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The North China Craton (NCC) has been considered to be part of the supercontinent Columbia. The nature of the
NCC western boundary, however, remains strongly disputed. A key question in this regard is whether or not the
Alxa Block is a part of the NCC. It is located in the vicinity of the inferred boundary, and therefore could potentially
resolve the issue of the NCC's relationship to the Columbia supercontinent. Some previous studies based on the
Alxa Block's geological evolution and detrital zircon ages suggested that it is likely not a part of the NCC. The
lack of evidence from key igneous rock units, however, requires further constraints on the tectonic affinity of
the western NCC and Alxa Block and on the timing of their amalgamation.
In this study, new zircon U–Pb age and Hf–O isotopes and whole-rock geochemical and Sr–Nd–Pb isotopic data
for the Paleozoic granitoids in or near the eastern Alxa Block were used to constrain the petrogenesis of these
rocks and the relationship between the Alxa Block and NCC. Secondary ion mass spectrometry (SIMS) U–Pb
zircon dating indicates that the Bayanbulage, Hetun, Diebusige and South Diebusige granitoids were formed at
ca. 423 Ma, 345 Ma, 345 Ma and 337 Ma, respectively. The Late Silurian (Bayanbulage) quartz diorites have
variable SiO2 (58.0–67.9 wt.%), and low Sr/Y (20–24) values, while the Early Carboniferous (Hetun, Diebusige
and South Diebusige) monzogranites have high SiO2 (71.5–76.7 wt.%) and Sr/Y (40–94) values. The Late Silurian
quartz diorites display relatively homogeneous and high zircon δ18O (8.5–9.1‰) and εHf(t) (−8.6 to −5.3)
values, high whole-rock εNd(t) values (−9.2 to −7.6) and highly radiogenic Pb isotopes (206Pb/204Pb =
18.13–18.25), whereas the Early Carboniferous monzogranites exhibit relatively low and variable zircon δ18O
(5.7–7.2‰) and εHf(t) (−23.1 to −7.4) values, low whole-rock initial 87Sr/86Sr (0.7043–0.7070) and
εNd(t) (−19.1 to −13.5) values and variable Pb isotopes (206Pb/204Pb = 16.06–18.22). The differences in
whole rock Nd model ages and Pb isotope compositions of the Paleoproterozoic–Permian rocks in either side
of the west fault of the Bayanwulashan–Diebusige complexes suggest that the Alxa Block is not a part of the
NCC, and that the western boundary of the NCC is probably located on this fault. Furthermore, the linear
distribution of the Early Paleozoic–Early Carboniferous granitoids, the high zircon δ18O values of the Late Silurian
quartz diorites, the Early Devonian metamorphism and the foreland basin system formed during the collision
between the Alxa Block and the NCC indicate that a Paleozoic cryptic suture zone likely existed in this area and
records the amalgamation of the Alxa Block and North China Craton. Togetherwith detrital zircon data, the initial
collision was considered to have possibly occurred in Late Ordovician.
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1. Introduction

Continent–continent or arc–continental collisions commonly
produce orogens that are marked by linear zones of igneous rocks ac-
companied by typical marker lithologies (i.e., high-pressure metamor-
phic rocks and ophiolites), and the Cenozoic Himalaya Orogen is a
classic example (e.g., Yin and Harrison, 2000). In some cases, however,
cryptic suture zones are only marked by linear distributions of igneous
V. All rights reserved.
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rocks at the contact zones between two amalgamated blocks, as is the
case for the Mesozoic granitoid zone between the Yangtze and
Cathaysia blocks (Wong et al., 2011), the Mesozoic granitoid zone
between the North China Craton and Yangtze Block (e.g., Su et al.,
2013), and Mesoproterozoic granitoids stitching three terranes in the
SW Grenville Province (Peck et al., 2004). These studies demonstrate
that a granitoid zone with two geochemically contrasting sub-zones
can be used to define the location of a cryptic suture zone, especially
when no metamorphic rocks or ophiolites are found in the inferred su-
ture zone.

The North China Craton (NCC) is one of the world's major cratons
(Bleeker, 2003). It is the largest in China while also being one of the
oldest, based on the presence of ≥3.8 Ga crustal materials (e.g., Liu
et al., 1992; Wu et al., 2008a) within the more abundant ca. 2.5 Ga
and 1.8 Ga rocks (e.g., Zhao et al., 2005; Zhao and Cawood, 2012; Zhao
and Zhai, 2013; Zheng et al., 2013; Zhao, 2014). Its evolutionary history
is critical for the understanding of the assembly and break-up of
Columbia because very different models have been proposed for its
location in the supercontinent (e.g., Zhao et al., 2002, 2004; Kusky
et al., 2007; Hou et al., 2008; Kusky and Santosh, 2009; Rogers and
Santosh, 2009; Meert, 2012; Roberts, 2013; Teixeira et al., 2013;
Nance et al., 2014; Wang et al., 2015). However, its western boundary
remains strongly disputed (e.g., Dong et al., 2007; Dan et al., 2012;
Gong et al., 2012; Dan et al., 2014a), hampering a better understanding
of its position in the supercontinent. It is widely accepted that the Alxa
Block (Fig. 1) represents the westernmost part of the NCC (e.g., Zhai
et al., 2000; Zhao et al., 2005; Dong et al., 2007; Geng et al., 2010;
Gong et al., 2012). These models, however, appear inconsistent with
the newly-identified ca. 2.3 Ga and ca. 0.9 Ga magmatic events in the
eastern Alxa Block (Dan et al., 2012, 2014a) because similarly-aged
rocks have not been reported within the Western Block of the NCC
(Dan et al., 2012). It has also been suggested that the models are not
consistent with the different age distribution patterns of detrital zircon
grains between the westernmost NCC and the Alxa Block (Zhang et al.,
2011; Dan et al., 2014a; Yuan and Yang, 2015a). However, a lack of
Fig. 1. The Alxa Block in the tectonic framework of China, a
Modified from Zhao and Cawood (2012).
recognized magmatic events in key areas requires that further studies
be undertaken to fully resolve the tectonic affinities of the two blocks
and to constrain the timing of their amalgamation.

In this study, we present in situ zircon U–Pb age and Hf–O isotopic
compositions along with whole-rock element and Sr–Nd–Pb isotopic
compositions for the newly-identified Paleozoic quartz diorites and
high Sr/Y monzogranites in the vicinity of the eastern Alxa Block. The
aim of this work is to (1) place geochronological and geochemical
constrains on the timing and petrogenesis of the Paleozoic granitoids,
(2) examine the relationship of the Alxa Block and the NCC and
(3) shed light on the timing of the Alxa Block amalgamation with the
NCC to form a single block.

2. Geological background and sample descriptions

The North China Craton (NCC) is bounded by the Central Asian Orogenic
Belt (CAOB) to the north, the Sulu ultrahigh-pressure (UHP) metamorphic
belt to the east and the Qinling–Dabie orogenic belt to the south (Fig. 1). It
has been divided into four Archean continental blocks (i.e., the Longgang,
Langrim, Yinshan and Ordos blocks) and three Paleoproterozoic mobile
belts: the Khondalite Belt, the Trans-North China Orogen and the Jiao–Liao–
Ji Belt (e.g., Zhao et al., 2005; Zhao and Cawood, 2012; Zhao and Zhai, 2013;
Zheng et al., 2013; Zhao, 2014). It is generally accepted that the NCCwas as-
sembled during the Late Paleoproterozoic (1900–1850Ma) (e.g., Kusky and
Li, 2003; Zhao et al., 2005; Zhai and Santosh, 2011; Zhao and Cawood,
2012; Zhao et al., 2012; Zhao, 2014). After cratonization, it remained stable
until the Late Paleozoic, although several intraplate or rift-related magmatic
episodes took place between the Late Paleoproterozoic and Paleozoic times
(Peng et al., 2011 and references there in). The eastern NCC has been
mobilized andmodified since the EarlyMesozoic, resulting inwidespread oc-
currence of magmatism, crustal deformation and lithospheric thinning
(e.g., Wu et al., 2008b and references therein).

The Alxa Block, located in the westernmost part of North China, is
generally thought to be the westernmost part of the NCC (e.g., Zhai
et al., 2000; Zhao et al., 2005; Gong et al., 2012), although J.X. Zhang
nd the tectonic subdivision of the North China Craton.
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et al. (2013a,b and references therein) proposed that the craton extends
further west to include the Dunhuang block, Tarim Craton. The
Alxa Block is largely covered by Cenozoic sediments, and outcrops of
pre-Neoproterozoic crystalline basement rocks are only documented
in the southwestern and eastern parts of the block (Fig. 2 in Dan et al.,
2012; Gong et al., 2012; J.X. Zhang et al., 2013a). The Diebusige and
Bayanwulashan complexes (Fig. 2), traditionally considered to be
parts of the eastern Alxa Block, were thought to be Archean basement
rocks (NMBGMR, 1991). Our recent work, however, demonstrated
that these complexes formed during the Early Paleoproterozoic, and
underwent two metamorphic events at ~1.90 Ga and ~1.80 Ga (Dan
et al., 2012). In the Neoproterozoic, a few 930–910 Ma S-type granites
were intruded into the central Alxa Block (Dan et al., 2014a).

The oldest Phanerozoic sedimentary rocks occur in the Upper
Carboniferous–Lower Permian Amushan Formation, mainly in the
northern Alxa Block (Fig. 2). A notable feature of the Alxa Block is the
large volume of Phanerozoic granitoids (NMBGMR, 1991) that mainly
formed between 320 Ma and 260 Ma (Fig. 2) (Dan et al., 2014b and
references therein). Igneous rocks with ages N320 Ma are very rare,
apart from a few ~447 Ma intermediate-felsic volcanic rocks and
~394 Ma diorites reported in the eastern Alxa Block (Fig. 2) (Li, 2006).
However, the corresponding petrological and geochemical data are
relatively limited, which hampers a better understanding of their
petrogenesis.

In this study, we analyzed granitoids collected from the Diebusige,
South Diebusige, Bayanbulage and Hetun areas (Figs. 2 and 3), all of
which were located near the potential boundary between the NCC and
the Alxa Block (Dan et al., 2012), and have been considered to be a
part of the Alxa Block. The Bayanbulage gneissic quartz diorites show
strong deformation and are composed of plagioclase (60–70 vol.%), bio-
tite (15–20 vol.%), quartz (10–20vol.%), aswell asminor apatite and zir-
con. The Hetun monzogranites, located adjacent to the Bayanwulashan
Complex, have medium-grained texture, consisting of plagioclase
(40–45 vol.%), K-feldspar (25–30 vol.%), quartz (25–30 vol.%), biotite
(~2 vol.%), as well as minor apatite and zircon. The monzogranites
collected from the Diebusige and South Diebusige consist of plagioclase
(30–40 vol.%), K-feldspar (30–35 vol.%), quartz (20–30 vol.%), biotite
(2–8 vol.%) and minor accessory minerals.
Fig. 2. Geological map showing the distribution of Phanerozoic granitoids in the Alxa Block and
China Craton and Alxa Block. SFL, southern margin fault of Longshoushan; WFB, western marg
Modified from Dan et al. (2014b).
3. Analytical procedures

3.1. Zircon U–Pb dating

Isotopic analyses of U, Th and Pb were conducted using the Cameca
IMS-1280 SIMS at the Institute of Geology and Geophysics, Chinese
Academy of Sciences (IGG-CAS), Beijing, using operating and data
processing procedures similar to those described by Li et al. (2010a).
Uncertainties on individual analyses in the data tables are reported at
a 1σ level. Mean ages for pooled U/Pb and Pb/Pb analyses are quoted
with 2σ and/or 95% confidence intervals. The weighted mean U–Pb
ages and Concordia plots were processed using Isoplot/Ex v. 3.0
program (Ludwig, 2003). SIMS zircon U–Pb isotopic data are presented
in Appendix 1.

The LA-ICP-MS U-Pb dating for sample 09AL131 was conducted
using an Agilent 7500a ICP-MS with an attached 193 nm excimer ArF
laser-ablation system (GeoLas Plus) at IGG-CAS. The analytical proce-
dures are similar to those described by Xie et al. (2008). 207Pb/206Pb
and 206Pb/238U ratios were calculated using the ICPMSDataCal software
(Liu et al., 2010), using the zircon standard 91500 as an external
standard. Common Pb was corrected according to the method pro-
posed by Andersen (2002). The weighted mean U–Pb ages and
Concordia plots were processed using Isoplot/Ex v. 3.0 program
(Ludwig, 2003). Analyses of the zircon standard GJ-1 as an unknown
yielded a weighted mean 206Pb/238U age of 606 ± 4 Ma (2σ, n = 8),
which is in good agreement with the recommended value (Jackson
et al., 2004). LA-ICP-MS zircon U–Pb isotopic data are presented in
Appendix 1.

3.2. Zircon oxygen isotopes

Zircon oxygen isotopes were measured using the same Cameca
IMS-1280 SIMS at IGG-CAS. The detailed analytical procedures
were similar to those described by Li et al. (2010a). The measured
oxygen isotopic data were corrected for instrumental mass fraction-
ation (IMF) using the Penglai zircon standard (δ18OVSMOW = 5.3‰)
(Li et al., 2010b). The internal precision of a single analysis generally
was better than 0.2‰ (1σ standard error) for the 18O/16O ratio. The
adjacent areas. The studied granitoids are near the proposed boundary between the North
in fault of Bayanwulashan; EUOB, Enger Us Ophiolite Belt.



Fig. 3. Geological sketch-map of the (a) Bayanbulage, (b) Hetun and (c) Diebusige areas, with locations of dating samples.
Modified after NMBGMR (1991).

108 W. Dan et al. / Gondwana Research 32 (2016) 105–121
external precision, measured by the reproducibility of repeated
analyses of Penglai standard, is 0.50‰ (2SD, n = 68). Ten measure-
ments of the 91500 zircon standard during the course of this study
yielded a weightedmean of δ18O=10.2± 0.5‰ (2SD), which is con-
sistent within errors with the reported value of 9.9 ± 0.3‰
(Wiedenbeck et al., 2004). Zircon oxygen isotopic data are listed in
Appendix 2.

3.3. Zircon Lu–Hf isotopes

In situ zircon Lu–Hf isotopic analyseswere carried out on a Neptune
multi-collector ICP-MS equipped with a Geolas-193 laser-ablation
system at IGG-CAS. Lu–Hf isotopic analyses were conducted on the
same zircon grains that were previously analyzed for U–Pb and O
isotopes. Detailed analytical procedures were similar to those de-
scribed byWu et al. (2006). Measured 176Hf/177Hf ratios were normal-
ized to 179Hf/177Hf = 0.7325. Further external adjustment was not
applied for the unknowns because our determined 176Hf/177Hf
ratios for zircon standards 91500 (0.282309 ± 0.000004) and GJ-1
(0.282000 ± 0.000008) were in good agreement within errors
with the reported values (Wu et al., 2006). Zircon Hf isotopic data are
listed in Appendix 2.

3.4. Major and trace elements

Sixteen rock samples powdered to ~200-mesh size were used for
geochemical analyses. Major element oxides were analyzed on fused
glass beads using a Rigaku RIX 2000 X-ray fluorescence spectrometer
at the State Key Laboratory of Isotope Geochemistry, the Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences (SKLaBIG
GIG CAS). Calibration lines used in quantification were produced by
bivariate regression of data from 36 referencematerials encompassing
a wide range of silicate compositions (Li et al., 2005). Analytical
uncertainties are between 1% and 5%. Trace elements were analyzed
using an Agilent 7500a ICP-MS at GIG-CAS. Analytical procedures
were similar to those described by Li et al. (2000). A set of USGS and
Chinese national rock standards, including BHVO-2, GSR-1, GSR-2,
GSR-3, AGV-2, W-2 and SARM-4 were chosen for calibration. Analyti-
cal precision typically is better than 5%. Geochemical results are listed
in Table 1.
3.5. Sr–Nd–Pb isotopic compositions

Sr–Nd–Pb isotopic compositions were determined using a Micro-
mass Isoprobe multi-collector ICP-MS at SKLaBIG GIG CAS. Sr and Nd
were separated using cation columns, and Nd fractions were further
separated by HDEHP-coated Kef columns. Detailed analytical proce-
dures were described by Li et al. (2004). The measured 87Sr/86Sr
ratio of the NBS 987 standard and 143Nd/144Nd ratio of the JNdi-1 stan-
dard were 0.710274 ± 18 (n = 11, 2σ) and 0.512093 ± 11 (n = 11,
2σ), respectively. All measured Nd and Sr isotope ratios were normal-
ized to 146Nd/144Nd=0.7219 and 86Sr/88Sr=0.1194, respectively. For
Pb isotope determinations, about 50 mg powder was weighed into a
Teflon beaker and dissolved in concentrated HF at 180C for 3 days.
Lead was separated and purified by conventional cation-exchange
techniques with diluted HBr as an eluant. Total procedural blanks
were less than 50 pg Pb. Measurement of Pb isotopic compositions
were carried out following procedures described by Zhu et al.
(2001). Repeated analyses of NBS 981 yielded average values of
206Pb/204Pb = 16.936, 207Pb/204Pb = 15.487 and 208Pb/204Pb =
36.677. The Sr–Nd–Pb isotope results for whole rocks of ten samples
are listed in Table 2.



Table 1
Geochemical data for the Paleozoic granitoids near eastern Alxa Block.

Rock type Hetun monzogranite Bayanbulage quartz diorite Bayanbulage Diebusige monzogranite South Diebusige monzogranite

Sample no. 09AL127 09AL128 09AL129 09AL130 09AL131 09AL132 09AL147 09AL148 09AL149 09AL191 09AL198 09AL199 09AL200 09AL201 09AL202

Major elements (wt.%)
SiO2 76.36 72.64 74.64 64.03 73.75 72.64 57.17 62.55 67.27 71.82 70.10 70.72 73.99 72.16 74.32
TiO2 0.06 0.16 0.13 0.20 0.12 0.14 1.07 0.84 0.53 0.29 0.33 0.33 0.18 0.32 0.15
Al2O3 13.50 14.78 13.71 16.94 14.35 14.96 16.20 16.57 15.74 14.78 14.76 14.98 13.34 14.06 13.44
Fe2O3

T 0.48 1.30 1.20 2.61 1.11 1.20 7.78 6.82 4.35 1.94 2.35 2.30 1.53 2.77 1.19
MnO 0.04 0.04 0.04 0.10 0.05 0.03 0.19 0.11 0.06 0.03 0.03 0.03 0.02 0.03 0.02
MgO 0.18 0.55 0.52 0.87 0.45 0.48 2.94 1.77 1.33 0.71 0.81 0.83 0.30 0.52 0.24
CaO 0.73 1.70 1.60 3.04 1.27 1.52 5.74 3.81 3.48 1.41 1.57 1.34 1.24 1.58 1.47
Na2O 4.02 3.72 3.58 1.68 3.65 4.08 3.82 3.40 3.47 3.25 3.37 3.14 2.59 3.06 2.91
K2O 4.47 4.54 4.19 6.21 4.62 4.33 2.85 2.74 2.59 4.86 4.82 5.01 5.80 4.51 5.33
P2O5 0.01 0.06 0.08 0.06 0.03 0.04 0.46 0.28 0.19 0.06 0.07 0.07 0.03 0.07 0.03
L.O.I 0.39 0.66 0.44 4.26 0.75 0.75 1.48 0.93 0.93 0.94 1.88 1.33 0.98 0.96 1.02
Total 100.23 100.15 100.14 100.00 100.16 100.17 99.72 99.93 99.82 100.09 100.08 100.07 100.00 100.03 100.09
Mg# 45.0 48.3 48.8 42.3 47.2 47.1 45.4 36.3 40.2 44.6 43.1 44.2 30.1 29.1 30.7
A/CNK 1.06 1.05 1.03 1.13 1.08 1.06 0.82 1.07 1.06 1.12 1.08 1.15 1.04 1.10 1.02

Trace element (ppm)
Sc 3.63 3.52 3.11 4.50 2.19 2.42 25.0 10.1 11.4 3.64 4.60 4.27 2.27 4.57 1.91
V 9.23 20.8 18.5 40.5 20.7 20.9 123 45.0 66.7 30.5 38.9 36.7 5.53 18.8 5.17
Cr 14.8 25.0 23.5 29.4 28.4 30.6 59.1 26.8 32.2 10.3 12.7 11.6 2.31 0.86 0.065
Ni 5.11 7.34 7.05 11.82 9.93 9.88 20.0 7.51 6.79 1.43 1.76 1.61 3.58 0.82 0.34
Ga 16.9 16.4 14.9 26.6 16.2 16.8 25.3 22.5 24.5 16.5 16.3 16.7 11.9 14.7 11.9
Rb 118 101 90.3 185 99.4 94.7 154 110 140 94.5 109 95.6 56.5 60.1 48.8
Sr 103 488 488 448 373 403 704 333 472 332 276 375 405 476 413
Y 10.9 11.2 9.14 14.1 4.70 4.30 29.6 16.0 23.1 7.30 9.69 9.43 6.84 8.14 7.71
Zr 56.7 73.0 73.2 96.2 64.5 87.0 234 236 312 143 163 166 158 175 154
Nb 18.9 26.2 15.7 28.2 35.7 19.5 14.2 14.6 14.8 11.2 8.55 8.34 3.45 6.21 2.86
Ba 278 1104 1039 1613 755 777 801 561 918 2119 2374 2452 2865 2877 2832
La 6.64 27.9 26.2 20.0 13.4 16.1 32.4 41.4 22.0 39.3 39.8 42.6 47.1 34.5 47.7
Ce 14.3 48.0 45.0 34.7 24.0 28.4 69.9 82.7 43.9 64.5 65.1 71.9 85.9 60.9 87.5
Pr 1.74 4.86 4.49 3.59 2.43 2.89 9.45 10.1 5.68 6.16 6.40 6.77 9.58 6.75 9.79
Nd 6.73 15.6 14.5 11.6 7.61 9.23 37.9 36.0 21.1 20.8 22.0 22.8 37.4 26.4 38.3
Sm 2.05 2.68 2.33 2.04 1.28 1.38 8.55 6.47 4.78 3.01 3.23 3.11 6.23 4.26 6.58
Eu 0.38 0.73 0.66 0.67 0.39 0.50 2.10 1.27 1.60 0.73 0.84 0.79 1.52 1.47 1.51
Gd 1.87 2.38 2.03 2.03 1.03 1.13 7.34 5.21 4.62 2.04 2.33 1.95 3.81 2.84 3.92
Tb 0.31 0.33 0.28 0.29 0.13 0.13 1.08 0.67 0.77 0.26 0.30 0.22 0.41 0.33 0.42
Dy 1.93 1.84 1.52 1.74 0.75 0.65 6.03 3.49 4.60 1.29 1.52 1.02 1.71 1.57 1.72
Ho 0.41 0.39 0.32 0.43 0.17 0.13 1.22 0.65 0.94 0.22 0.26 0.17 0.24 0.25 0.25
Er 1.11 1.13 0.91 1.21 0.54 0.46 3.12 1.62 2.44 0.60 0.73 0.45 0.63 0.67 0.63
Tm 0.18 0.17 0.14 0.21 0.11 0.080 0.42 0.21 0.32 0.10 0.13 0.076 0.10 0.11 0.10
Yb 1.27 1.27 0.92 1.61 0.87 0.69 2.79 1.26 1.96 0.64 0.84 0.52 0.66 0.70 0.66
Lu 0.20 0.21 0.16 0.26 0.16 0.13 0.44 0.20 0.29 0.11 0.15 0.092 0.13 0.12 0.12
Hf 2.70 2.39 2.36 3.13 2.67 2.94 5.42 5.77 7.01 3.86 4.10 4.27 4.58 4.41 4.45
Ta 1.68 2.08 0.99 1.89 4.20 1.21 0.91 0.80 1.06 0.95 0.57 0.52 0.11 0.15 0.09
Pb 46.5 70.0 69.7 205 90.7 79.1 15.9 19.8 16.4 27.3 15.2 21.2 18.5 17.6 18.0
Th 9.17 12.7 9.73 14.4 11.2 11.8 8.38 16.3 10.4 6.05 6.76 7.09 2.79 1.47 2.94
U 2.14 3.74 2.90 1.37 2.91 1.95 2.91 2.42 2.41 0.80 0.60 0.53 0.14 0.16 0.15
Sr/Y 9 44 53 32 79 94 24 21 20 45 28 40 59 59 54

Mg# = 100 × molar Mg2+ / (Mg2+ + Fe2+), assuming FeO / (FeO + Fe2O3) = 0.9; A / CNK = molar Al2O3 / (CaO + Na2O + K2O).
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Table 2
Whole rock Sr–Nd–Pb data for the Paleozoic granitoids near the eastern Alxa Block.

Sample 87Rb/86Sr 87Sr/86Sr ±2σ (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd ±2σ εNd(t) TDM
(Ma)

T2DM
(Ma)

206Pb/204Pb 207Pb/204Pb 208Pb/204Pb

Ca. 423 Ma Bayanbulage quartz diorite
09AL147 0.631 0.714524 0.000013 0.71072 0.1362 0.512000 0.000007 −9.2 2259 1910 18.246 15.558 38.349
09AL148 0.957 0.713042 0.000014 0.70728 0.1087 0.512007 0.000007 −7.6 1659 1780 18.132 15.542 38.469

Ca. 345 Ma Hetun monzogranite
09AL127 3.55 0.721760 0.000013 0.70432 0.1838 0.511761 0.000006 −16.6 6998 2419 17.259 15.411 37.007
09AL128 0.642 0.709308 0.000013 0.70616 0.1036 0.511731 0.000007 −13.6 1964 2208 17.780 15.483 37.494
09AL130 1.29 0.711173 0.000016 0.70482 0.1060 0.511738 0.000009 −13.6 1997 2204 17.665 15.478 37.474
09AL131 0.878 0.710984 0.000016 0.70667 0.1017 0.511731 0.000007 −13.5 1930 2201 18.219 15.511 37.571

Ca. 345 Ma Diebusige monzogranite
09AL191 0.823 0.710026 0.000017 0.70598 0.0874 0.511410 0.000012 −19.1 2096 2657 16.227 15.303 36.222
09AL198 1.15 0.710549 0.000020 0.70491 0.0888 0.511424 0.000007 −19.0 2103 2641 16.359 15.318 36.385

Ca. 337 Ma South Diebusige monzogranite
09AL200 0.442 0.708936 0.000011 0.70682 0.1005 0.511503 0.000006 −18.0 2215 2558 16.070 15.283 36.152
09AL202 0.342 0.708668 0.000016 0.70703 0.1037 0.511504 0.000008 −18.1 2278 2568 16.057 15.282 36.168

(87Sr/86Sr)i = (87Sr/86Sr)− (87Rb/86Sr) × (eλt − 1); λRb–Sr = 0.0142 Ga−1; εNd(t) = 10,000 × {[(143Nd/144Nd)s − (147Sm/144Nd)s × (eλt − 1)] / [(143Nd/144Nd)CHUR,0 − (147Sm/144Nd)CHUR ×
(eλt − 1)] − 1}; TDM = 1 / λ × ln{1 + [(143Nd/144Nd)s − (143Nd/144Nd)DM] / [(147Sm/144Nd)s − (147Sm/144Nd)DM]}; T2DM = TDM − (TDM − t)((fc − fs) / (fc − fDM)); fSm/Nd =

(147Sm/144Nd)s/(147Sm/144Nd)CHUR − 1; where fc, fs and fDM are the fSm/Nd values of the continental crust, sample and the depleted mantle; fc = −0.4, fDM = 0.08592; t =

crystallization time; (147Sm/144Nd)s and (143Nd/144Nd)s are values of analyzed sample; (147Sm/144Nd)CHUR = 0.1967 and (143Nd/144Nd)CHUR,0 = 0.512638; (147Sm/144Nd)DM = 0.2135
and (143Nd/144Nd)DM = 0.51315; (147Sm/144Nd)c = 0.118; λSm–Nd = 0.00654 Ga−1.
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4. Results

4.1. Zircon U–Pb dating results

Zircon grains selected for U–Pb dating were mostly euhedral to
subhedral, with lengths of ~100–250 μm, and length to width ratios of
2:1 to 4:1. The oscillatory zoning revealed in CL images for most grains
(Fig. 4) and high Th/U ratios (0.15–0.68) suggest a magmatic origin
(Belousova et al., 2002). U–Pb Concordia diagrams are shown in Fig. 5,
and U–Pb age data are given in Appendix 1.
4.1.1. The Bayanbulage pluton
Seventeen zircon spot analyses from a quartz diorite sample

(09AL147) yield a weighted mean 206Pb/238U age of 423 ± 3 Ma
Fig. 4.Cathodoluminescence images of representative zircons for in situ analyses of U–Pb and/or
and large circles denote the LA-(MC) ICP-MS analytical spots for Lu–Hf or U–Pb isotopes. Numb
bars are 100 μm long.
(MSWD= 1.1, 95% confidence interval) (Fig. 5a), which is interpreted
as the crystallization age of the Bayanbulage quartz diorites.

4.1.2. The Hetun pluton
Two of the Hetun monzogranites (09AL131 and 09AL127) were

dated. Nine zircon spots were analyzed for sample 09AL131, and they
have high U contents up to ~5000 ppm (Appendix 1). Almost all these
analyses show variable discordance, and the degree of discordance is
apparently correlated directly with U contents (not shown), indicating
radiogenic Pb loss, probably due to radiation damage. They yield an
upper intercept age of 366 ± 16 Ma (MSWD = 0.81) (Fig. 5b), which
is interpreted as the approximate crystallization age of this sample.
Fifteen analyses were obtained from sample 09AL127, yielding a wide
range of 206Pb/238U ages from 368 Ma to 338 Ma. These ages can be
unmixed into two pools, i.e., 362 ± 6 Ma and 345 ± 4 Ma (Fig. 5c).
Hf–O isotopes. Small ellipses indicate the SIMS analytical spots for U–Pb and/or O isotopes,
ers near the analysis spots are the U–Pb ages (Ma) and εHf(t)/δ18O values. The black scale



Fig. 5. In situ U–Pb dating results for the Paleozoic rocks. (a) Quartz diorite from Bayanbulage pluton (09AL147), (b, c) monzogranites from Hetun pluton (09AL131 and 09AL127),
(c, d) monzogranites from Diebusige pluton (09AL191 and 09AL198), (f) monzogranites from Diebusige pluton (09AL200). Data-point error ellipses are 2σ.
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The former is interpreted as an older igneous event recorded in
xenocrystic zircons, and the latter as the crystallization age of this
sample. Thus, both samples yield similar crystallization ages. Owing to
the relatively large error in the age of sample 09AL131, the age of
345± 4Ma from sample 09AL127was considered as the crystallization
age of the Hetun monzogranites.

4.1.3. The Diebusige pluton
Two of the Diebusige monzogranites (09AL191 and 09AL198) were

dated. Fourteen zircon spot analyses from sample 09AL191 show a
wide range of 206Pb/238U ages varying from 356 Ma to 324 Ma. Eleven
of fourteen analyses yield a weighted mean age of 346 ± 4 Ma
(MSWD = 1.5, 95% confidence interval), which is interpreted as the
crystallization age of sample 09AL191. The remaining three analyses
show slightly younger ages than themain population (Fig. 5d), probably
due to radiogenic Pb loss. Thirteen zircon spot analyses from sample
09AL198 exhibit a wide range of 206Pb/238U ages varying from 362 Ma
to 322 Ma. Eight analyses with 206Pb/238U ages of 352–335 Ma yield a
weighted mean age of 344 ± 5 Ma (MSWD = 1.7, 95% confidence
interval), which is interpreted as the crystallization age of this sample.
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One analysis with 206Pb/238U age of 362 Ma was interpreted as a
xenocrystic zircon, and the remaining four analyses showslightly younger
ages than the main population (Fig. 5e), probably due to radiogenic Pb
loss. Thus, the Diebusige monzogranites crystallized at ca. 345 Ma.

4.1.4. The South Diebusige pluton
Twelve of the total thirteen analyses of sample 09AL200 with

206Pb/238U ages ranging from 350 to 326 Ma yield a weighted mean
age of 337 ± 5 Ma (MSWD = 2.0, 95% confidence interval), which
is interpreted as the crystallization age of the South Diebusige monzo-
granites. Radiogenic Pb loss resulted in one analysis with a younger
age than the main population (Fig. 5f).

In summary, based on the new zircon U–Pb age data, the granitoids
in the South Diebusige, Diebusige, Bayanbulage and Hetun areas can be
assigned to two epochs: Late Silurian (~423Ma: the Bayanbulage quartz
diorites) and Early Carboniferous (345–337 Ma: the Hetun, Diebusige
and South Diebusige monzogranites).

4.2. Whole-rock major and trace element compositions

The Late Silurian quartz diorites from the Bayanbulage area have
highly variable abundances of SiO2, ranging from 58.0 to 67.9 wt.%
(volatile free) (Fig. 6a). The Early Carboniferous monzogranites from
the Hetun, Diebusige and South Diebusige areas show notably higher
SiO2 contents ranging from 71.5 to 76.7 wt.%. All of these rocks are
low in TiO2, Fe2O3

T, CaO, MgO (Mg# (100 × [molar MgO /
(MgO + FeO)]) = 27–46), K2O and Na2O contents (Table 1). On SiO2

versus K2O + Na2O and K2O diagrams (Fig. 6a, b), they are plotted
into thefields of subalkaline andhigh-K calcalkalinemagmatic rocks, re-
spectively. The Late Silurian quartz diorites have total K2O + Na2O
values ranging from 6.1 to 6.8 wt.% with low K2O/Na2O values of
0.75–0.81, but the Early Carboniferous monzogranites have higher
total K2O + Na2O values ranging from 7.0 to 8.5 wt.% with slightly
higher K2O/Na2O values of 1.1–2.2. The quartz diorites and Early Car-
boniferous monzogranites have slightly variable A/CNK (molar Al2O3/
Fig. 6. (a) SiO2 vs. K2O + Na2O diagram for intrusive rocks (Middlemost, 1994); (b) SiO2 vs.
granitoids; (d) SiO2 vs. P2O5 diagram.
(CaO + Na2O + K2O)) values of 0.82–1.07 and 1.02–1.15, respectively,
and are plotted in the metaluminous to peraluminous and the weakly
peraluminous fields, respectively (Fig. 6c).

The Late Silurian quartz diorites exhibit light rare earth element
(LREE) enrichment and insignificant Eu anomalies on chondrite-
normalized REE patterns (Fig. 7a). All of the Early Carboniferous
granites, except sample 09AL127, have similar chondrite-normalized
REE patterns with enrichment of LREE and insignificant Eu anomalies
(Fig. 7c). On primitive mantle-normalized spidergrams, the granitoids
show strong enrichment in Rb, Ba (except 09AL127), Th, Pb, and Sr,
but pronounced negative anomalies in Nb, Ta, P and Ti relative to the
neighbor elements (Fig. 7b, d). Sample 09AL127 has lower La to Gd,
Sr, Ba, Zr and Th contents than other Hetun samples and a negative Eu
anomaly, suggesting monazite + plagioclase + zircon fractionation in
a highly silicic (73.36 wt.% SiO2) granite. The negative anomalies in
Nb, Ta, P and Ti (as well as the enrichment in Rb, Ba, Th, etc.) are not
equivalent between the late Silurian quartz diorites and the Early
Carboniferous granites and on average are more pronounced in the
younger rocks.

The Early Carboniferous granites are geochemically characterized
by relatively high Sr (≥252 ppm) but low Yb (≤1.3 ppm) and Y
(≤11 ppm) contentswith high Sr/Y ratios of 40–94 (except for two sam-
ples, 09AL127 and 09AL198, with low Sr/Y ratios of 9–28), similar to
those of modern adakites and Archean tonalite–trondhjemite–
granodiorite (TTG) suites (Fig. 8) (Defant and Drummond, 1990;
Martin et al., 2005). In contrast, the Late Silurian quartz diorites show
high Sr (333–704 ppm) and also high Yb (1.3–2.8 ppm) and Y
(16–30 ppm) contents with low Sr/Y ratios of 21–24.

4.3. Whole rock Sr–Nd–Pb isotopic compositions

Thewhole rock Sr–Nd–Pb isotopic results are presented in Fig. 9. The
Late Silurian quartz diorites exhibit variable initial 87Sr/86Sr isotopic ra-
tios of 0.7073–0.7107 and have the highest εNd(t) values of −9.2 to
−7.6 (Fig. 9a), corresponding to two-stage Nd mode ages (T2DM) of
K2O diagram (Peccerillo and Taylor, 1976); (c) plot of A/CNK vs. A/NK for the Paleozoic



Fig. 7. Chondrite-normalized REE diagrams (a, c) and (b, d) primitive mantle-normalized incompatible trace element spidergrams for the Paleozoic granitoids. The normalization values
are from Sun and McDonough (1989).
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1.91–1.78 Ga. They exhibit radiogenic Pb isotope compositions
(206Pb/204Pb = 18.13–18.25, 207Pb/204Pb = 15.54–15.56 and
208Pb/204Pb = 38.35–38.45), which are plotted to the right of the
4.57 Ga Geochron (Fig. 9b). The Late Carboniferous granites from
the Hetun area have lower initial 87Sr/86Sr isotopic ratios of
0.7043–0.7067 and εNd(t) values of −16.6 to −13.5, corresponding to
two-stage Nd model ages of 2.42–2.20 Ga. The Hetun samples have
intermediate Pb isotope compositions (206Pb/204Pb = 17.25–18.22,
207Pb/204Pb = 15.41–15.51 and 208Pb/204Pb = 37.01–37.57), which
straddle the 4.57 Ga Geochron (Fig. 9b). The Late Carboniferous granites
from the Diebusige and South Diebusige areas have lower initial
87Sr/86Sr isotopic ratios of 0.7049–0.7060 and 0.7068–0.7070, and the
lowest εNd(t) values of −19.2 to −19.0 and −18.1 to −18.0, corre-
sponding to two-stage Nd mode ages (T2DM) of 2.66–2.64 Ga and
Fig. 8. (a) Sr/Y vs. Y diagram (after Defant et al., 2002); (b) SiO2 vs. MgO diagram. The field of m
(Sen and Dunn, 1994; Rapp and Watson, 1995; Springer and Seck, 1997; Rapp et al., 1999; Sk
subducting oceanic crust origin is after Q. Wang et al. (2006). Melts formed by partial melting
Muir et al., 1995; Petford and Atherton, 1996; Johnson et al., 1997; Chung et al., 2003; Wang e
2.57–2.56Ga, respectively. They have unradiogenic Pb isotope composi-
tions (206Pb/204Pb = 16.06–16.36, 207Pb/204Pb = 15.28–15.32 and
208Pb/204Pb = 36.15–36.39), which are plotted to the left of the
4.57 Ga Geochron (Fig. 9b).

4.4. Zircon Hf–O isotopic compositions

Zircon Hf and oxygen isotope analyses were conducted on the same
grains thatwere analyzed for U–Pb dating. The 423Mamagmatic zircon
grains from the Bayanbulage area sample 09AL147 have relatively ho-
mogeneous εHf(t) values of −8.6 to −5.3 (averaged at −6.8 ± 0.8
(1SD)), corresponding to two-stage zircon Hf model ages (TDMC ) of
1.96–1.75 Ga (averaged at 1.84 ± 0.05 Ga (1SD)). By contrast, the
345–337 Ma magmatic zircon grains have a wide range of εHf(t) values.
etabasaltic and eclogite experimental melts (1–4.0 GPa) is from the following references
jerlie and Patiño Douce, 2002, and references therein). Fields of adakites inferred to be of
of the lower mafic crust are from the following references (Atherton and Petford, 1993;
t al., 2005).



Fig. 9. (a) Nd–Sr isotopic compositions, (b) 206Pb/204Pb vs. 207Pb/204Pb and (c) 206Pb/204Pb
vs. 208Pb/204Pb for the Paleozoic granitoids. The gray fields in (a) are from Jahn et al.
(1999). Data sources for (b) and (c): the North China Craton (Liu et al., 2004; Li and
Jiang, 2013 and references therein), the South China Craton (Zhang et al., 2000, 2007),
NHRL (Hart, 1984).
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The magmatic rocks from South Diebusige (sample 09AL200), Diebusige
(09AL191 and 09AL198) and Hetun (09AL127 and 09AL131) have
age-corrected εHf(t) values of −23.1 to −18.3, −18.5 to −13.0 and
−14.6 to −7.4, corresponding to two-stage zircon Hf model ages
of 2.79–2.50 Ga, 2.52–2.17 Ga and 2.28–1.82 Ga, respectively
(Appendix 2).

The measured zircon δ18O values from samples 09AL147, 09AL127,
09AL191, 09AL198 and 09AL200 show a limited range of 8.5–9.1‰,
5.7–6.9‰, 6.1–7.2‰, 5.9–6.7‰ and 6.1–7.2‰, forming normal Gaussian
distributions, with respect to averages of 8.88 ± 0.17‰ (1SD), 6.32 ±
0.32‰ (1SD), 6.56 ± 0.27‰ (1SD), 6.34 ± 0.22‰ (1SD) and 6.49 ±
0.27‰ (1SD) (Fig. 10). The magmatic zircons from sample 09AL127,
with slightly different ages, have similar δ18O values (Appendix 2 and
Fig. 10).

5. Discussion

5.1. The Alxa Block is not a part of the North China Craton

The Alxa Block has long been regarded as the westernmost part of
the NCC (e.g., Kusky and Li, 2003; Zhao et al., 2005), with Archean base-
ment rocks exposed on its eastern margin (NMBGMR, 1991). However,
recent studies have revealed that only a few ~2.5 Ga TTG occur in the
Alxa Block and these are located in the southwest (Gong et al., 2012;
J.X. Zhang et al., 2013a). Moreover, ca. 930–910 Ma S-type granites
were discovered in the Alxa Block, which were most likely formed in
an orogenic compressional setting that is clearly distinct from the ex-
tensional tectonics associated with rift-related ca. 925–900 Ma mafic
dykes in the central and eastern NCC (Dan et al., 2014a and references
therein). Based on the discrepancy in the Precambrian geology between
the Alxa Block and the NCC, we previously proposed that the Alxa Block
is unlikely to be a part of the NCC (Dan et al., 2014a). This proposal is
supported by the different detrital zircon age distributions in the Alxa
Block and the NCC (Zhang et al., 2011; Dan et al., 2014a; Yuan and
Yang, 2015a).

Our newNd and Pb isotopic data also support the view that the Alxa
Block is not a part of the NCC. The available Nd model ages of igneous
rocks in the Bayanwulashan–Diebusige complexes are distinctly older
than those of the Alxa Block, but are similar to those of the NCC
(Fig. 13). The Pb isotopic compositions of Alxa Block magmatic rocks
are more radiogenic than those of the North China Craton, but are akin
to those of the South China Craton (Fig. 9b and C). Moreover, these
new data suggest that the Bayanwulashan–Diebusige complexes are
not a part of the Alxa Block as commonly suggested (e.g., Geng et al.,
2010; Zhang et al., 2011; Dan et al., 2012; Li et al., 2012; Yuan and
Yang, 2015a,b), and the western boundary of the NCC is likely located
on the west fault of Bayanwulashan–Diebusige complexes (Fig. 2). The
proposed boundary is also consistent with the deposition of similar
Cambrian–Middle Ordovician carbonate rocks in the Helanshan and
Bayanhot basins (Fig. 14) (Zhu et al., 1994; Wang, 2012), and the
different sedimentary records in the Helanshan and Eastern Alxa Block
(Fig. 14). It is notable that theHetunmonzogranites have younger crust-
al model ages (Fig. 13b) and intermediate Pb isotopic compositions
(Fig. 9b, c), indicating that, in addition to a crustal component from
the NCC, they may also contain an added crustal component from the
Alxa Block.

5.2. Petrogenesis of the Paleozoic magmatism

5.2.1. The Silurian quartz diorites: Bayanbulage
Although a few Early Paleozoic igneous rocks have been reported in

the eastern Alxa Block (Li, 2006), no detailed geochemical data were
provided. We report the first zircon Hf–O isotopes for the Bayanbulage
quartz diorites. The zircon grains have δ18O values of 8.5–9.1‰,
which are higher than most igneous zircon grains that typically have
δ18O values ranging from 5 to 8‰ (Valley et al., 2005; Cavosie et al.,
2011). The notably high zircon δ18O values imply involvement of
18O-enriched supracrustal rocks in their generation, by either remelting
and/or assimilation of such crustal rocks, or mixing between crust- and
mantle-derived mafic magmas. The uniformity of εNd(t) values over
large variations in SiO2 contents for the quartz diorites (Table 2)
indicates that crustal contamination is insignificant. The absence of
xenocrystic zircons in sample 09AL147 also suggests that the effect of
supracrustal contamination is insignificant. Unlike whole rocks,
zircon grains have the capacity to record magma evolution processes
(e.g., assimilation or mixing), which then result in large ranges in δ18O



Fig. 10. Probability plots of zircon δ18O values from the Paleozoic granitoids.
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values and multiple peak values (e.g., Kemp et al., 2007; Appleby et al.,
2008; Li et al., 2009; Dan et al., 2012). Thus, homogenous zircon δ18O
values suggest that their primary magmas were homogenous and did
not suffer significant assimilation (e.g., Li et al., 2009; Dan et al.,
2012). Although a magma mixing scenario is feasible if two different
magmas have similar O isotope compositions, the unimodal distribu-
tion of zircon εHf(t) and the lack of correlation betweenHf andO isotope
compositions lend little support for magma mixing in this case. Thus,
the crustal component implicated for these magmas was introduced
at the site of magma generation, and the primary magma of the quartz
diorites had high zircon 18O values.

These high 18O quartz diorites could have been generated by:
(1) partial melting of the lower crust with high-δ18O of 9.9‰
(Model 1) (e.g., Bindeman et al. 2004); and (2) addition of high-δ18O
(ca. 10–20‰) slab fluids into mantle-derived magma (e.g., Zi et al.,
2012) (Model 2). Model 1 accounts for high δ18O magmas by accretion
of supracrustal materials to the pre-existing continental margin,
followed by underthrusting of this material to a deep-crustal/
upper-mantle location andmobilization via arcmagmatism generated
in a deep-crustal melting zone (Lackey et al., 2005; Roberts et al.,
2013). Magmatic compositions generated by this mechanism range
from gabbro to granite with a wide range of zircon δ18O (5.4 to
8.7‰) and εHf(t) (+1 to+11) values (Roberts et al., 2013), in contrast
to the homogeneous zircon O–Hf data of the single known quartz dio-
rite from the Alxa Block. Differences between the predicted range of
rock types and isotopic compositions and those identified in the Alxa
Black clearly argue against Model 1. Although, Neoproterozoic S-type
granites in the Alxa Block have high zircon δ18O values (8.2–12.1‰)
(Dan et al., 2014a), we note that they cannot be taken as the crustal
end-member of the Model 1 mixed magma. Zircon Hf–O models indi-
cate that an unrealistic 60–70% S-type granite contribution is required
to produce the mixed magmas (Fig. 11). Thus, any potential crustal
end member must have higher 18O values than the S-type granites.
In addition, the Bayanbulage quartz diorites might also be generated
by partial melting of the former underplated basic magmatic rocks,
which were produced by partial melting of SCLM (Model 2). Although
this possibility could not be excluded, we do not prefer it because
of their variable SiO2 (58.0 to 67.9 wt.%) and Cr (27–59 ppm)
and Ni (6.8–20 ppm) contents, which indicates significant crystal
fractionation.

Although mantle metasomatism caused by high melt and fluid flux
derived from subducted sediments and altered oceanic crust generally
elevates δ18O values up to ~2‰ (e.g., Bindeman et al. 2004; Martin
et al. 2011), many examples demonstrate that magmas derived from



Fig. 11. Plot of zircon εHf(t) values vs. δ18O values. The dashed lines denote the two-
component mixing trends between the mantle- and supracrust-derived magmas. Hfpm/Hfc
is the ratio of Hf concentration in the parental mantle magma (pm) over crustal
(c) melt indicated for each curves, and the small rhombuses and ticks on the curves
represent 10% mixing increments by arbitrary assuming that the mantle zircon has
εHf=−5 and δ18O= 5.3‰, and εHf= 15 and δ18O= 5.3‰, respectively. The crust zircon
for the 345 Ma rocks has εHf = −44 and δ18O = 7.8‰, and supracrustal zircon for the
423 Ma rocks has εHf = −12 and δ18O = 10‰. The magmatic zircon Hf–O values of the
Paleoproterozoic rocks and Neoproterozoic S-type granites are from Dan et al. (2012,
2014a).
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the sub-arc mantle can display significantly more 18O-rich signatures
(δ18O value of 8.0–11.3‰) (Eiler et al., 1998, 2007; Liu et al., 2014).
Partial melting of 18O-enriched peridotites in the sub-arc mantle can
generate mafic-intermediate rocks with high δ18O values. One such
diorite with a zircon δ18O value of 8.7‰ was documented in the
Sanjiang Orogen, SW China (Zi et al., 2012). The parent magmas of the
Bayanbulage quartz diorites were likely generated by partial melting
of subduction-modified subcontinental lithospheric mantle (SCLM).
Their low Mg# (36–45) and variable but low compatible trace element
(e.g., Cr = 27–59 ppm and Ni = 6.8–20 ppm) indicate that their parent
magmas underwent significant crystal fractionation.

5.2.2. The Early Carboniferous high Sr/Y monzogranites: Hetun, Diebusige
and South Diebusige

As shown in Fig. 8, most of the Early Carboniferous monzogranites
show some geochemical affinities with typical adakites as defined by
Fig. 12. Plot of εHf(t) values vs. crystallization ages for the zircons from thePaleoproterozoic
(Dan et al., 2012) and Phanerozoic granitoids, illustrating that the Phanerozoic granitoids
are not generated by directing partial melting of the Paleoproterozoic rocks.

Fig. 13. Whole rock Nd model ages for (a) the 423–337 Ma granitoids, (b) the
Paleoproterozoic–Permian rocks (Sources: Dan, 2011; Dan et al., 2014a,b and this study)
in eastern Alxa Block, and (c) Archean–Paleoproterozoic rocks in the North China Craton
(data compiled by Wu et al., 2005).
Defant and Drummond (1990). However, their high K2O contents
(Table 1) and K2O/Na2O ratios (1.1–2.2) are inconsistent with typical
adakitic rocks, but similar to high Sr/Y granites (Moyen, 2009). In addi-
tion, the presence of a significant negative Eu anomaly and low Sr con-
tent (103 ppm) in Hetun monzogranite sample 09AL127 indicate that
plagioclase fractionation likely played an important role in their gener-
ation. This is also inconsistent with the characteristics of adakitic rocks.

Several models have been proposed for the generation of high Sr/Y
granitoids, including (a) melting of subducted young and hot oceanic
crust (e.g., Defant and Drummond, 1990; Kay et al., 1993; Martin
et al., 2005; Wang et al., 2007a, 2008a); (b) assimilation and fractional
crystallization (AFC) or fractional crystallization (FC) from parental



Fig. 14. Correlation diagram of the Paleozoic strata in the northwest North China (data
based on NMBGMR, 1991; Li, 2006; Zhang et al., 2011; Wang, 2012).
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basaltic magmas (Castillo et al., 1999;Macpherson et al., 2006; Richards
and Kerrich, 2007; Rooney et al., 2011); (c) magma mixing between
felsic and basaltic magmas (Guo et al., 2007; Streck et al., 2007); and
(d) partial melting of thickened lower crust (Atherton and Petford,
1993; Petford and Atherton, 1996; Chung et al., 2003; Wang et al.,
2005). In the case of the Early Carboniferous monzogranites, the
first three models cannot account for the petrogenesis of these rocks.
Oceanic slabmelting is unlikely to have generated these high Sr/Y gran-
itoids because of the apparent lack of contemporaneous subduction in
the eastern Alxa Block, their high K2O/Na2O ratios and their evolved
Sr–Nd–Hf isotopic compositions (Figs. 9 and12).Magmatic rocks gener-
ated by fractional crystallization processes generally exhibit a
continuous compositional trend from basaltic rocks derived from man-
tle to felsic rocks derived from residual magmas (e.g., Castillo et al.,
1999; Macpherson et al., 2006; Richards and Kerrich, 2007). Although
minor fractional crystallization may be involved in the genesis of these
Early Carboniferous high Sr/Y rocks, the absence of contemporary basal-
tic and intermediate igneous rocks associated with these granitoids
rules out a significant role for this process. Similar rocks formed by
magma mixing usually display intermediate compositions combined
with high Mg (e.g., adakitic high-Mg andesites) (Guo et al., 2007;
Streck et al., 2007) rather than the acidic adakitic rocks identified in
the present study area. Based on the absence of contemporary basaltic
rocks and the homogeneity of magma revealed by O and Hf isotopes,
magma mixing is also unlikely to have been a dominant process in the
generation of such high Sr/Y granitoids. Consequently, the remaining
possibility of partial melting of thickened lower crust is considered in
detail below.

Partial melting of a thickened garnet-bearing mafic lower crust due
to heat flux from the mantle (e.g., Atherton and Petford, 1993; Wang
et al., 2005; X.C. Wang et al., 2006; Wang et al., 2007b) appears to be a
plausible mechanism for the generation of the Carboniferous high Sr/Y
rocks near the eastern Alxa Block. For example, the model predicts
low compatible element contents (e.g., MgO, Cr, Ni and Co). In Fig. 8b,
the samples display linear trends that are parallel to the fields of melts
formed by partial melting of the thickened lower crust, a scenario that
is supported by the contemporaneous westward ductile thrusting in
this area (J. Zhang et al., 2013a). It is also consistent with the relatively
low zircon δ18O values (6.3–6.6‰) (Fig. 10), which are below or only
slightly higher than the published upper limit value of mantle-derived
magma (6.5‰) (e.g., Valley et al., 2005). In addition, the Hetun
monzogranites are characterized by concave REE patterns (Fig. 7c),
which are indicative of hornblende fractional crystallization or the
presence of hornblende in the residual mineral assemblage.

The Carboniferous high Sr/Y rocks have negative εNd(t) (−19.2
to −13.5) and old Nd model ages (2.66–2.20 Ga), suggesting that they
originated from old (Archean or Paleoproterozoic) crustal rocks. It is
notable that the model ages of the high Sr/Y rocks are younger than
the values of the Bayanwulashan and Diebusige complexes. The Hetun
monzogranites have Nd model ages of 2.42–2.20 Ga that are distinctly
lower than the 2.85–2.65 Ga (Dan, 2011) model ages of the Paleo-
proterozoic Bayanwulashan Complex. The 345–337 Ma high Sr/Y
rocks from Diebusige and South Diebusige have Nd model ages of
2.66–2.56 Ga, which are lower than the 3.14–2.79 Ga age of the
Diebusige Complex (Dan, 2011). These results imply that these
345–337 Ma high Sr/Y rocks were not directly derived from the
Bayanwulashan and Diebusige complexes (Fig. 12). Moreover, the
zircon δ18O values of the high Sr/Y rocks (6.3–6.6‰) are lower than
those (7.3–8.2‰) of mafic and felsic rocks from the Bayanwulashan
and Diebusige complexes (Dan et al., 2012 and our unpublished data).
Therefore, we suggest that the high Sr/Y rocks were likely generated
by partial melting of basaltic lower crust that was underplated after
the formation of the Paleoproterozoic Bayanwulashan and Diebusige
complexes. The zircon Hf–O isotopic compositions suggest that the
proportion of mantle-derived magmas involved in generating the high
Sr/Y rocks could have been as high as 75% (Fig. 11). We note that the
mafic end-members were probably more radiogenic, thus, the calculat-
ed proportions of mantle components involved in the granite formation
are the minimum estimates.

5.3. A cryptic suture zone between the Alxa Block and North China Craton

In view of the different evolutionary histories of the Alxa Block and
the NCC during the Neoproterozoic, a Phanerozoic orogenic belt or
suture zone, which resulted in their amalgamation, has recently been
inferred (Dan et al., 2014a). In previous studies, most researchers
suggest that the suture zone between the Alxa Block and NCC is the
western fault of Helanshan (Zhang et al., 2011; Li et al., 2012; Yuan
and Yang, 2015a,b) based on the strong deformation of the strata in
the Helanshan Basin and adjacent area. However, there are almost no
Paleozoic magmatism, metamorphism and ophiolites discovered along
this suture zone. Moreover, the Bayanhot and Helanshan basins were
considered as foreland basins formed during the collision between the
Alxa and the Qilian blocks (Xiong et al., 2001; Zhang et al., 2011). How-
ever, both of them lack Silurian–Devonian strata (Yuan and Geng, 1992;
Xiong et al., 2001; Zhang et al., 2011;Wang, 2012), which contrast with
the contemporaneous thick flysch strata in the Hexi Corridor foreland
basin formed during the collision between the Alxa and Qilian blocks
(e.g., Du et al., 2004). The NE trending of these basins is also different
with the NW trending of the Hexi Corridor foreland basin. Thus, all
these scenarios argue against this conventional suture zone, and a
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new proposed suture zone should explain the formation of the
Bayanhot and Helanshan basins.

As stated above, the scarcity of documented Paleozoicmagmatic and
metamorphic events in the eastern Alxa Block has hindered attempts to
delineate the relationship between the Alxa Block and the NCC.
The newly-identified Silurian to Early Carboniferous igneous rocks,
combined with previous reported Early Paleozoic igneous ages
(Li, 2006), provide a basis for assessing the possible nature of a Phaner-
ozoic suture zone and the timing of Alxa Block–North China Craton
amalgamation.

Most of the Phanerozoic igneous rocks exposed in the Alxa Block
were formed between 320 Ma and 260 Ma (see a review in Dan et al.,
2014b) with scarce Early Paleozoic to Early Carboniferous igneous
rocks only reported on the eastern margin of the Alxa Block and adja-
cent areas (Fig. 2). In addition to the studied Late Silurian quartz diorites
(~423 Ma) and the Early Carboniferous monzogranites (345–337 Ma),
Li (2006) reported ~394 Ma diorites in the Bayanwulashan Complex
and ~447 Ma andesites–dacites–rhyolites and granodiorites in the
eastern Alxa Block using zircon U–Pb TIMS dating. Many detrital zircon
grains with an age population of 482–401Ma were also reported in the
Upper Paleozoic strata (Li, 2006; Chen et al., 2010). Thus, a linear zone of
Early Paleozoic to Early Carboniferous granitoids (Fig. 2) is identified in
the eastern Alxa Block. These igneous rocks can be divided into Early
Paleozoic (447?–423 Ma) and Late Paleozoic (345–337 Ma) stages.
The Late Paleozoic high Sr/Y granites, generated by partial melting of
thickened lower crust, were likely produced in an orogen (e.g., Chung
et al., 2003; Wang et al., 2005, 2007b, 2008b; Karsli et al., 2010; He
et al., 2011) or a cryptic suture zone (Su et al., 2013).

The Early Paleozoic igneous rocks consist of andesites–dacites–
rhyolites, granodiorites and quartz diorites, however, only the Late
Silurian quartz diorites have geochemical data available to constrain
their tectonic setting. I-type granitoids can be generated in continental
rift settings but these environments commonly also contain abundant
basalt (e.g., Li et al., 2003). In the Alxa Block, however, there are no
contemporaneous basalts or other large volume igneous rocks, which
argues against a continental rift setting. Notably, the Early Paleozoic
rocks have high zircon δ18O values (8.5–9.1‰), indicating that they
were either sourced from subducted low-temperature hydrothermally
altered igneous rocks or their sources were metasomatised by sub-
ducted sedimentary rocks. These scenarios commonly occur at conver-
gent continental margins (Lackey et al., 2005; Zi et al., 2012) or along
terrane boundaries (Peck et al., 2004). Thus, the quartz diorites were
most likely produced at a continental boundary, although the tectonic
settings of active continental margin or collisional orogen cannot be
distinguished based on available geochemical data.

The proposed cryptic suture zone can perfectly explain the lack
Silurian–Devonian strata and the NE trending of the Bayanhot and
Helanshan basins. We accepted that the Bayanhot Basin and the
adjacent Helanshan Basin were foreland basins (Xiong et al., 2001;
Zhang et al., 2011), but they were not formed during the collision
between the Qilian and the Alxa blocks. Taking into account the NE-
trending of the Bayanhot and Helanshan basins, they probably consti-
tute a foreland basin system formed during the collision between the
Alxa Block and the NCC. Thus, the united Alxa Block–North China Craton
could lack Silurian–Devonian strata, different from the contemporane-
ous thickflysch strata in the Hexi Corridor foreland basin formed during
the collision between the Alxa and Qilian blocks (e.g., Du et al., 2004).
The foreland basin system commonly records the evolution of the
adjacent orogen (e.g., Li et al., 1999; Decelles, 2012; Wu et al., 2014).
Thus, the timing of the amalgamation of the Alxa Block and North
China Craton may be approximately constrained by the unconformity
between the Early Paleozoic and Late Paleozoic strata in the Bayanhot
Basin and adjacent area located in the westernmost part of the NCC
(Fig. 14). The pre-Middle Ordovician strata underwent strong deforma-
tion evidenced by congruent folds with axial planes striking N–S, along
with the less deformed Devonian–Carboniferous strata (Li et al., 2012),
further suggesting that a collisional event took place before the
Devonian period (Li et al., 2012).

Recently, metamorphic age of 399± 6Ma (LA-ICP-MS zircon U–Pb)
was obtained from a garnet-bearing amphibolite in the Baoyintu Group
in the northern proposed suture zone (Chen et al., 2014). Based on the
clockwise P–T path, this age was interpreted as the collision age
between the CAOB and the NCC (Chen et al., 2014). However, the
studied Baoyintu Group is NE trending, and is a part of the proposed
orogen between the Alxa Block and the NCC. Moreover, the Baoyintu
Group underwent strong deformation and formed anticline with axial
direction of NE. Thus, themetamorphismage of 399Ma is likely approx-
imate to the collision age between the Alxa Block and the NCC.

In previous studies, many approaches have been applied to deter-
mine the precise collision time between the Alxa Block and the NCC.
Based on the palaeomagnetic data, the timing is suggested to be in
Late Cambrian (Huang et al., 1999, 2000) or Triassic (Yuan and Yang,
2015b). As pointed by J. Zhang et al. (2013b), an Early Permian orogenic
granitoid belt and Triassic anorogenic alkaline rock belt occurred in the
Northern North China Craton and Alxa Block, indicating that the
amalgamation of the Alxa Block and NCC probably was prior to Early
Permian. Recently, J. Zhang et al. (2013a) discovered the westward
ductile thrusting on the western margin fault of Bayanwulashan,
which probably occurred at ca. 345 Ma, contemporaneous with the
production of the Late Paleozoic high Sr/Y granites (345–337 Ma).
This stage of westward ductile thrusting was inferred to have resulted
from the collision between the Alxa Block and North China Craton
(J. Zhang et al., 2013a). However, the collision time obtained by these
approaches is commonly less than the initial collision time between
two blocks (Li et al., 1999; Wu et al., 2014).

After the initial collision, the rocks of the active continental margin
are typically uplifted, eroded and transported into the foreland basin
on the opposing passive margin (Decelles, 2012; Wu et al., 2014).
Therefore, the appearance of the Alxa-derived detritus on the NCC
continental margin should provide direct evidence of this collision.
The detrital zircons from the Paleozoic strata exposed between the
Bayanhot Basin and the western fault of Helanshan can be used to
infer the materials derived from the Alxa Block. There are no Paleozoic
zircons in Cambrian strata but in Late Ordovician (youngest age
peak is 450 Ma) (Zhang et al., 2011, 2012), indicating that the initial
collision between the Alxa Block and the NCC possibly occurred in
Late Ordovician.

In summary, the inferred suture zone is supported by the linear
distribution of the Early Paleozoic–Early Carboniferous granitoids, the
high zircon δ18O value of the Late Silurian quartz diorites, and the
foreland basin system formed during the collision between the Alxa
Block and the NCC. The timing of collision can be constrained by the
unconformity of Early Paleozoic and Late Paleozoic strata and the strong
deformation of the Early Paleozoic strata in the westernmost NCC, and
the 399 Ma amphibolite-facies metamorphism in the Lanshan belt.
The detrital zircon data further suggest that the Alxa-derived clastic
sediments have contributions to sedimentation on the NCC continental
margin in Late Ordovician.

6. Conclusions

Wedraw the following conclusions based on our newgeochronolog-
ical and geochemical data:

(1) High-precision SIMS U–Pb zircon dating indicates that the
Bayanbulage quartz diorites crystallized at ca. 423 Ma, and the
Hetun, Diebusige and South Diebusige monzogranites at ca.
345–337 Ma. The Late Silurian (ca. 423 Ma) quartz diorites
were formed by partial melting of old crust of normal thickness
whereas the Early Carboniferous (ca. 345–337 Ma) high Sr/Y
monzogranites were generated by remelting of thickened
lower crust.



119W. Dan et al. / Gondwana Research 32 (2016) 105–121
(2) The Nd model ages and Pb isotope compositions are distinct on
either side of the fault bounding the western margins of the
Bayanwulashan–Diebusige complexes, suggesting that the Alxa
Block is not a part of the North China Craton, and the western
boundary of the North China Craton is located on the west fault
of the Bayanwulashan–Diebusige complexes.

(3) Available data, including the linear distribution of the Late
Silurian–Early Carboniferous granitoids in eastern Alxa Block,
the high zircon δ18O value of the Late Silurian quartz diorites,
the Early Devonian metamorphism and the foreland basin
system occurring during the collision between the Alxa Block
and the NCC, indicate the potential existence of a suture zone
in the vicinity of the eastern Alxa Block, resulting from the
amalgamation of the Alxa Block and North China Craton. The
timing of initial collision may be in Late Ordovician.

(4) If the proposed revision to the tectonic history of the Alxa Block
and North China Craton proposed here is supported by further
studies, then the present models of the Craton's relationship to
the Columbia supercontinent will require revision.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gr.2015.02.011.
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