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Abstract: Environmental pollution and ecological risk caused by e-waste recycling have become a great concern.
Improper e-waste recycling activities may cause sediment contamination by organic pollutants and heavy metals, po—
sing a potential threat to benthic organisms. Sediment samples which were collected from Qingyuan, a representative
e-waste recycling site, were analyzed for unresolved complex mixture (UCM) and evaluated for the toxicity using a
life-cycle toxicity testing with a benthic invertebrate, Chironomus dilutus. The concentration of UCM in Qingyuan
sediment was (0.08 +0.01)% (g oil*g™ dry sediment) and it was close to the chronic median lethal concentration of
UCM to C. dilutus (0.073 £0.022)% . In addition, the sediments from Qingyuan e-waste recycling site exhibited sig—
nificant chronic toxicity to C. dilutus, and the toxicity could be estimated by measuring UCM contents in sediment.

This study provided a valuable method for assessing chronic toxicity of sediments which were contaminated by a
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mixture of chemicals with narcotic mode of action, such as sediments in e-waste recycling sites.
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