doi: 10.16539/j.ddgzyckx.2016.06.011

卷(Volume)40, 期(Number)6, 总(SUM)155 页(Pages)1239~1246, 2016, 12(December, 2016) 大地构造与成矿学 Geotectonica et Metallogenia

安徽洪镇地区董岭群碎屑锆石 U-Pb 年代学及其地质意义

王继林^{1,2},何斌^{3*}

(1.中国冶金地质总局 山东局测试中心, 山东 济南 250014; 2.中国地质大学(武汉) 地球科学学院, 湖北 武汉 430074; 3.中国科学院 广州地球化学研究所, 同位素地球化学国家重点实验室, 广东 广州 510640)

摘 要: 安徽洪镇地区的董岭群为一套以二长片麻岩为主的中深变质岩系,长期以来被认为是长江中下游地区古元古代 的变质结晶基底,因作为洪镇变质核杂岩的"变质核"而受到广泛关注。为了能够更好地揭示华南前寒武纪的大地构造演 化和洪镇"变质核杂岩"的成因,本文对洪镇地区董岭群主体的二长片麻岩进行了碎屑锆石 LA-ICP-MS U-Pb 定年,获得 了 760~830 Ma、1930~2060 Ma 和 2360~2530 Ma 3 个主要年龄区间。这一年龄谱与扬子克拉通前寒武纪的碎屑锆石年龄 分布特征类似,暗示董岭群的物质源于其附近克拉通物质的剥蚀及搬运;其中最年轻的锆石年龄为 768±16 Ma,这一年 龄限定了董岭群地层时代下限,结合其上覆盖层为震旦系(底界小于 635 Ma),将董岭群的地层时代限定于新元古代,这 一结论否定了其为古元古代古老变质结晶基底的说法。综合近年来的研究,扬子板块西缘及东南缘目前并未发现太古宙-古元古代的结晶基底。另外,由于董岭群地层时代的重新厘定,得知这一地区并不存在大规模地层缺失和大规模剥离断 层,因此前人提出的洪镇"变质核杂岩"的构造模型值得商榷。

关键词:董岭群;碎屑锆石 U-Pb 年龄;新元古代;变质结晶基底;变质核杂岩 中图分类号:P597 文献标志码:A 文章编号:1001-1552(2016)06-1239-008

0 引 言

安徽洪镇地区的洪镇变质岩系被作为江南隆起 以北下扬子板块上唯一出露的变质核杂岩和前寒武 纪基底而受到关注(李德威, 1993; Zhu et al., 2007, 2010; 范小林和陆永德, 2011)。洪镇变质核杂岩的变 质核为北东向展布的董岭群, 与庐山地区的星子 群、滁州地区的张八岭群一起被认为是中下扬子板 块出露的古元古代-太古代结晶基底(马振东等, 1998)。

关于董岭群的地层时代, 前人进行了大量研

究。罗庆坤等(1985)最早提出可以将其与同处郯庐断 裂带以东且构造位置相毗邻的肥东、张八岭地区的 古元古界(肥东群年龄为 1850~2486 Ma,李毓尧等, 1935)相对比,将其划属古元古界;邢凤鸣等(1993) 根据董岭群斜长角闪片岩的 Sm-Nd 同位素等时线年 龄为 1895~1991 Ma,正式将董岭群划属为古元古代, 这一认识得到广泛的认同(董树文等,1993;李德威, 1993; Zhang et al., 1994; Zhu et al., 2007;范小林和 陆永德, 2011);王文斌等(1996)对长江中下游地区 变质基底形成时间进行研究,认为安徽怀宁董岭群 和江苏埤城出露的埤城群(埤城群斜长角闪岩角闪

收稿日期: 2014-02-27; 改回日期: 2014-09-11

项目资助:中国科学院知识创新项目(KZCX2YW128, KZCX1YW151)和国家自然科学基金(41173037)联合资助。

第一作者简介:王继林(1988-), 女, 硕士, 构造地质学专业。Email: wangjilin22126@126.com

通信作者:何斌(1963-),男,研究员,主要从事区域地质、构造地质、沉积和岩相古地理等方面研究。Email: hebin@gig.ac.cn

石的 K-Ar 表面年龄为 1771±5 Ma, 闵庆魁, 1987)可 能为同一时代的产物, 均为古元古代; Grimmer et al. (2003)对董岭群中含矽线石堇青石钾长片麻岩进行 单颗粒锆石定年, 获得 3 个单颗粒锆石年龄介于 2370±2~2377±10 Ma 之间, 这是目前为止给出的较 为可靠的董岭群的地层时代。

尽管对董岭群的地层时代已经取得了一些认识, 但由于受到定年技术的限制,董岭群的地层时代划 分并不十分牢靠。对于缺乏古生物资料和火山岩夹 层的地层而言,要准确测定其地层时代具有一定难 度(关俊朋等,2010)。碎屑锆石作为沉积地层的重要 组成部分,因为其化学性质稳定、同位素封闭温度 高(吴元保和郑永飞,2004)等特点,被广泛用于限定 地层沉积下限。前人的研究也表明,通过最年轻的 碎屑锆石年龄峰值可以限定地层的时代(Nelson, 2001; Gerdes and Zeh, 2006; 佘振兵,2007)。最近, 关俊朋等(2010)和高林志等(2012)通过锆石定年推翻了星子群作为扬子板块古老结晶基底的说法,将前人普遍认为古元古代的星子群的地层时代划定到新元古代;这使我们对相邻地区同一时代的董岭群地层时代的归属产生兴趣。为了能够正确解释下扬子构造演化,重新厘定了董岭群的地层时代。本文以董岭群二长片麻岩为研究对象,对其进行详细的碎屑锆石 U-Pb 年代学研究,对董岭群的地层时代及其地质意义进行了讨论。

1 地质概况

安徽怀宁县洪镇地区构造位置位于下扬子板块 长江中下游坳陷带中段北侧,其中出露的董岭群主 要分布于荆桥、董岭一带,构成 NE40°走向的长垣 形背斜核部(图 1),出露面积约 20 km²,总厚度在

图(a)中: 1. 新生界; 2. 中生界; 3. 古生界—中元古界; 4. 结晶基底; 5. 三叠纪高压—超高压地块; 6. 主断裂带; 7. 低角度韧性断层; 8. 褶皱轴; 图(b)中: Pt₃D. 董岭群; Z₁-P₂. 震旦系到中二叠统海相盖层; 1. 燕山期岩体; 2. 片麻岩; 3. 中生界陆相地层; 4. Ar-Ar 定年采样点(Bi. 黑云母); 5. 正断层; 6. 逆断层; 7. 地质剖面。

1600 m 以上。董岭群是火山碎屑岩、粉砂岩及砂岩 建造(陈星霖, 2009; 高雅宁, 2010)经角闪岩相变质 作用形成的中深变质岩系, 主体为一套二长片麻岩, 顶部发育一薄层白云石英片岩(图 2), 与上覆盖层断 层接触(邢凤鸣等, 1993)。洪镇地区的盖层由老到新 依次是:震旦系-中二叠统主要为海相碳酸盐岩和 碎屑岩,缺失中下泥盆统, 上泥盆统与中下二叠统 构成区内两个沉积事件界面, 代表海陆交互相沉积; 中二叠统-第四系主要为陆相碎屑岩和火山喷发沉 积。董岭群及上覆盖层普遍糜棱岩化,强度呈下强 上弱趋势。

研究区内出露的岩浆岩有洪镇花岗岩体、海螺山 闪长岩体、金山闪长岩体、硖石花岗岩体及一些小型 的花岗闪长斑岩体与酸性岩脉。洪镇岩体与董岭群侵 入接触,此外还有少量酸性岩脉侵入到董岭群中。

2 采样位置及样品特征

本次工作在董岭群中部汤家岭附近测制了地质 剖面 A-B(图 2), 剖面贯穿了震旦纪-奥陶纪的碳酸 盐岩盖层, 盖层与董岭群断层接触, 董岭群主体为 二长片麻岩, 顶部发育薄层片岩段, 东南侧被燕山 期洪镇花岗岩体侵位。本次工作对二长片麻岩进行 采样, 具体采样位置如图 2 所示, 地理坐标为 30°36′31.67″N, 116°47′11.25″E。所采样品 H-30 为初 糜棱岩化石榴石-二长片麻岩: 粒状变晶结构, 片麻状 构造, 主要组成矿物为: 石英(~40%)、长石(~30%)、 石榴子石(~15%)、白云母(~15%)及少量锆石、磷灰 石、榍石等副矿物; 长石、石榴子石颗粒较大, 白云 母绕过长石、石榴子石斑晶断续定向排列构成片麻 理, 石英颗粒较小, 与白云母一起呈基质产出, 发 育波状消光、亚颗粒等变形结构。

3 分析方法及结果

3.1 分析方法

锆石挑选由河北省廊坊市诚信地质服务公司完

成,挑选无明显裂隙、不含包裹体且透明干净的锆 石颗粒进行制靶,之后对待测锆石进行反射光、透 射光及阴极发光显微照相,选定测试点位。制靶及 阴极发光显微照相工作在中国地质大学(武汉)地质 过程与矿产资源国家重点实验室完成。

锆石 U-Pb 同位素定年及微量元素含量分析在 中国地质大学(武汉)地质过程与矿产资源国家重点 实验室进行,测试仪器为激光剥蚀电感耦合等离子体 质谱仪(LA-ICP-MS),激光剥蚀系统为 GeoLas2005, ICP-MS 为 Agilent7500a。标样与待测样品以 2 5 的比例交替进行测试,具体的仪器操作过程及条件见 Liu et al. (2008, 2010a, 2010b)。运用 ICPMSDataCal8.3 软件对测试数据进行离线处理,数据处理包括对样 品和空白信号的选择、仪器灵敏度漂移校正、元素 含量及 U-Pb 同位素比值和年龄计算等方面,详见 Liu et al. (2008, 2010a)。最后,采用 Isoplot/Ex_ver3 (Ludwig, 2003)完成锆石 U-Pb 谐和图的绘制及加权 平均年龄计算等工作。

3.2 分析结果

样品中的锆石颗粒粒径普遍在 70~150 mm, 长 宽比介于 1 1~2 1之间, 多呈短柱状-次圆状, 阴 极发光图像显示大部分锆石具有典型的岩浆振荡环 带(图 3)。根据锆石结构特征, 对 60 个锆石颗粒进行 U-Pb 同位素分析, 分析结果列于表 1。结果显示 54 号 测点谐和度低于 90%, 予以剔除; 其余 59 个有效测点 锆石的年龄均位于谐和线上及附近(图 4), U、Th 含量 分别介于 17.67~784.42 μg/g, 10.99~568.08 μg/g, 大部 分锆石的 Th/U 值介于 0.42~2.26, 只有 3 个测点锆石 Th/U=0.2~0.3。综合锆石 CL 图像特征及 Th/U 值, 判 断这些锆石均为岩浆成因锆石。

根据锆石年龄概率分布图 5a 可以看出, 测点锆 石的年龄构成 3 个年龄区间, 分别是 760~830 Ma、 1930~2060 Ma、2360~2530 Ma, 分布特征与报道的 扬子克拉通前寒武纪的锆石年龄分布特征(佘振兵, 2007; Liu et al., 2008; 谢士稳等, 2009; 耿元生等, 2012)类似(图 5b), 暗指董岭群是由附近克拉通地层

1. 海相盖层; 2. 董岭群顶部薄层白云石英片岩; 3. 董岭群二长片麻岩; 4. 燕山期洪镇花岗岩体; 5. 断层界线; 6. 采样点位置。

图 2 采样点地质剖面 Fig.2 Geological section with sampling locations

大地杨选为成分学

Tabl	e 1 U-Pb dating results of detrital zircons in garnet gneiss from the upper section of the Dongling Group															
测	元素	含量(µg/g)	T L 7		同位素比值				年龄(Ma)						
点	Pb	Th	U	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	lσ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ
1	89	319	145	2.21	0.1216	0.0048	6.0145	0.2303	0.3550	0.0061	1980	69	1978	33	1958	29
2	22	23	37	0.62	0.1625	0.0062	10.2650	0.3912	0.4555	0.0111	2483	65	2459	35	2419	49
3	6	22	34	0.65	0.0683	0.0054	1.2647	0.0875	0.1382	0.0040	880	165	830	39	835	23
4	34	184	193	0.96	0.0678	0.0028	1.2424	0.0481	0.1308	0.0023	865	85	820	22	792	13
5	26	139	150	0.93	0.0680	0.0035	1.2577	0.0627	0.1316	0.0024	878	103	827	28	797	13
6	18	22	31	0.71	0.1514	0.0067	9.4905	0.3818	0.4495	0.0100	2362	76	2387	37	2393	45
7	41	358	202	1.77	0.0652	0.0026	1.1887	0.0449	0.1304	0.0024	781	85	795	21	790	14
8	27	67	52	1.28	0.1218	0.0047	6.1522	0.2390	0.3623	0.0077	1983	64	1998	34	1993	36
9	42	48	76	0.64	0.1463	0.0059	9.0487	0.3763	0.4436	0.0084	2303	70	2343	38	2367	38
10	55	63	127	0.50	0.1193	0.0051	6.0170	0.2564	0.3627	0.0064	1946	44	1978	37	1995	30
11	45	129	85	1.52	0.1196	0.0049	6.0283	0.2352	0.3617	0.0060	1950	73	1980	34	1990	28
12	121	129	286	0.45	0.1201	0.0043	6.0462	0.2125	0.3591	0.0059	1958	63	1983	31	1978	28
13	254	285	443	0.64	0.1552	0.0057	9.8910	0.3572	0.4530	0.0073	2403	63	2425	33	2409	33
14	151	185	264	0.70	0.1531	0.0063	9.6638	0.3872	0.4478	0.0084	2381	71	2403	37	2385	37
15	10	57	59	0.98	0.0660	0.0052	1.2534	0.0991	0.1362	0.0042	806	165	825	45	823	24
16	17	106	92	1.16	0.0646	0.0037	1.2467	0.0700	0.1369	0.0030	761	122	822	32	827	17
17	27	31	48	0.64	0.1616	0.0072	9.6881	0.4306	0.4256	0.0084	2473	76	2406	41	2286	38
18	16	107	84	1.27	0.0627	0.0040	1.2222	0.0767	0.1397	0.0032	698	139	811	35	843	18
19	177	183	333	0.55	0.1519	0.0061	9.2064	0.3756	0.4309	0.0073	2369	69	2359	37	2310	33
20	146	130	266	0.49	0.1594	0.0073	10.1316	0.4756	0.4530	0.0088	2450	77	2447	43	2408	39
21	43	59	87	0.68	0.1382	0.0063	7.6906	0.3677	0.3996	0.0097	2205	80	2195	43	2167	45
22	8	47	48	0.98	0.0715	0.0057	1.2927	0.0992	0.1342	0.0039	972	165	843	44	812	22
23	99	324	153	2.11	0.1460	0.0067	8.3286	0.3904	0.4086	0.0072	2302	79	2267	43	2208	33
24	27	53	63	0.84	0.1227	0.0068	5.7714	0.3328	0.3373	0.0078	1996	99	1942	50	1874	38
25	12	69	68	1.02	0.0704	0.0058	1.2952	0.1030	0.1328	0.0033	939	171	844	46	804	19
26	8	34	47	0.72	0.0617	0.0053	1.2432	0.1096	0.1448	0.0044	665	183	820	50	872	25
27	59	245	119	2.06	0.1067	0.0057	4.5767	0.2477	0.3081	0.0062	1743	98	1745	45	1731	31
28	20	11	40	0.28	0.1532	0.0080	9.1526	0.4477	0.4346	0.0113	2383	89	2353	45	2326	51
29	122	250	217	1.15	0.1633	0.0073	9.7914	0.4489	0.4286	0.0091	2490	76	2415	42	2299	41
30	21	71	37	1.92	0.1272	0.0078	6.3057	0.3821	0.3570	0.0092	2061	109	2019	53	1968	44
31	23	144	137	1.05	0.0647	0.0035	1.1307	0.0598	0.1264	0.0027	765	117	768	29	768	16
32	9	32	55	0.59	0.0705	0.0057	1.1957	0.0911	0.1267	0.0036	944	167	799	42	769	21
33	52	20	102	0.19	0.1490	0.0059	8.9378	0.3516	0.4322	0.0084	2344	267	2332	36	2316	38
34	85	120	139	0.86	0.1577	0.0064	9.6686	0.3973	0.4412	0.0080	2431	69	2404	38	2356	36
35	33	84	66	1.27	0.1227	0.0062	5.8728	0.2850	0.3470	0.0075	1998	89	1957	42	1920	36
36	37	80	79	1.01	0.1187	0.0055	5.5654	0.2556	0.3384	0.0063	1939	82	1911	40	1879	30
37	33	80	66	1.20	0.1259	0.0056	5.9287	0.2534	0.3405	0.0055	2043	78	1965	37	1889	26
38	82	138	194	0.71	0.1184	0.0040	5.4777	0.1845	0.3344	0.0057	1932	61	1897	29	1859	28
39	20	21	37	0.57	0.1629	0.0071	9.6867	0.4265	0.4318	0.0095	2487	73	2405	41	2314	43
40	54	122	112	1.09	0.1219	0.0051	6.0205	0.2369	0.3592	0.0071	1984	74	1979	34	1978	34
41	14	35	28	1.28	0.1231	0.0060	6.2928	0.3091	0.3710	0.0090	2002	82	2017	43	2034	42
42	45	465	205	2.26	0.0689	0.0029	1.2515	0.0529	0.1316	0.0023	894	92	824	24	797	13
43	126	130	218	0.60	0.1602	0 0047	10 1989	0 3080	0 4 5 9 1	0.0073	2458	49	2453	28	2435	32

表 1 安徽洪镇董岭群石榴石二长片麻岩 H-30 碎屑锆石 U-Pb 年龄

续表 1:

测	元素含量(µg/g)		含量(µg/g)			年龄(Ma)										
点	Pb	Th	U	In/U	$^{207}{\rm Pb}/^{206}{\rm Pb}$	lσ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	lσ	$^{207}{\rm Pb}/^{206}{\rm Pb}$	lσ	$^{207}{\rm Pb}/^{235}{\rm U}$	1σ	206Pb/238U	1σ
44	52	530	237	2.23	0.0674	0.0033	1.2260	0.0570	0.1323	0.0024	850	102	813	26	801	14
45	63	126	83	1.52	0.1862	0.0071	12.6947	0.4992	0.4927	0.0100	2709	57	2657	37	2582	43
46	62	77	110	0.70	0.1579	0.0058	9.6561	0.3778	0.4399	0.0088	2435	61	2403	36	2350	39
47	16	113	89	1.27	0.0696	0.0048	1.2175	0.0741	0.1293	0.0033	918	143	809	34	784	19
48	31	43	65	0.66	0.1377	0.0052	7.2911	0.2825	0.3820	0.0087	2198	65	2148	35	2085	40
49	85	83	145	0.57	0.1673	0.0055	10.8894	0.3534	0.4664	0.0080	2531	55	2514	30	2468	35
50	4	31	18	1.73	0.0896	0.0124	1.4282	0.1412	0.1354	0.0067	1418	267	901	59	819	38
51	172	283	301	0.94	0.1591	0.0051	9.6724	0.3049	0.4334	0.0063	2446	54	2404	29	2321	28
52	148	103	352	0.29	0.1221	0.0039	6.3089	0.2325	0.3681	0.0083	1987	56	2020	32	2020	39
53	154	364	314	1.16	0.1140	0.0035	5.6710	0.1667	0.3550	0.0053	1865	56	1927	25	1958	25
55	52	139	101	1.38	0.1075	0.0048	5.4041	0.2241	0.3611	0.0073	1757	81	1885	36	1987	35
56	18	23	49	0.46	0.1091	0.0057	4.4408	0.2402	0.2934	0.0094	1784	96	1720	45	1658	47
57	60	53	123	0.43	0.1418	0.0053	7.8886	0.2682	0.3969	0.0071	2250	65	2218	31	2155	33
58	90	174	194	0.90	0.1155	0.0044	5.7754	0.2069	0.3548	0.0065	1889	67	1943	31	1958	31
59	14	53	84	0.64	0.0623	0.0043	1.2012	0.0805	0.1386	0.0037	683	153	801	37	837	21
60	93	143	134	1.07	0.1746	0.0085	12.4857	0.5669	0.5046	0.0094	2602	83	2642	43	2634	40

图 3 锆石 CL 图像特征 Fig.3 CL images of detrital zircons in sample H-30

的剥蚀及搬运沉积而来。其中 760~830 Ma 年龄区间 的碎屑锆石共 17 颗,峰值年龄为~797 Ma(图 5),最 年轻的锆石年龄为 768±16 Ma,认为该年龄代表了 董岭群地层时代的下限。

4 讨 论

本次对董岭群二长片麻岩进行碎屑锆石 U-Pb 定年,得到的最年轻的锆石年龄为 768±16 Ma,此外 一系列年龄约 800 Ma 锆石的得到并非偶然。早期 Grimmer et al. (2003)对董岭群片麻岩进行单颗粒锆 石定年时就得到 2 颗年龄分别为 692±10 Ma 和 783±7 Ma 的锆石; 唐成虎等(2013)对洪镇岩体进行 定年时,也发现了年龄为~750 Ma 的残留锆石,由 于洪镇岩体属于地壳重熔型岩浆岩(唐成虎等, 2013), 结合洪镇岩体和董岭群密切的空间关系、所以不排 除这些残留锆石来自董岭群的可能。不同时间在不 同的实验室得到了相近的锆石年龄、这从另外一个 角度验证我们得到数据的可靠性。在利用碎屑锆石 最年轻年龄限定地层沉积时代下限研究思想的指导 下,我们将董岭群的沉积下限约束到 768±16 Ma。此 外, 董岭群上覆地层为下震旦统, 国内多认为震旦 系的底界年龄约为 635 Ma(Wang et al., 2003; 高林 志等, 2010a, 2010b, 2011), 因此董岭群的地层时代 应该为新元古代。

董岭群地层时代的重新厘定对前人(邢凤鸣等, 1993; 李德威, 1993; 王文斌等, 1996; Grimmer et al., 2003)认为其是古老变质基底的认识提出了挑战。前 人之所以认为董岭群为古老变质基底,主要依据是 邢凤鸣等(1993)报道的较老的 Sm-Nd 同位素年龄, 但这一结果缺少其他数据的验证。另外, 董岭群的 变质年龄是回答其是否为变质结晶基底的另一关键, 最近我们通过对董岭群中片麻岩独居石进行 SIMS U-Pb 定年,得到董岭群的变质年龄为 128.44±0.73 Ma (另文发表),这也佐证了其不是变质基底的观点。此 外, 耿元生等(2007)通过一系列的锆石数据证实扬 子板块西缘所谓的古老结晶基底其实都是新元古代 的产物。最近关俊朋等(2010)和高林志等(2012)通过 锆石年代学将前人认为的中下扬子板块北缘的结晶 基底——星子群的地层时代重新厘定为新元古代, 否定了前人一直秉持的古元古代甚至太古代的说 法。综合以上研究表明扬子板块西缘及东南缘目前 并未发现太古宙-古元古代的结晶基底, 前人可能 因为老的定年手段和认识的限制而得出错误的结论。

另外, 安徽洪镇地区另一研究热点是洪镇变质 核杂岩, 自从李德威(1993)提出这一概念后, 地质 学者先后开展了广泛研究, 发表一系列研究成果(汪 劲草和肖龙, 1999; Zhu et al., 2007, 2010; 沈晓明等, 2008; 范小林和陆永德, 2011)。变质核杂岩的关键特 征是存在大型拆离断层(Davis 和郑亚东, 2002; 刘德 民, 2003), 董岭群新元古代地层时代的确定表明洪 镇地区地层基本连续, 不存在前人确定的大型剥离 断层, 并且在野外实地勘察中也并未发现大型拆离 断层, 据此认为用"变质核杂岩"模型解释洪镇地区 的地质构造现象可能存在问题, 这一地区的构造演 化还需要进一步深入研究。

5 结 论

通过对安徽洪镇地区董岭群石榴石二长片麻岩 进行详细的碎屑锆石年代学研究,结合其上覆震旦 纪地层(底界年龄≈635 Ma),将董岭群的地层时代划 定为新元古代,否定了前人关于其是古元古代变质 结晶基底的认识,综合前人已有资料,认为扬子板 块西缘及东南缘目前并未发现太古宙-古元古代的 变质结晶基底;此外,由于董岭群地层时代的确定 及野外大型拆离断层的缺席,认为该地区的构造特 征与典型变质核杂岩不符,对该地区的地质构造现 象解释还需进一步深入研究。

参考文献(References):

- Davis G A, 郑亚东. 2002. 变质核杂岩的定义、类型及构造背景. 地质通报, 21(4-5): 185-192.
- 陈星霖. 2009. 安徽安庆铜矿床地球地质化学特征及成因 分析. 长沙: 中南大学硕士学位论文.
- 董树文,何大林,石永红. 1993. 安徽董岭花岗岩类的构 造特征及侵位机制. 地质科学, 28(1): 10-20.
- 范小林, 陆永德. 2011. 安徽洪镇变质核杂岩及其两侧盆 地. 石油实验地质, 33(3): 289–291.
- 高林志,丁孝忠,曹茜,张传恒.2010a.中国晚前寒武纪 年表和年代地层序列.中国地质,37(4):1014-1021.
- 高林志,丁孝忠,庞维华,张传恒.2011.中国中-新元古 代地层年表的修正: 锆石U-Pb年龄对年代地层的制 约.地层学杂志,35(1):1-7.
- 高林志,黄志忠,丁孝忠,刘燕学,张传恒,王自强,庞 健峰,韩坤英.2012. 庐山筲箕洼组与星子岩群年代 地层关系及SHRIMP锆石U-Pb年龄的制约. 地球学报, 33(3): 295-304.

高林志,张传恒,陈寿铭,刘鹏举,丁孝忠,刘燕学,董

春燕, 宋彪. 2010b. 辽东半岛细河群沉积岩碎屑锆石 SHRIMP U-Pb年龄及其地质意义. 地质通报, 29(8): 1113-1122.

- 高雅宁. 2010. 下扬子地区基底特征及其对成矿的控制作 用研究. 西安: 长安大学硕士学位论文.
- 耿元生,柳永清,高林志,彭楠,江小均.2012.扬子克拉 通西南缘中元古代通安组的形成时代.地质学报, 86(9):1479–1490.
- 耿元生,杨崇辉,王新社,任留东,杜利林,周喜文. 2007.
 扬子地台西缘结晶基底的时代.高校地质学报,13(3):
 429-441.
- 关俊朋,何斌,李德威.2010. 庐山地区星子群碎屑锆石 SIMS U-Pb年龄及其地质意义.大地构造与成矿学, 34(3):402-407.
- 李德威. 1993. 洪镇变质核杂岩及其成矿意义. 大地构造 与成矿学, 17(3): 211-220.
- 李毓尧, 李捷, 朱森. 1935. 宁镇山脉地质 // 前中央研究 院地质研究所集刊(第11号).
- 刘德民. 2003. 中国变质核杂岩的基本特征. 现代地质, 17(2): 125-130.
- 罗庆坤,姜大志,曹光暄.1985.皖中肥东桥头集变质岩 区构造变形史及变质岩层序的探讨.合肥工业大学 学报,7(4):117-133.
- 马振东,张本仁,蒋敬业,单光祥,徐启东. 1998. 长江中 下游及邻区基底和花岗岩成矿元素丰度背景的研究. 地质学报,72(3):267-275.
- 闵庆魁. 1987. 宁镇山脉发现前震旦系——埤城群. 地层 学杂志, 11(2): 130–134.
- 佘振兵. 2007. 中上扬子上元古界--中生界碎屑锆石年代 学研究. 武汉: 中国地质大学(武汉)博士学位论文.
- 沈晓明,张海祥,张伯友.2008. 华南中生代变质核杂岩 构造及其与岩石圈减薄机制的关系初探.大地构造 与成矿学,32(1):11-19.
- 唐成虎,赵子馥,郑永飞.2013. 长江中下游地区洪镇中 生代花岗岩地球化学研究. 高校地质学报,19(增刊): 138-139.
- 汪劲草, 肖龙. 1999. 安徽怀宁古变质核杂岩体的结构及 构造演化. 桂林冶金地质学院学报, 11(4): 382–388.
- 王文斌, 李文达, 范洪源. 1996. 长江中下游地区变质基底 及地壳形成时间. 火山地质与矿产, 17(3-4): 42-50.
- 吴元保,郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb 年龄解释的制约. 科学通报,49(16):1589-1604.
- 谢士稳,高山,柳小明,高日胜.2009.扬子克拉通南华 纪碎屑锆石U-Pb年龄、Hf同位素对华南新元古代岩 浆事件的指示.地球科学,34(1):117-126.
- 邢凤鸣,徐祥,李志昌. 1993. 长江中下游早元古代基底

的发现及意义. 科学通报, 38(20): 1883-1886.

- Gerdes A and Zeh A. 2006. Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. *Earth and Planetary Science Letters*, 249(1–2): 47–61.
- Grimmer J C, Ratschbacher L, McWilliams M, Franz L, Gaitzsch I, Tichomirowa M, Hacker B R and Zhang Y Q. 2003. When did the ultrahigh-pressure rocks reach the surface? A ²⁰⁷Pb/²⁰⁶Pb zircon, ⁴⁰Ar/³⁹Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. *Chemical Geology*, 197: 87–110.
- Liu X M, Gao S, Diwu C R and Ling W L. 2008. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. *American Journal of Science*, 308(4): 421–468.
- Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. *Journal of Petrology*, 51: 537–571.
- Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. *Chemical Geology*, 257: 34–43.
- Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J and Chen H H. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. *Chinese Science Bulletin*, 55(15): 1536–1546.
- Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. California: Berkeley Geochronology Center.
- Nelson D R. 2001. An assessment of the determination of depositional ages for Precambrian clastic sedimentary rocks by U-Pb dating of detrital zircons. *Sedimentary Geology*, 141–142: 37–60.
- Wang J, Li X H, Duan T Z, Liu D Y, Song B, Li Z X and Gao Y H. 2003. Zircons SHRIMP U-Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in the South China. *Chinese Science Bulletin*, 48(16): 1663–1669.
- Zhang K J, Huang Z J, Shi Y S, Huang L S, Brewer R C and

Qiao L G. 1994. Ductile thrusting-shearing genesis of Hongzhen granitoid, Anhui Province. *Chinese Journal of Geochemistry*, 13(3): 236–245.

Zhu G, Xie C L, Chen W, Xiang B W and Hu Z Q. 2010. Evolution of the Hongzhen metamorphic core complex: Evidence for Early Cretaceous extension in the eastern Yangtze craton, eastern China. *Geological Society of America Bulletin*, 122(3–4): 506–516.

Zhu G, Xie C L, Xiang B W, Hu Z Q, Wang Y S and Li X. 2007. Genesis of the Hongzhen metamorphic core complex and its tectonic implications. *Science in China* (Series D), 50(5): 649–659.

LA-ICP-MS U-Pb Dating of Detrital Zircons from Dongling Group in Hongzhen Area and its Geological Implications

WANG Jilin^{1, 2} and HE Bin^{3*}

Shandong Bureau Testing Center of China Metallurgical Geology Bureau, Jinan 250014, Shandong, China;
 Faculty of Earth Science, China University of Geoscience, Wuhan 430074, Hubei, China;
 Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China)

Abstract: The Dongling Group, exposed in the Hongzhen area, Anhui province, was previously considered to be the Paleoproterozoic basement. It has been extensively studied because it was believed to be the core of the Hongzhen metamorphic core complex and the metamorphic crystalline basement of South China as well. To accurately interpret the Precambrian tectonic evolution of South China and the formation mechanism of the Hongzhen "metamorphic core complex", detrital zircons from the gneiss, the main part of the Dongling Group, were analyzed and three age groups of 760–830 Ma, 1930–2060 Ma and 2360–2530 Ma were obtained. The age distribution of the zircons is similar to those of the Yangtze Craton as whole, indicating that the detrital material of the Dongling Group was derived from adjacent basement of the Yangtze Carton. The youngest detrital zircon age (768±16 Ma) of the Dongling Group and the 635 Ma lower boundary age of overlying Sinian System suggest that the Dongling Group should be deposited in Neoproterozoic rather than Paleoproterozoic. Thus, the Dongling Group is not the crystalline basement of South China. We thus suggest that there is no crystalline basement has yet been discovered in the southeast of the Yangtze Craton. In addition, the strata in the Hongzhen area is continuous so long as the Dongling Group is Neoproterozoic. Therefore, the viewpoints concerning the Hongzhen metamorphic core complex proposed previously need to be re-evaluated.

Keywords: Dongling Group; U-Pb age of detrital zircons; Neoproterozoic; metamorphic crystalline basement; metamorphic core complex