eNd(t) values of –5�8 to –4�9 (Table 2), compar-

able with the Nd isotopic composition of Mesozoic sub-

continental lithospheric mantle (SCLM) beneath the

NCC (Fig. 10a). In contrast, the adakitic dacites have
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distinctly different Sr and Nd isotopic compositions,

with a wide range of initial 87Sr/86Sr (0�7076–0�7115) and

eNd(t) (–18�9 to –8�9), similar to that of the lower crust be-

neath the NCC (Jiang et al., 2013). The high-Mg adakitic

lavas have less radiogenic initial Sr and more radio-

genic Nd isotope compositions than the low-Mg group

and plot on a binary mixing line between the HMAs and

the low-Mg dacite SHY16.

Zircon Hf isotope compositions
Magmatic zircons from adakitic dacite SHY16 have

homogeneous isotopic compositions with initial
176Hf/177Hf ratios from 0�282053 to 0�282101, eHf(t) val-

ues from –21�1 to –22�8, depleted mantle Hf model ages

(TDM) from 1�6 to 1�7 Ga and crustal model ages (TDM
C)

ranging from 2�5 to 2�6 Ga. The Hf-isotope compositions
are very similar to those of zircon in contemporary

granites derived from the ancient lower crust (Yang

et al., 2007b), rather than those of zircon in contempor-

ary granites in the Liaodong Peninsula, which indicate

contributions from juvenile crust (Yang et al., 2008)

(Fig. 10b).

DISCUSSION

Crystallization pressure and temperature
High-Mg andesites (HMAs)
Clinopyroxene–liquid thermobarometers are often used

to determine the temperature and pressure at which

these two phases were last in equilibrium (Putirka,

2008). These thermobarometers require knowledge of
whether the magma is anhydrous or hydrous. The

Guiyunhua HMAs are considered as H2O-rich magmas,

on the basis of the following observations.

1. The absence of plagioclase phenocrysts in the HMA

indicates that the magmas may contain abundant

water, as crystallization of plagioclase is suppressed

in H2O-rich magmas (Gaetani et al., 1993; Grove

et al., 2012).

2. Although olivine in the HMA has CaO contents

higher than those from mantle xenoliths in the NCC,
high-Mg and low-Ca (CaO< 0�1 wt %) phenocrysts

are also present (Fig. 5b). In this respect they are

similar to olivine crystals from subduction-related

hydrous magmas (e.g. Kamenetsky et al., 2006). The

presence of water in magmas will reduce the parti-

tioning of Ca into olivine, because the activity of Ca
is suppressed by the strong bonding of hydrous spe-

cies to Ca-complexes (Li et al., 2012; Guo et al.,

2013). Therefore, low-Ca (CaO< 0�1 wt %) magmatic

olivine may precipitate from a hydrous melt.

3. Magmatic clinopyroxenes from the HMA have rela-

tively high Wo and low CaTsþCrTs

[Ca(Ar,Cr)SiAlO6] components, comparable with
pyroxenes that crystallize from subduction-related

lavas and from melts in H2O-saturated melting ex-

periments (Supplementary Data Fig. S5 in Electronic

Appendix 4).

4. P–T–XH2O estimations for Guiyunhua primary HMA

magma generation suggest a hydrous melting of
mantle peridotite [see ‘Melting conditions (P–T–

XH2O)’, below].
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Following these considerations, the crystallization

pressure and temperature of the HMA were estimated

using the clinopyroxene–liquid thermobarometers for

hydrous systems (Putirka et al., 2003). The liquid com-

positions used in the calculation are the whole-rock
compositions without correction for the proportion of

phenocrysts, because the Guiyunhua HMAs (SHY04

and SHY13) are phenocryst-poor (<7%), and small vol-

umes of crystals do not significantly change the chem-

ical composition of the melt (Mordick & Glazner, 2006).

Tests for equilibrium between clinopyroxene and a

nominal coexisting liquid can be made by comparing
observed and predicted values for the Fe–Mg ex-

change partition coefficient [KD
Fe–Mg¼ (MgliqFemineral)/

(MgmineralFeliq)] (Putirka, 2008). The KD
Fe–Mg between

clinopyroxene and basaltic melt is less well constrained

than that for olivine and melt because it is P–T sensitive

and there is some ferric iron in clinopyroxene and in the
melt (Putirka et al., 2003; Müller et al., 2013). Values for

KD
Fe–Mg (Cpx–melt) from experiments at 850–1875�C

and 0�001–110 kbar are distributed normally within the

range 0�105–0�488 (Putirka et al., 2003). Consequently,

Cpx phenocrysts with calculated KD
Fe–Mg beyond this

range were eliminated from the P–T estimation. Results
show that the Guiyunhua HMAs reflect high crystalliza-

tion pressures (>9 and >6�5 kbar for the Ol-HMA and

the Cpx-HMA, respectively) and temperatures (1235–

1250�C and 1202–1209�C for the Ol-HMA and the Cpx-

HMA, respectively) (Table 5).

Adakitic dacites
The crystallization pressure of the Guiyunhua adakitic

dacite (SHY15) was estimated using the Al-in-

hornblende thermobarometer (Table 5). The crystalliza-
tion temperature and H2O content of the melt were esti-

mated using the thermobarometric and hygrometric

formulations proposed by Ridolfi et al. (2010). Results

show that the Guiyunhua adakitic dacites are hydrous

(H2O�5 wt %) and record lower crystallization tempera-

tures (836–895�C) and shallower crystallization depths
(1�4–5�0 kbar) than the HMA.

Petrogenesis of the Guiyunhua HMA
A primary magma is defined as a melt that has not been

modified chemically since it last equilibrated with its

source region. The early Cretaceous Guiyunhua Ol-
HMAs are phenocryst-poor with Mg# greater than 71

and FeOT/MgO ratios lower than 0�72 (Fig. 6d). Their

olivine phenocrysts are high-Fo (up to 90�8; Fig. 4a and

b), Ni-rich (Fig. 5c) and in equilibrium with the melt

composition. Hence, the Guiyunhua Ol-HMAs can be

taken as primary or near-primary magmas that last
equilibrated with mantle ultramafic rocks (peridotite or

pyroxenite). As such, these Ol-HMAs are used to con-

strain the source lithology and melting conditions of the

intraplate HMA magmas in the Liaodong Peninsula.

Source: peridotite vs pyroxenite?
A primary magma could have equilibrated with either a

peridotite or pyroxenite residue within the mantle.

Partial melts of pyroxenite (olivine-free source) have

relatively low MgO and high Ni concentrations, and the

early crystallizing olivine from such melts has corres-

pondingly high Ni concentrations owing to high olivine/
melt DNi (Sobolev et al., 2005; Herzberg, 2011). A pyrox-

enite residue has been proposed for HMA lavas from

the central Mexican Volcanic Belt (MVB), based on the

anomalously high Ni contents of their olivine pheno-

crysts (Straub et al., 2008, 2011). Comparison of olivine

from pyroxenite-derived HMA (e.g. the central MVB
HMA) and those from peridotite-derived basalts shows

that the former not only have high Ni concentrations

but also follow steeper trends in a plot of Ni versus Fo

(Straub et al., 2008).

Although olivine phenocrysts from the Guiyunhua

Ol-HMA have unusually high Ni contents compared

with olivine crystallized from partial melts of a normal
lherzolite source, they follow a shallower trend than

those from pyroxenite-derived HMA in the central MVB

in a Ni vs Fo plot (Fig. 5c). However, their compositions

and Ni vs Fo trend are very similar to those of HMAs in

the Setouchi volcanic belt, Japan (Tatsumi et al., 2003),

which have been interpreted to have equilibrated with
mantle peridotite (Tatsumi, 1982, 2006). Consequently,

the high-Ni olivines in the Guiyunhua HMA are con-

sidered to reflect melts that last equilibrated with a harz-

burgitic residue (Tatsumi et al., 2006) or were generated

from a peridotite source that experienced metasoma-

tism by sulfur-bearing silicic melts before the melting

event (Ishimaru & Arai, 2008), rather than melts derived
from an olivine-free source.

A peridotitic, rather than a pyroxenitic, source for the

Guiyunhua HMA is also supported by their chemical

and isotopic compositions. The volcanic rocks have Sr–

Nd isotope compositions not only distinct from those of

pyroxenite xenoliths exhumed by contemporary basalts
in the NCC (Fangcheng pyroxenites; Zhang et al., 2008)

but also those of early Cretaceous lavas in the Liaodong

Peninsula, which have been interpreted to be derived

from a pyroxenitic source (Pang et al., 2015) (Fig. 10a);

this suggests that their source probably was not a man-

tle pyroxenite. As shown in Fig. 11, comparison of the
Guiyunhua Ol-HMA with high-pressure experimental

melts of pyroxenite and hydrous peridotite further sug-

gests that these HMAs cannot be derived from partial

melting of either silica-deficient (SD) or silica-excess

(SE) pyroxenite. For example, partial melting of SE pyr-

oxenite can produce andesitic melts but with MgO

lower than 8 wt % (Fig. 11a). To generate a high-MgO
magma, an SD pyroxenitic source is required, but melts

derived from such sources have lower silica (Fig. 11a)

and higher FeO (Fig. 11b) than those of the Guiyunhua

HMAs. Moreover, the Guiyunhua HMAs are more defi-

cient in TiO2 than melts of pyroxenite (either SD or SE

types) (Fig. 11d), even though rutile was present as a
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residual phase in some experiments. Such low TiO2

concentrations in andesitic primary liquids can be

ascribed to equilibration with a harzburgitic residue (re-

fractory source or high-degree melting; Weaver et al.,

2011). The comparisons also suggest that the most

plausible source is peridotite, because the Guiyunhua
HMAs plot within the range defined by melts from hy-

drous melting of peridotite.

Melting conditions (P–T–XH2O)
The compositions of mafic magmas reflect the melting

temperature and pressure of the magma source rock

(Putirka et al., 2007; Lee et al., 2009), providing win-
dows into the thermal state of the deep mantle.

Accepting that peridotite is the likely source lithology

of the Guiyunhua HMA, we have calculated the tem-

perature and pressure of magma generation using the

thermobarometers developed by Lee et al. (2009),

which are applicable to melts in equilibrium with a
residue containing both olivine and orthopyroxene.

Our calculation of P–T conditions used the whole-rock

compositions of the Ol-HMA and assumed that the re-

siduum is lherzolite (Fe3þ/FeT¼ 0�1 and final olivine

with Mg#¼ 90) or harzburgite (Fe3þ/FeT¼ 0�1 and final

olivine with Mg#¼ 92). The results are presented in

Fig. 12a and the effects of water (0, 3, 5 and 7 wt %

H2O) on P and T are also shown. Regardless of the
choice of water content and residue, the calculated

pressures are mostly less than 1�2 GPa, indicating

melting of shallow (<40 km) mantle. All the pressures

calculated assuming a lherzolitic residue are so low

(<1 GPa; 0�67–0�92 GPa) that melting would appear to

occur in the crust. This is clearly unreasonable and
suggests that the Ol-HMA cannot be generated by an-

hydrous or hydrous (unless with H2O�9%) melting of

peridotite with a lherzolitic residue. However, calcula-

tions leaving a harzburgitic residue yield deeper and

more reasonable melting depths (1�03–1�06 GPa

and 1�07–1�20 GPa for anhydrous and hydrous mantle,

respectively). Considering that the Guiyunhua HMAs
are H2O-rich magmas, and that the melting products

of peridotite under anhydrous conditions are basalts

75

60

65

70

55

50

45

40
0 6 12 18

MgO

S
iO

2

15

12

9

6

3
0 6 12 18

MgO

F
eO

T

7

4

5

6

3

2

1

0
0 6 12 18

MgO

N
a

O 2

10

1

0.1
0 6 12 18

MgO

Ti
O

2

K g Ol-HMAs (whole-rocks)

K g Cpx-HMAs

Hydrous peridotite melts

1

1

K g Ol-HMAs (corrected)1

North China HMAs
SD-pyroxenite melts
SE-pyroxenite melts

(a () b)

(c () d)

Fig. 11. Comparison of early Cretaceous Guiyunhua HMAs with high-pressure experimental melts of silica-excess (SE) pyroxenites,
silica-deficient (SD) pyroxenites and hydrous peridotites (references to data source in Supplementary Data Electronic Appendix 2).
Red- and yellow- filled circles are Ol-HMA whole-rock compositions and with a correction for phenocryst content, respectively. K1g
represents Early Cretaceous Guiyunhua volcanic rocks (LBGMR, 1989).

Journal of Petrology, 2016, Vol. 57, No. 7 1295

http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egw040/-/DC1


rather than high-Mg andesites, we propose that

the primary HMAs in the Liaodong Peninsula

were derived from a hydrous peridotite at 1210–
1290�C and 1�1–1�2 GPa, leaving behind a harzburgitic

residue.

To constrain the water content in the Guiyunhua

HMAs, we calculated the range of pressures and H2O

contents under which HMA melts would be in equilib-

rium with a harzburgitic residue, following the proced-

ure developed by Wood & Turner (2009). Assuming
melting pressures of 1�03–1�20 GPa based on P–T esti-

mations, application of the thermobarometers of Lee

et al. (2009) suggest that the Ol-HMAs were derived

from a mantle peridotite with more than 3 wt % H2O in

the system (Fig. 12b). In summary, primitive HMA mag-

mas in the Liaodong Peninsula were formed by hydrous

(H2O>3 wt %) melting of a peridotitic mantle and last

equilibrated with a harzburgitic residue at �1250�C and
�1�1–1�2 GPa.

Crustal component in the Guiyunhua HMAs
The early Cretaceous Guiyunhua HMAs are enriched in

LREE, LILE and Pb, with negative anomalies in HFSE

relative to the primitive mantle (Fig. 8). It is generally ac-

cepted that most of the LREE, LILE and H2O of HMA in

subduction zones are contributed from subducted sedi-
ments and other crustal rocks (Shimoda et al., 1998;

Tatsumi, 2001; Grove et al., 2002; Yogodzinski et al.,
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1000 1100 1200 1300 1400 1500

4.0

3.0

2.0

1.0

0.0

T ( C)0

P
(G

P
a)

Dry Iherzolite solidus

Iherz 5% H
O2

Iherz 10% H
O2

F=10%

F=20%
F=30%

Fo90 residue Fo92 residue
anhydrous
3 wt% H O2

5 wt% H O
7 wt% H O

2

2

anhydrous
3 wt% H O2

5 wt% H O
7 wt% H O

2

2

0 2 4 6 8 10 12

4.0

3.0

2.0

1.0

0.0

H O (wt%)2

P
(G

P
a)

Moho

Ol-HMAs
Cpx-HMAs

Setouchi HMAs

(a)

(b)

Fig. 12. Pressure, temperature and H2O content (P–T–wt % H2O
XH2O; Lee et al., 2009; Wood & Turner, 2009) calculated for
early Cretaceous Guiyunhua HMAs from the Liaodong
Peninsula. Lherzolite solidi for varying water contents in (a) are
taken from Katz et al. (2003). The grey fields in (a) are MORBs
(right) and Izu-Bonin boninites (left) (Lee et al., 2009). P–XH2O

calculation in (b) assumes: (1) melts could coexist with a harz-
burgitic residue; (2) adding 1 wt % H2O into the system would
decrease SiO2 by 0�6 wt % and increase MgO by 1�0 wt %; (3)
Cpx-undersaturation (harzburgitic residue) would decrease
SiO2 and MgO in the ratio 1:2. Detailed calculation procedures
have been described by Wood & Turner (2009). The field of
HMAs in the Setouchi volcanic belt, Japan, in (b) is calculated
for TG1 and SD261 (Tatsumi, 1982).

0

0.5

1.0

1.5

2.0

0 5 10 15 20
Nb (ppm)

N
b/

R
b

Amphibole

Amphibole

P
hl

og
op

ite

up to 333
0

0.1

0.2

0.3

0.4

0 30 60 90 120 150
Ba/Rb

R
b/

S
r

K g Ol-rich HMAs
K g Cpx-rich HMAs
North China HMAs
Setouchi HMAs

1

1

Baja California HMAs

(b)

(a)

Fig. 13. Variation of Rb/Sr vs Ba/Rb (a) and Nb/Rb vs Nb (b) for
early Cretaceous Guiyunhua volcanic rocks from the Liaodong
Peninsula, North China. The trends labeled ‘amphibole’ and
‘phlogopite’ in (a) indicate that these two hydrous phases
may be present in the mantle source of the magmas, respect-
ively. Neogene HMAs in northern Baja California, which
have been interpreted as melts of pargasite (amphibole)-rich
lithospheric mantle, are from Pallares et al. (2008). K1g repre-
sents Early Cretaceous Guiyunhua volcanic rocks (LBGMR,
1989).

1296 Journal of Petrology, 2016, Vol. 57, No. 7



2015). Alternatively, these components can be attrib-

uted to dehydration melting of pargasite-rich litho-

spheric mantle (Pallares et al., 2008). However, the

Guiyunhua HMAs in the Liaodong Peninsula, as well as

contemporary HMAs and diorites from the NCC, have
low Ba/Rb and Nb/Rb and low Nb contents (Fig. 13),

which are inconsistent with melting of an amphibole-

rich mantle source (Furman & Graham, 1999; Pallares

et al., 2008). Thus, the addition of crust-derived compo-

nents probably induced hydrous melting and selective

enrichment of incompatible elements in the source of

the Guiyunhua HMAs. In the following discussion we
address the possible nature of the crustal components

involved in the genesis of the high-Mg magmas using

isotopic and trace element modeling.

Traditionally, the depleted mantle is taken as the

mantle end-member in mass-balance modeling of

HMAs in a subduction zone (e.g. Grove et al., 2002;
Yogodzinski et al., 2015). However, this practice may

not be appropriate because the Guiyunhua HMAs may

be melts of enriched SCLM beneath the NCC (Fig, 10).

Detailed geochemical and isotopic studies show that

130–110 Ma mafic igneous rocks in the eastern NCC

were overwhelmingly derived from ancient and en-
riched lithospheric mantle (Xu, 2001; Xu et al., 2009).

Asthenosphere-derived mafic magmas occur only lo-

cally, such as the lamprophyre dikes in Shandong

Province (Ma et al., 2014). However, these lampro-

phyres have high TiO2 (>2 wt %), in contrast to the low

TiO2 (<0�8 wt %) of the Guiyunhua HMAs, reflecting

their different mantle sources.
The Guiyunhua lavas have enriched Sr–Nd isotope

compositions, comparable with those of peridotite

xenoliths and perovskite from the Paleozoic Fuxian and

Mengyin (�465 Ma; Zhang & Yang, 2007) kimberlites

(SCLM in Fig. 10a), consistent with derivation from the

ancient SCLM beneath the NCC. The application of the
thermobarometers also indicates that the Guiyunhua

HMAs could have been in equilibrium with mantle peri-

dotite at 1�1–1�2 GPa, corresponding to a lithospheric

mantle depth. Accordingly, we used the Sr–Nd isotopic

composition of perovskite in the Ordovician kimberlites

(recalculated to 122 Ma) as representative of the SCLM

beneath the NCC. The trace element composition of the
SCLM prior to Phanerozoic modification is based on the

compositions of peridotite xenoliths in Paleozoic Fuxian

kimberlites in the Liaodong Peninsula (Lu & Zheng,

1996; Zhang et al., 2008; Fig. 1b). A mantle end-member

with the trace element composition of depleted MORB

mantle was also considered for the purpose of
comparison.

The Guiyunhua HMAs do not have trace element

compositions consistent with derivation from SCLM

represented by the peridotite xenoliths in kimberlites

(Fig. 14), and thus additional metasomatic or crustal

components are required. The NCC experienced mul-

tiple oceanic and continental subduction episodes dur-
ing Phanerozoic time (Windley et al., 2010). Hence, the

crustal component(s) in the Guiyunhua HMA magmas

were probably introduced from subducted oceanic

crust, marine sediments, continental sediments and

Yangtze continental crust. Foundered eclogitic lower

continental crust of the NCC also needs to be con-

sidered, as lithospheric delamination is thought to be
responsible for Mesozoic magmatism in the NCC (Gao

et al., 2004, 2008; Wu et al., 2005a; Xu et al., 2008). We

assume that crustal materials are not transferred ‘in

bulk’ to the lithospheric mantle, but selectively via infil-

tration of partial melts, fluids or supercritical liquids into

the mantle (Kessel et al., 2005; Skora & Blundy, 2010;

Straub et al., 2015) creating a hybrid source for the
HMA magmas. We consider for simplicity the case in

which the crustal component involved in generation of

the Guiyunhua HMA is in the form of a partial melt.

Details of the parameters used in the modeling, includ-

ing the compositions of end-members, enrichment fac-

tors of sediment melt, mobility of slab melt and melts of
recycled lower continental crust, are listed in

Supplementary Data Electronic Appendix 3. The model-

ing results are shown in Fig. 14. It is worth noting that

our modeling does not consider contributions from

crustal aqueous fluids and that the hypothetical trace

element compositions of the mantle end-members are
poorly constrained. As a result, the modeling may cap-

ture only the first-order behavior of interaction between

crustal components and mantle peridotite; the propor-

tion of each crustal component in the models may rep-

resent only maximum estimates.

The Guiyunhua volcanic rocks plot far away from the

mixing curves between oceanic slab melts and any
mantle end-member, suggesting that subducted oce-

anic crust played an insignificant role in their gener-

ation. This argument is further supported by the low Sr/

Y (<32; Fig. 9a) and La/Yb (<13; Fig. 8a) of the rocks.

Although recycled lower continental crust (both from

foundered lower crust of the NCC and deeply subducted
Yangtze lower crust) can explain the radiogenic Sr iso-

tope compositions (Fig. 14a and d), low Ta/Th (Fig. 14

and e) and high Ba/Nb ratios (Fig. 14c and f), this com-

ponent would have low eNd(t) and Th/La, which is incon-

sistent with those of the Guiyunhua HMAs.

Furthermore, lower continental crust beneath eastern

China is refractory and nearly anhydrous (Liu et al.,
2001; Zhai et al., 2001; Zheng et al., 2004; Jiang et al.,

2013), and therefore, if recycled, this lower crust could

not supply enough water to induce hydrous melting of

the lithospheric mantle. The involvement of subducted

sediments can reasonably explain the isotopic and in-

compatible trace element characteristics of the high-Mg
lavas. As shown in Fig. 14, all the mixing curves be-

tween mantle end-members and melts of global sub-

ducted sediment (GLOSS) pass though the Guiyunhua

HMA data. Another candidate for the recycled sediment

component may be subducted continental sediment

from the Yangtze block. There is a time span of �100

Myr between collision between the NCC and the
Yangtze block (Li et al., 1993) and the Early Cretaceous

magmatism. One plausible scenario is that the enriched
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mantle was produced by interaction between sediment-

derived melts and peridotite during the Triassic or by

late Archean–Palaeoproterozoic metasomatic events

(Pang et al., 2015), and was subsequently melted in the

Cretaceous, triggered by rollback of the subducting

paleo-Pacific slab (Zhao et al., 2013). Consequently, we

propose that the crustal component involved in the gen-

eration of the Guiyunhua HMAs was derived from either
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more recently subducted sediments (i.e. during paleo-

Pacific subduction) or ancient subducted materials (e.g.

Yangtze sediments).

Genesis of the Cpx-HMAs
The Guiyunhua HMAs are subdivided into Ol-HMA and
Cpx-HMA according to their petrography and geochem-

istry. As mentioned above, the former can be taken as

primary or near-primary magmas that last equilibrated

with mantle peridotite. The latter are interpreted as hav-

ing differentiated from the Ol-HMA by olivine-

dominated fractionation in association with minor as-
similation of lower crustal materials. The main evidence

includes the following.

1. The Cpx-HMAs have lower MgO, FeOT and Ni than
the Ol-HMAs (Figs 6 and 7), indicating that olivine

was a dominant fractionating phase.

2. Olivine phenocrysts in the Cpx-HMAs have lower Fo

and Ni contents, but higher CaO than those in the Ol-

HMAs (Figs 4 and 5), suggesting that they are late-

crystallizing phases.

3. Clinopyroxene fractionation seems to be insignifi-
cant, judging from invariant CaO (Fig. 6b) and Cr

(Fig. 6h) with decreasing MgO. The compositional

difference between the Cpx phenocrysts from the

two types of HMA is attributed to different equilib-

rium melts; more differentiated magmas would have

lower Mg# and higher water contents.
4. Fe–Ti oxide fractionation may have occurred, as re-

flected in the presence of magnetite as phenocrysts

and a groundmass mineral in the Cpx-HMAs

(Supplementary Data Fig. S3 in Electronic Appendix

4). However, fractionation of Fe–Ti oxides was not

appreciable, considering the similar TiO2 concentra-

tions of the two types of HMA. In addition, most of
the magnetite observed in the Cpx-HMAs is a prod-

uct of reaction between xenocrystic Cpx and the sur-

rounding melt.

5. The occurrence and compositions of green-cored

clinopyroxene phenocrysts (Fig. 2d; Supplementary

Data Fig. S4 in Electronic Appendix 4) suggest that
contamination by lower crustal rocks was involved

in the genesis of the Cpx-HMA lavas. However, the

homogeneous trace element (Fig. 8) and Sr–Nd iso-

tope compositions (Fig. 10a) of the Guiyunhua high-

Mg volcanic rocks indicate that lower-crustal con-

tamination or assimilation could have played only a

limited role, at least in terms of trace element and
isotopic compositions, during evolution of the

magmas.

Petrogenesis of the Guiyunhua adakitic rocks
Origin of the adakitic geochemical signature
As discussed above, the trace element characteristics of

the Guiyunhua dacites are broadly similar to those of

adakites in modern subduction zones (Defant &
Drummond, 1990). These lavas have high SiO2 (�63 wt

%) and K2O (>1�3 wt %), low Rb/Ba (�0�1), Nb/U (<12)

and Ce/Pb (<7), and unradiogenic whole-rock Nd iso-

tope [eNd(t)¼ –19 to –9; Fig. 10a] and zircon Hf isotope

[eHf(t)¼ –22�8 to –21�1; Fig. 10b] compositions that are

consistent with their derivation from ancient mafic

lower crust. Such adakitic rocks in continental settings
are commonly regarded as the products of melting of

thickened or foundered mafic lower continental crust

(LCC) at depths greater than 50 km (Xu et al., 2002;

Chung et al., 2003; Gao et al., 2004). These premises are

built on experiments and modeling using a MORB-like

source (Xiong et al., 2005; Nair & Chacko, 2008), which

is obviously not the case for such continental adakitic
rocks (Ma et al., 2012, 2015). Recent experiments (Qian

& Hermann, 2013) and trace element modeling (Ma

et al., 2015) have shown that adakitic melts can be pro-

duced by lower-pressure (10–12�5 kbar) melting of

mafic lower crust, without leaving eclogitic residues.

Ma et al. (2015) highlighted that the adakitic geochem-
ical signatures of igneous rocks from cratonic areas and

collisional orogens are mainly controlled by inheritance

from the geochemical signatures of their source and

high-pressure melting, respectively. A (Sm/Yb)SN vs

YbSN diagram (where the subscript SN denotes source-

normalized) can be used to evaluate the relative contri-
butions of source inheritance versus high-P melting in

their generation. The Guiyunhua adakitic dacites have

low (Sm/Yb)SN and high YbSN, similar to intraplate ada-

kitic rocks that were generated at depths less than

40 km (Fig. 9b). Therefore, we propose that the main

compositional characteristics of the Guiyunhua adakitic

lavas (e.g. high Sr/Y, Nb–Ta depletion, lack of Eu anom-
aly and low HREE contents) are inherited from their

source rocks (i.e. mafic lower continental crust of the

NCC), rather than reflecting melting at high pressure

(�1�5 GPa).

Other independent evidence for lower crustal melt-

ing at depths less than 40 km comes from the pressure
estimation for the coeval HMAs (Fig. 12). As discussed

above, the Guiyunhua HMAs were derived from a wet

peridotite mantle at 1�1–1�2 GPa, indicating that the

maximum thickness of crust beneath the Liaodong

Peninsula would not have exceeded 40 km at the time

of magma generation. Most of the Guiyunhua dacites

are low-Mg adakitic dacites with low MgO (<1�2 wt %),
Mg# (<41), Ni (<7 ppm) and Cr (<20 ppm), which indi-

cate that they were directly derived from lower-crustal

rocks rather than being melts of foundering eclogites at

mantle depths. Moreover, these adakitic lavas were de-

veloped in association with late Mesozoic metamorphic

core complexes and erupted in fault-bounded exten-
sional basins (Fig. 1b; Liu et al., 2013). Detailed studies

on the coexistence of Cretaceous volcanic–sedimentary

basins, low-angle normal faults, exhumed high-grade

metamorphic rocks with early Cretaceous cooling ages,

and widespread A-type granitoids in the lower plate of

the MCC demonstrate that the crust of the Liaodong

Peninsula was relatively thin and experienced excep-
tionally intense extension during early Cretaceous

times (Liu et al., 2005, 2011, 2013). Therefore, no
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thickened lower crust is likely to have been present in

the study area at that time; correspondingly, the melting

of lower continental crust probably occurred at depths

<40 km.

Generation of high-Mg adakitic dacites by magma
mixing
The Guiyunhua high-Mg adakitic dacites (SHY14 and

SHY15) have higher Mg# (>51), Ni (�53 ppm) and Cr

(�112 ppm) than the low-Mg adakitic dacites and ex-

perimental melts equilibrated with basaltic rocks at 1–
4 GPa (Rapp et al., 1999; Qian & Hermann, 2013). Three

scenarios have been proposed to account for the high-

Mg signature of Mesozoic adakitic rocks in the NCC: (1)

interaction of melts derived from foundered lower crust

with mantle peridotite as they ascended (Gao et al.,

2004); (2) underplated mafic melts incorporated into
adakitic magmas in deep crustal hot zones (Ma et al.,

2012); (3) mixing of basaltic and felsic magmas in a

magma chamber (Chen et al., 2013). The first hypoth-

esis can be ruled out as we have demonstrated that

there was no thickened or foundered lower crust be-

neath the Liaodong Peninsula when the Guiyunhua

lavas were erupted. Although it is difficult to distinguish
between the other two processes using available geo-

chemical data, we favor the possibility of magma mix-

ing in a magma chamber on the basis of the estimated

crystallization depth. The amphibole phenocrysts re-

cord low crystallization temperatures (836–895�C) and

shallow crystallization depth (1�4–5�0 kbar) (Table 5). In
contrast, clinopyroxene phenocrysts that are rimmed

by amphibole record a higher crystallization tempera-

ture (1089–1110�C) and deeper crystallization depths

(4�5–6�9 kbar) according to the clinopyroxene–liquid

thermobarometer for hydrous systems (Putirka et al.,

2003); these conditions are similar to the crystallization
P–T of the Cpx-HMAs. Thus, the mafic and felsic mag-

mas would have mixed at mid- to upper-crustal levels

rather than in a hot zone near the crust–mantle bound-

ary. Most plausibly, the mixing components would be

the low-Mg adakitic dacitic magmas and the differenti-

ated Cpx-HMAs. This argument is supported by the fact

that the high-Mg dacites plot between the HMAs and
the low-Mg adakitic dacites in Harker diagrams (Fig. 7),

chondrite-normalized REE diagrams (Fig. 8a) and primi-

tive mantle-normalized trace element diagrams (Fig. 8b)

and in terms of initial Sr–Nd isotope composition (Fig.

10a).

Probable heat sources: underplated mafic magma
The source of heat for melting the lower crust beneath

the NCC in late Mesozoic time is an important, but

open, question. Because ancient lower continental crust

(LCC) is composed of granulite-facies rocks that are

depleted in heat-producing elements (Rudnick & Gao,

2003), heat accumulating from the radioactive decay of
such elements cannot account for melting of the lower

crust beneath the NCC. Thus, the heat should be exotic,

either from upwelling asthenospheric mantle (Wu et al.,

2005a), or from underplating basaltic magmas (Ma

et al., 2012, 2015), or both (Wu et al., 2005b). Upwelling

of asthenospheric mantle would not only heat the

overlying lithosphere, but also result in large-scale bas-
altic magmatism by decompression melting.

Nevertheless, early Cretaceous mafic igneous rocks in

the eastern NCC appear to be overwhelmingly derived

from enriched lithospheric mantle (Xu, 2001; Xu et al.,

2009). Mafic magmas derived from the asthenosphere

occur only locally as lamprophyre dikes in Shandong

Province (Ma et al., 2014). Accordingly, partial melting
of the lower crust beneath the NCC probably was not

due to direct heating by upwelling of asthenospheric

mantle. Episodic underplating of magma at the base of

the lower crust during late Mesozoic times (160–66 Ma

with a peak at �120 Ma) has been recognized by studies

of contemporary igneous rocks (Yang et al., 2006; Yang
& Li, 2008) and xenoliths in Cenozoic basalts (Liu et al.,

2004; Zheng et al., 2012; Zhang et al., 2013). Hf isotope

compositions of magmatic zircons from late Mesozoic

lower crust-derived granitoids indicate significant add-

ition of juvenile crust by underplating of magmas be-

neath the Liaodong Peninsula (Yang et al., 2008).
Therefore, underplating of basaltic and/or HMA mag-

mas represents the most plausible heat source for melt-

ing of the lower crust beneath the NCC.

The rarity of hydrous phases in lower crustal rocks

from the NCC suggests that the lower crust is essen-

tially refractory and anhydrous (Liu et al., 2001; Zhai

et al., 2001; Zheng et al., 2004; Jiang et al., 2013).
Furthermore, zircon-saturation temperatures suggest

that the initial magma temperatures of late Mesozoic I-

type granitoids in the Liaodong Peninsula were 750–

800�C (Wu et al., 2007), which is much lower than that

of amphibole-dehydration melting reactions (Weinberg

& Hasalov�a, 2015). As a result, melting of anhydrous
lower crust by heating alone cannot produce the wide-

spread late Mesozoic felsic igneous rocks in the eastern

part of the NCC. Rather, these crustal magmas could

have been formed by water-fluxed melting of the lower

crust. We therefore speculate that the underplated mag-

mas provided not only heat but also (and perhaps more

importantly) additional water.
The candidate for the underplated magma beneath

the Liaodong Peninsula is the HMA melts that were

derived from the upper lithospheric mantle (Fig. 12) and

were emplaced into the base of the crust (Table 5). As

discussed above, the primary Guiyunhua Ol-HMAs are

hydrous magmas that once equilibrated with the upper
mantle in the presence of more than 3% water.

However, their differentiation products (Cpx-HMAs) are

phenocryst-poor, corresponding to relatively dry mag-

mas. In this respect, the Guiyunhua HMAs are very

similar to the sanukitoids from the Setouchi volcanic

belt, southwestern Japan. Tatsumi et al. (2006) pro-

posed that liberation of H2O from hydrous HMA mag-
mas in association with pluton solidification could

explain this apparent paradox. If a similar scenario
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applies to the Guiyunhua case, then the extracted water

could have been added to the overlying lower crust,

triggering water-fluxed melting of this previously an-

hydrous lower crust.

Summary of petrogenesis of the Guiyunhua
HMAs and adakitic dacites
To summarize the above discussion, we consider the
petrogenesis of the Guiyunhua HMAs and adakitic da-

cites in the Liaodong Peninsula in the following stages.

1. Generation of primary high-Mg andesites (Ol-HMAs)
by hydrous (H2O> 3 wt %) melting of lithospheric

mantle, leaving a harzburgitic residue at �1250�C

and �1�1–1�2 GPa.

2. Emplacement of the HMA magmas into the lower

crust as a succession of sill-like bodies leading to the

generation of a deep-crustal hot zone. Solidification
of HMA plutons was accompanied by olivine-

dominated fractionation, minor lower crustal assimi-

lation and extraction of H2O at 0�7–1�1 GPa, which

led to the formation of differentiated HMAs (Cpx-

HMAs).

3. Release of heat and H2O from hydrous HMA mag-

mas promoted partial melting of ancient lower crust,
and generation of low-Mg adakitic magmas.

4. Mixing between differentiated Cpx-HMA and low-

Mg adakitic magmas in magma chambers resulted

in high-Mg adakitic dacites.

This petrogenetic model explains the Mesozoic HMA

and adakitic magmas in the NCC and elsewhere.

Because ascent of water-rich magmas would be in-

hibited by decompression crystallization accompanying

the loss of volatiles, most of the HMAs and adakitic
rocks in the NCC would solidify within the crust. This ex-

pectation is consistent with the observation that wide-

spread Mesozoic adakitic and HMA igneous rocks in the

NCC occur as plutonic intrusions (i.e. adakitic granitoids

and high-Mg diorites) rather than as their volcanic

equivalents (i.e. adakitic and HMA lavas).

Geodynamic implications
Destruction of the North China Craton
Ancient cratons, the most stable parts of the continents,

are underlain by thick thermal and mechanical bound-

ary layers that have been largely isolated from the con-

vective asthenospheric mantle over billion year

timescales (Kelly et al., 2003; Carlson et al., 2005; Lee

et al., 2011). However, several lines of evidence suggest

that the eastern part of the NCC has been destroyed
since the Phanerozoic (Menzies et al., 1993; Griffin et al.,

1998; Xu, 2001; Gao et al., 2002; Wu et al., 2003; Zheng

et al., 2007). Constraining the thermal regime of the

lithosphere at different times (Menzies & Xu, 1998; Xu,

2001; Huang & Xu, 2010) is crucial to address the timing

and mechanism of the destruction of this craton. The
lithosphere of the NCC is characterized by a low geo-

thermal gradient in the Paleozoic (�40 mW m–2; Griffin

et al., 1998; Zheng et al., 2006) and by a high geother-

mal gradient in the Cenozoic (�80 mW m–2; Xu et al.,

1995; Menzies & Xu, 1998; Xu et al., 1998; Xu, 2001;
Zheng et al., 2006) (Fig. 15). It is been suggested that the

heat flow in the eastern NCC reached �90 mW m–2 in

the early Tertiary (Fig. 15; He, 2015) and peaked in the

Mesozoic (>100 mW m–2) (Menzies & Xu, 1998).

However, there is no valid constraint on the thermal

state of the SCLM beneath the NCC during the

Mesozoic, mainly owing to the lack of garnet-bearing
peridotite xenoliths in contemporary basalts. To ad-

dress this issue, we compared the depth and tempera-

ture of mantle melting that generated the early

Cretaceous Guiyunhua HMAs with the Paleozoic, early

Tertiary and present-day thermal regime of the NCC. As

shown in Fig. 15, the lithospheric mantle beneath the
NCC is hottest in early Cretaceous time, corresponding

to the peak of lithospheric thinning and cratonic de-

struction (Xu et al., 2009). The early Cretaceous thermal

anomaly is consistent with intensive magmatism, ex-

tensional deformation and associated gold mineraliza-

tion (Wu et al., 2005a; Zhu et al., 2012b, 2015).

The mechanisms of destruction of the lithospheric
mantle beneath the NCC have been long debated

(Zheng, 1999; Xu, 2001, 2007; Gao et al., 2004; Wu et al.,

2005a; Zheng et al., 2007, 2015; Zhang et al., 2008;

Zhang, 2009; Tang et al., 2013). As discussed above, the

early Cretaceous HMAs and felsic adakitic rocks in the

NCC appear to be produced by hydrous melting of shal-
low, hot and refractory peridotitic mantle and by water-

fluxed melting of ancient lower crust, respectively.

Specifically, the generation of the Guiyunhua HMAs

involved more than 3 wt % H2O in the system (Fig. 12),

suggesting high water contents in the early Cretaceous

lithospheric mantle beneath the NCC. Such high water

contents in the SCLM are also evidenced from
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Fig. 15. Comparison of the depths and temperatures of gener-
ation of the early Cretaceous Guiyunhua HMAs (dots) with
Palaeozoic, early Tertiary and present-day geotherms of the
NCC (Griffin et al., 1998; Xu, 2001). The blue, yellow and green
dots are calculated based on 7 wt %, 5 wt % and 3 wt % H2O in
the system, respectively (see Fig. 12 and main text).
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contemporary basalts in Shandong Province

(>1000 ppm; Xia et al., 2013). Hydration of the litho-

sphere may not only significantly reduce the viscosity

contrast between the lithospheric mantle and the under-

lying asthenosphere (Niu, 2005; Lee et al., 2011; Xia
et al., 2013), but also promote refertilization-driven de-

stabilization of the craton (Kusky et al., 2014; Zheng

et al., 2015; Xiong et al., 2015). Therefore, we propose

that destruction of the NCC was caused by erosion, re-

placement, modification or partial melting associated

with the hydration of the lithosphere. A large amount of

water was probably added to the lithospheric mantle
during the multiple episodes of subduction that

occurred around the eastern NCC since the early

Paleozoic (Windley et al., 2010; Xia et al., 2013; Kusky

et al., 2014), and especially the rapid, deep subduction

of the paleo-Pacific (Izanaghi) plate underneath East

Asia (Niu, 2005; Zhao et al., 2007; Xu et al., 2012; Zhu
et al., 2012c; He, 2014; Xu, 2014). Rollback of the sub-

ducted paleo-Pacific slab during the early Cretaceous

(Zhu et al., 2012a; Kusky et al., 2014) induced upwelling

of the asthenosphere and vigorous convection, which

could erode already refertilized lithospheric mantle

within the mantle wedge (He, 2014), in association with
widespread magmatism (e.g. Wu et al., 2005a, and this

study) and crustal extension (e.g. Liu et al., 2013). As a

result, destruction of the cratonic root probably attained

its climax at that time.

Formation of Archean continental crust
The Archean continental crust is largely made up of

granitoid gneisses, dominantly TTG series (Jahn et al.,

1981; Moyen & Martin, 2012) with subordinate

Archaean sanukitoids (Shirey & Hanson, 1984; Martin

et al., 2005) and minor biotite and two-mica granites

(Laurent et al., 2014). Considering the close geochem-

ical similarities between the TTG suites and modern
adakites, and between Archaean sanukitoids and mod-

ern HMAs, Archean granitoids are widely used as a geo-

dynamic indicator of the onset of ‘modern-style’ plate

tectonics (Martin, 1999; Martin et al., 2005; Laurent

et al., 2014). This hypothesis is mostly based on the ob-

servation that HMAs and adakitic lavas exclusively
occur in hot subduction zones in the modern Earth

(Defant & Drummond, 1990; Yogodzinski et al., 1995;

Grove et al., 2002; Tatsumi, 2006), where a high-

temperature regime leads to slab melting and transport

of significant quantities of water into the mantle wedge.

In this study we have shown that the early Cretaceous

HMAs and adakitic rocks from the NCC formed in an
intraplate extensional environment accompanied by the

development of MCCs, low-angle normal faults and

fault-bounded extensional basins (Liu et al., 2013; Ji

et al., 2015). Archean TTGs and sanukitoids are actually

rather ambiguous as a subduction marker (Moyen,

2011), as they can be produced in tectonic environ-
ments unrelated to plate boundaries, such as the pro-

gressive maturation of an oceanic plateau above a long-

lived mantle plume (e.g. Smithies, 2000; Bédard, 2006;

Willbold et al., 2009; Reimink et al., 2014) and in post-

orogenic or anorogenic settings (e.g. Lobach-

Zhuchenko et al., 2008; Heilimo et al., 2010). Therefore,

caution is needed in using the occurrence of ancient
HMA and adakitic magmas as an indicator of subduc-

tion processes.

CONCLUSIONS

1. Coeval HMAs and adakitic dacites in a continental
setting are identified in the Liaodong Peninsula from

the North China Craton. The early Cretaceous HMAs

were derived from partial melting of shallow (1�1–

1�2 GPa), hot (�1250�C) and wet (H2O>3 wt %) litho-

spheric mantle, leaving a harzburgitic residue. The

associated adakitic rocks were formed by water-

fluxed melting of ancient lower crust at depths of
less than 40 km, induced by heating and H2O add-

ition from underplated hydrous mafic magmas (e.g.

HMAs).

2. Early Cretaceous HMAs of the Liaodong Peninsula

indicate high temperatures and high water contents

in the SCLM beneath the craton at that time.
Hydration of the lithosphere may be an important

process or even a prerequisite for the destruction of

a craton.

3. The generation of HMAs and adakitic magmas in an

intraplate extensional environment indicates the

need for caution in taking the occurrence of magmas

with similar compositions as an indicator of ancient
subduction processes.
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