DOI: 10.7524/j.issn.0254-6108.2016.01.2015060305

郭文帝,王开扬,郭晓方,等.太原市气溶胶中硫、氮转化特征[J].环境化学 2016,35(1):11-17

GUO Wendi , WANG Kaiyang , GUO Xiaofang , et al. Characteristics of sulfur and nitrogen conversion in the aerosol , Taiyuan [J]. Environmental Chemistry 2016 , 35(1): 11–17

太原市气溶胶中硫、氮转化特征*

郭文帝'王开扬'郭晓方'闫雨龙'何秋生1** 王新明2

(1.太原科技大学环境与安全学院,太原,030024;2.中国科学院广州地球化学研究所,有机地球化学国家重点实验室,广州,510640)

摘 要 基于太原市 2013 年 5、6、12 月和 2014 年 1 月大气中 SO₂、NO₂及 PM_{2.5}中水溶性离子 SO₄²⁻、NO₃ 浓度, 分析了大气中硫和氮的转化率(F_s 、 F_n),并探讨了其影响因素.结果表明,大气中 SO₂、NO₂的浓度夏季(5、6 月)分别为 89.98、64.73 µg • m⁻³,由于燃煤供热冬季(12、1 月) SO₂显著升高,SO₂和 NO₂分别为 119.09、 63.92 µg • m⁻³.PM_{2.5}中水溶性离子 SO₄²⁻、NO₃ 夏季分别为 16.54、6.87 µg • m⁻³,冬季显著降低,分别为 12.79、 5.53 µg • m⁻³.参照硫和氮气固两相转化模型, F_s 夏季(0.13) 高于冬季(0.07), F_n 变化较小,夏、冬季分别为 0.08、0.06,与南方城市相比, F_s 较高, F_n 较低.硫、氮转化受多种因素共同影响,且不同季节主导因素不同.温度 和 O₃浓度对整个采样期间的硫转化起主要作用,冬季 SO₄²⁻与 PM_{2.5}和湿度呈现一定的相关关系,显示 SO₄²⁻ 主 要来源于均相气相反应,冬季部分源于非均相反应.夏季相对湿度和 O₃浓度可明显促进氮转化,而冬季 NO₃ 生成还与 PM_{2.5}和温度有关,说明夏季氮转化以均相液相反应为主,而冬季 NO₃ 主要源于非均相反应.此外, NH⁴₄ 与 SO₄²⁻、NO₃ 的线性分析表明,大气氨有助于气相中的硫、氮向颗粒相转移并转化. 关键词、太原,硫酸盐,硝酸盐,气象因素,转化率,气溶胶.

Characteristics of sulfur and nitrogen conversion in the aerosol, Taivuan

$GUO \ Wendi^1$	WANG Kaiyang ¹	GUO Xiaofang ¹	YAN Yulong ¹
	HE Qiusheng ^{1**}	WANG Xinming ²	

(1. School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, 030024, China;

2. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,

Guangzhou , 510640 , China)

Abstract: The conversion ratios of sulfur and nitrogen(F_s and F_n) from air to particle in Taiyuan were discussed , based on the atmospheric SO₂ and NO₂ and the water soluble ions(SO₄²⁻ and NO₃) in PM_{2.5} during two period of May—June 2013 (summer) and December 2013—January 2014 (winter) .As the results showed , the SO₂ and NO₂ contents in summer were 89.98 µg • m⁻³ and 64.73 µg • m⁻³ , respectively , while in winter NO₂ level was constant , but SO₂ increased to 119.09 µg • m⁻³ due to higher coal combustion for heating. The SO₄²⁻ and NO₃ levels in PM_{2.5} were 16.54 and 6.87 µg • m⁻³ in summer , and decreased to 12.79 µg • m⁻³ and 5.53 µg • m⁻³ in winter , respectively. By using the modified forms of the gas–particle distribution , F_s and F_n were 0.13 and 0.08 in summer , and 0.06 in winter , respectively. Both F_s and F_n were affected by multiple factors

Corresponding author , Tel: 0351-6998326 ,E-mail: heqs@ tyust.edu.cn

²⁰¹⁵年6月3日收稿(Received: June 3, 2015).

^{*} 国家自然基金(41172316) 国家教育部重点项目(211026);山西省青年科技研究基金(2011021025-2);山西省回国留学人员科研项 目(2011080)资助.

Supported by the National Natural Science Foundation of China (41172316); the Key Project of the National Ministry of Education of China (211026); Shanxi Province Science Foundation for Youths (2011021025-2) and Shanxi Province Foundation for Returness (2011080).

^{* *} 通讯联系人 , Tel: 0351-6998326 , E-mail: heqs@ tyust.edu.cn

simultaneously , and the main factors varied seasonally. Higher temperature and ozone (O_3) level contributed primarily to higher sulfur conversion , showing that SO_4^{2-} mainly came from the homogeneous gas-phase reaction. However SO_4^{2-} partially came from heterogeneous reactions in the winter because of a correlation between SO_4^{2-} , $PM_{2.5}$ and relative humidity (RH %). F_n increased with relative humidity and O_3 level in the summer , but in the winter NO₃⁻ was partially affected by temperature and $PM_{2.5}$ level. These indicated the homogeneous liquid-phase reaction played an important role in the process of nitrogen conversion in summer , but the heterogeneous reaction dominated in winter. Furthermore , NH_4^+ in $PM_{2.5}$ was well correlated with SO_4^{2-} and NO_3^- , which indicated atmospheric NH₃ may enhance the gas to particle sulfur and nitrogen migration and conversion.

Keywords: Taiyuan , sulfate , nitrate , meteorological factors , conversion ratio , aerosol.

近年来全国范围内细粒子 PM_{2.5}的污染问题受到普遍关注^[14].无机水溶性离子(SO_4^2 、 NO_3^2 、 NH_4^*) 是 细粒子的重要组分,占其质量浓度的 1/3 左右^[5-7],其中城市大气颗粒物中 $SO_4^2^2$ 、 NO_3^2 的主要来源为大气中 SO_2 和 NO_2 的转化^[8].

粗粒子主要来源于自然过程,细粒子主要来源于二次转化^[9].大气中硫、氮的转化主要有两种机制, 即均相反应和非均相反应.硫酸盐在颗粒物中的粒径分布呈单峰型,聚集模态的硫酸盐(0.32— 0.56 µm)由硫的气粒转化形成;硝酸盐的粒径分布呈双峰型,粗模态硝酸盐由非均相反应产生,雾滴态 由云内过程产生^[5].Wang等得到上海二次粒子 SO_4^{2-} 来源于非均相反应, NO_3^{-} 夏季来源与 SO_4^{2-} 相同,而 冬季来源于气相光化学反应^[10].这主要由当地排放区域、气候环境、大气状况等决定^[11+2].Khoder 得到 开罗夏季高温高湿的气候特征可促进硫、氮转化,夏季硫、氮转化率分别为冬季的 2.22、2.97 倍,且转化 率白天高于夜晚^[11].Ohta 等得到,当转化率大于 0.10 则大气光氧化反应存在,夏季低 NO_3^{-}/SO_4^{2-} 值源于 较高的 SO_4^{2-} 浓度^[13].高湿条件下,硫酸盐和硝酸盐表层含水量增加,体积变大,通过散光作用降低大气 可见度;此时, O_3 的存在有助于促进液相中硫、氮的氧化反应^[14-15].广州典型天气过程中, SO_4^{2-} 、 NO_3^{-} 、 NH_4^{+} 及 F_s 、 F_n 与能见度都存在较好的相关关系^[16].

太原市是我国的能源重化工基地 颗粒物、SO₂和 NO₂的排放常年保持较高水平^[1,1748].郭晓方等发现太原市 2011—2013 年的 3 年降水中 SO₄²⁻、NO₃ 等在国内处于较高水平^[19].太原大气中 SO₂和 NO₂如 Oq转化为 SO₄²⁻、NO₃ 及其影响尚鲜见详细报道.本研究基于太原市大气中 SO₂和 NO₂及 PM_{2.5}中水溶性 SO₄²⁻ 和 NO₃ 计算了硫、氮转换率,并探究了气象因素、O₃和氨等的影响,以期为研究太原市污染物大气 化学特征提供参考依据.

1 材料与方法(Materials and methods)

1.1 样品采集

本实验采样点设置在山西省太原市太原科技大学逸夫科技楼楼顶,距地面距离 30 m,周围无高大 建筑物与明显污染源.采样仪器为配置 PM_{2.5}切割粒径的大流量气溶胶采样仪(TH-1000,武汉天虹).采 样时间为 2013 年 5、6 月和 12 月及 2014 年 1 月 5、6 月共 15 个样品,12 月和 1 月共 19 个样品,样品均 为 24 h 连续采样.采样期间同步记录太原市气温、相对湿度、风速等气象参数和 O₃、SO₂、NO₂相关气体的 日均浓度.

1.2 样品处理及分析

采用石英纤维滤膜(Whatman QM-A, 20.3 cm×25.4 cm) 采集 PM_{2.5}样品.采样前将滤膜在马弗炉中 焙烧4h(450 ℃),冷却后放入恒温恒湿箱中平衡24h,称重.采样后的滤膜用铝箔封装,带回实验室在 恒温恒湿箱中平衡24h后称重,于4 ℃温度下冰箱保存至分析.剪取八分之一的石英膜,加入10 mL 去 离子水,超声萃取30 min,采用0.45 µm 的过滤器过滤,用离子色谱(美国 Dionex, ICS-90) 对水溶性无机 离子进行分析.阳离子(NH₄) 使用 SCS1 分析柱,阴离子(NO₃⁻、SO₄²⁻) 使用 AS9-HC 分析柱,进样量为 10 μL.NH⁺₄、NO⁻₃、SO²⁻ 的检出限分别为 0.05、0.01、0.01 mg·L⁻¹.所有实验过程均经过严格的质量控制以 避免污染 样品质量浓度标准偏差均小于 15%.

1.3 硫、氮转化率

硫和氮在气固两相转化模型中的转化率计算公式如下:

硫转化率(
$$F_s$$
) = $\frac{[n-SO_4^{2-}]}{[n-SO_4^{2-}]+[n-SO_2]}$ (1)

其中, $[n-SO_4^{2-}]$ 为颗粒相中 SO₄²⁻ 的摩尔浓度, $[n-SO_2]$ 为气相 SO₂的摩尔浓度(mol·m⁻³).

氦转化率(
$$F_n$$
) = $\frac{[n-NO_3^-]}{[n-NO_3^-]+[n-NO_2^-]}$ (2)

其中, $[n-NO_3^-]$ 为颗粒相中 NO3 的摩尔浓度, $[n-NO_2^-]$ 为气相 NO2的摩尔浓度, 单位均为 mol·m^{-3[4 g, l6]}. F_s 、 F_n 值越大, 表示 SO2和 NO2在大气中通过均相和非均相反应转化为二次气溶胶的程度越大.

- 2 结果与讨论(Results and discussion)
- 2.1 硫、氮转化率

采样期间 $SO_2 n NO_2 \ SO_4^2$ 与 $NO_3 \ F_s \ F_n$ 及气象因素的变化趋势如图 1 所示.

夏季 SO₂质量浓度均值为 89.98 µg·m⁻³(31.50—205.11 µg·m⁻³) ,冬季由于燃煤供暖,其质量浓度均 值为 119.09 µg·m⁻³(52.63—252.64 µg·m⁻³) 明显高于夏季,略低于国家日均浓度二级标准 (150 µg·m⁻³).整个采样期间的 SO₂浓度高于北京、上海等大型城市^[10,12],处于较高浓度水平.NO₂质量 浓度夏季为 64.73 µg·m⁻³(28.08—111.80 µg·m⁻³) 与冬季 63.92 µg·m⁻³(20.96—102.48 µg·m⁻³) 的数值 相当.采样期间 NO₂日均质量浓度略低于国家日均浓度二级标准(80 µg·m⁻³),低于北京、上海的 NO₂浓 度,略高于广州的 NO₂浓度水平^[14].采样期间 PM_{2.5}中 SO²⁻₄ 和 NO⁻₃ 的质量浓度夏季高于冬季; 夏季 SO²⁻₄ 和 NO⁻₃ 平均值分别为 16.54 µg·m⁻³(5.02—28.38 µg·m⁻³) ,6.87 µg·m⁻³(1.79—11.69 µg·m⁻³),冬季两 者的均值分别为 12.79µg·m⁻³(5.12—45.64 µg·m⁻³) ,5.53 µg·m⁻³(0.91—15.36 µg·m⁻³) .冬季水溶性离 子的浓度与贾小花等^[20]得到 2011.12—2012.01 期间太原 PM_{2.5}中水溶性离子的浓度范围相当.硫和氮转 化率的较高均值出现在夏季,分别为 0.13(0.03—0.28) 、0.08(0.02—0.13),冬季分别为 0.07(0.03— 0.14)、0.06(0.03—0.10),显示夏季反应激烈的光化学反应促进了硫、氮气粒两相的转化.对比太原 *F*_s、 *F*_n的值,前者远大于后者,说明 SO₂二次转化形成 SO²⁻₄ 的作用要强于 NO₂二次转化形成 NO⁻₃ 的作用.

表1列出了本研究与国内其他城市硫、氮转化率和相关离子的水平.与太原不同,上海和广州 PM_{2.5} 中 SO²⁻、NO₃ 的浓度和硫、氮转化率呈现夏季低冬季高的分布特征,这主要是因为南方常年相对湿度变 化幅度不大,温度对转化率的影响较为突出,夏季过高的温度会导致颗粒物中部分硝酸铵和硫酸铵盐分 解^[2,4,11]、致使硫、氮转化率降低.北京 PM_{2.5}中 SO²⁻、NO₃ 的浓度和硫、氮转化率与太原的分布相同,而离 子的浓度北京较高,这主要是因为同属北方的两个城市虽然气候条件相似,但两地 SO₂、NO₂的大气本底 不同^[12].

表 1 与国内其他城市硫氮转化率和相应离子的浓度比

Table 1	Comparison o	f sulfur a	nd nitrogen	conversion	ratios	and	related	ion
	concentration	between '	Faiyuan an	d other don	nestic o	cities	;	

				•				
+u -=	$SO_4^{2-}/(\mu g \cdot m^{-3})$		$NO_{3}^{-}/(\mu g \cdot m^{-3})$		F _s		F _n	
地点	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter
上海 Shanghai ^[10]	5.43	12.79	2.59	8.53	0.05	0.12	0.03	0.07
广州 Guangzhou ^[16]	6.95	10.47	3.28	6.53	0.13	0.24	0.05	0.10
北京 Beijing ^[12]	18.42	20.96	11.18	12.29	0.39	0.07	0.08	0.05
大百 Taiyuan(木文)	16 54	12 70	6.87	5 53	0.13	0.07	0.08	0.06

2.2 气象因子和 O₃对硫、氮转化的影响

图 1 显示了采样期间大气温度、相对湿度、风速和 O_3 的水平.表 2 给出了 SO_4^{2-} 、 F_s 、 NO_3^- 、 F_n 与 $PM_{2.5}$ 、 温度、相对湿度、 O_3 之间的相关系数.采样期间夏季平均温度为 23 °C(18—27 °C),冬季为-4 °C(-9— 1.4 °C) 表现出典型的季节变化(图 1),与硫、氮转化率变化趋势相似,显示高温有利于光化学反应进 行 进而促进硫、氮转化.采样期间夏季、冬季的相对湿度分别为 43%、42%,夏季相对湿度波动较大 (图 1),与硫、氮转化率相关性不明显(表 2);冬季 SO_4^{2-} 和 NO_3^- 与相对湿度变化较为一致,硫、氮转化过 程受到相对湿度的影响,且 F_n 受相对湿度的促进作用显著(相关系数 0.644,P<0.01)(表 2).采样期间 的风速不超过 4.5 m·s⁻¹,主要以轻风为主.风速超过 3.5 m·s⁻¹时,对气体污染物(SO_2 、 NO_2)有一定的稀 释作用. O_3 是大气中重要的氧化剂,高浓度的 O_3 表示光化学氧化是气体转化的重要过程^[12].本研究采样 期间 O_3 夏季为 85.79 µg·m⁻³(25—185 µg·m⁻³),冬季为 16.24 µg·m⁻³(6.70—44.60 µg·m⁻³)与硫、氮转 化的变化趋势相关性较明显(图 1),整个采样期间, O_3 与硫、氮的转化率相关系数分别为 0.579(P< 0.01)、0.397(P<0.05);夏季 O_3 质量浓度变化幅度较大, SO_4^{2-} 和 NO_3^- 浓度升高存在滞后效应.冬季臭氧 质量浓度较低,变化较小.因此,单个季节 O_3 与硫、氮的转化率并不显著相关(表 2).

采样期间 2013.05.18 和 2013.05.31 两天能见度较低,分别为 6.4、8.1 km.从图 1 可以看出,能见度恶化的时间段,通常相对湿度较高, NH_4^+ 、 SO_4^{2-} 与 NO_3^- 也出现两次相应的高浓度,其中第一次 NH_4^+ 、 SO_4^{2-} 与 NO_3^- 的最高浓度分别为 10.83、19.22、11.69 μ g·m⁻³,第二次 NH_4^+ 、 SO_4^{2-} 与 NO_3^- 的浓度分别为 8.91、20.61、 11.11 μ g·m⁻³.硫、氮转化率也分别在 2013.05.17 和 2013.05.29 两天出现较明显的高值,时间略有提前.

这两个能见度降低典型事件发生期间,硫、氮转化率较高,O₃浓度较高,能见度恶化时,O₃浓度降低.这主要是因为能见度降低前高浓度的O₃利于硫、氮在颗粒物表面或液滴相中发生转化生成硫酸盐和硝酸盐. 硫酸盐和硝酸盐能够增加气溶胶含水量,在较高的相对湿度下使气溶胶粒径变大,散光性增强,致使大 气能见度降低^[4,18].此时,O₃的光化学反应被限制而浓度降低,最终导致 2013 年 5 月 18 日和31 日两天 硫、氮转化率降低.2013.05.19 和 2013.06.01 两天风速较大,对污染物有驱散作用.颗粒物浓度下降,可溶 性粒子(SO₄²⁻ 与 NO₃)的浓度下降,气体污染物 SO₂和 NO₂的浓度被稀释降低,能见度升高,O₃的光化学 反应限制被解除,浓度开始升高,预示硫、氮转化率开始升高.

			-					
	夏季 Summer				冬季 Winter			
	PM _{2.5}	Т	RH	03	PM _{2.5}	Т	RH	03
SO_4^{2-}	0.003	0.226	0.106	0.246	0.817**	-0.188	0.512^{*}	-0.314
F_{s}	-0.153	0.222	0.108	0.431	0.534^{*}	-0.291	0.377	0.019
NO_3^-	-0.096	0.263	0.420	0.371	0.806 **	-0.215	0.799**	-0.600**
F _n	-0.094	0.257	0.369	0.541^{*}	0.681 **	-0.491*	0.644 **	-0.320

表 2 F_s 、 F_n 和相应离子与 PM_{2.5}、温度、相对湿度和 O₃的相关系数 **Table 2** Correlation coefficients among F_s , F_n , SO²⁻₄, NO⁻₃ and relative humidity, temperature, O₃

注:* 表示 0.05 水平上显著相关; * * 表示 0.01 水平上显著相关.

* Correlation is significant at the 0.05 level (2+ailed); \star Correlation is significant at the 0.01 level (2+ailed).

已有文献报道 SO_4^{2-} 来源于气相中 SO_2 和 •OH自由基的氧化反应或来源于液相中的金属催化和 H_2O_2/O_3 氧化反应以及非均相反应(如云内过程) ^[8,11,14].采样期间 F_s 与温度和 O_3 的显著相关性以及冬季 SO_4^{2-} 与 $PM_{2.5}$ 、相对湿度的显著相关性说明太原地区 SO_4^{2-} 主要来源于均相气相反应,冬季部分 SO_4^{2-} 源于非均相反应.夏季 NO_3^- 和 F_n 与相对湿度、 O_3 浓度呈正相关,说明此季节氮转化以均相液相反应为 主;冬季 NO_3^- 生成还与 $PM_{2.5}$ 的质量浓度呈正相关,与温度呈负相关.低温易于水汽的凝结、非均相反应 受相对湿度、 O_3 和颗粒物的浓度影响较大,所以冬季太原地区 NO_3^- 主要源于非均相反应.

2.3 氨对硫、氮转化的影响

氨是大气中最主要的碱性气体成分^[21],易溶于水,大气中氨的存在能够影响液相中硫、氮转化发生 介质的酸碱度,进而影响其大气转化进行.氨在城市大气中易与大气环境过程产生的二次污染物硫酸和 硝酸结合成盐,形成硫酸铵和硝酸铵,为大气细粒子极为重要的组成部分^[6,22-23].

图 1 给出了 $PM_{2.5}$ 中 NH_4^+ 的浓度水平 ,冬季的平均浓度为 8.71 $\mu g \cdot m^{-3}$ (2.38—31.29 $\mu g \cdot m^{-3}$) 夏季 高温导致颗粒相铵盐分解挥发 , $PM_{2.5}$ 中 NH_4^+ 的平均质量浓度较低为 6.50 $\mu g \cdot m^{-3}$ (0.65— 11.50 $\mu g \cdot m^{-3}$).从图 1 可以看出 NH_4^+ 与 SO_4^{2-} 、 NO_3^- 的质量浓度变化趋势大致相同 ,从图 2 看出 NH_4^+ 与 SO_4^{2-} 、 NO_3^- 的当量浓度相关性较好 相关系数分别为 0.539(*P*<0.01)、0.636(*P*<0.01) 表明氨对太原地 区硫、氮转化的促进作用显著.

图 2 NH_4^+ 与 SO_4^{2-} 、 NO_3^- 的当量浓度关系

Fig.2 Relationship between the equivalent concentration of NH_4^+ and SO_4^{2-} , NO_3^-

Orel 等^[24]得到,如果不考虑气相中硫的转化, $[n-NH_4^+]/([n-NO_3^-]+2[n-SO_4^{2^-}])$ 的值为1, NH_4^+ 主 要以硝酸铵形式存在; 如果考虑硫在气相中的转化, 进而全部吸附在颗粒相而与氨结合, 且不受溶质 pH 的影响,则此值降低为0.43.通过计算本研究在夏、冬季 $[n-NH_4^+]/([n-NO_3^-]+2[n-SO_4^{2^-}])$ 的值分别为 0.77、1.36.夏季温度相对较高, 蒸汽压较小的铵盐易分解, 因此颗粒物中铵盐的浓度较低, 稳定度较高的 硫酸铵盐在颗粒物中占比重较大.所以 $[n-NH_4^+]/([n-NO_3^-]+2[n-SO_4^{2^-}])$ 的值处于0.43—1范围内; 当 温度低于15℃时, 硝酸盐大部分以颗粒物的形式存在^[7].冬季硝酸铵在铵盐存在形式中所占的比重增 加, 且 $[n-NH_4^+]/([n-NO_3^-]+2[n-SO_4^{2^-}])$ 大于1,说明冬季 NH_4^+ 主要以硝酸铵形式存在, 且 NH_4^+ 充足, 还 可以其他多种形式大量存在.

3 结论(Conclusion)

本文基于太原市大气中 SO₂、NO₂和 PM_{2.5}中 NH⁺₄、SO²⁻₄ 与 NO⁻₃ 的质量浓度,探讨其硫、氮转化率 F_s 和 F_n 结果表明,太原市大气 NO₂和 PM_{2.5}中 SO²⁻₄ 与 NO⁻₃ 的质量浓度分布相同,均为夏季高于冬季.大气 中 SO₂由于燃煤供暖冬季显著高于夏季.参照硫和氮气固两相转化模型, F_s 夏季(0.13)高于冬季(0.07), F_n 变化特征同 F_s ,夏、冬季分别为 0.08、0.06.硫、氮转化受多种因素共同影响,且不同季节主导因素不同. 温度和 O₃浓度对整个采样期间的硫转化起主要作用,PM_{2.5}浓度和相对湿度在冬季对 SO²⁻₄ 的生成也起 一定的促进作用.说明太原地区二次粒子 SO²⁻₄ 主要来源于均相气相反应,冬季部分源于非均相反应.夏 季相对湿度和 O₃浓度可明显促进氮转化,说明此季节氮转化以均相液相反应为主;冬季 NO⁻₃ 和 F_n 还与 PM_{2.5}的质量浓度呈正相关,与温度呈负相关.所以冬季太原地区二次离子 NO⁻₃ 主要源于非均相反应.此 外 NH⁺₄与 SO²⁻₄、NO⁻₃ 的线性分析表明,大气氨有助于气相中的硫、氮向颗粒相转移并转化.气溶胶中氮、 硫转化过程复杂,影响因素众多,仍需在后续的工作中进一步研究.

参考文献(References)

- [1] 曹玲娴,耿红,姚晨婷,等.太原市冬季灰霾期间大气细颗粒物化学成分特征[J].中国环境科学,2014,34(4):837-843.
 CAOLX,GENGH,YAOCT, et al. Investigation of chemical compositions of atmospheric fine particles during a wintertime haze episode in Taiyuan City [J]. China Environmental Science, 2014, 34(4):837-843(in Chinese).
- [2] ZHANG Q, QUAN J, TIE X, et al. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China [J]. Science of the Total Environment, 2015, 502: 578-584.
- [3] HE K, ZHAO Q, MA Y, et al. Spatial and seasonal variability of PM_{2.5} acidity at two Chinese megacities: Insights into the formation of secondary inorganic aerosols [J]. Atmospheric Chemistry and Physics , 2012 , 12(3): 1377–1395.
- [4] CHEN J, QIU S, SHANG J, et al. Impact of relative humidity and water soluble constituents of PM_{2.5} on visibility impairment in Beijing, China [J]. Aerosol and Air Quality Research, 2014, 14(1): 260–268.
- [5] LIU S, HU M, SLANINA S, et al. Size distribution and source analysis of ionic compositions of aerosols in polluted periods at Xinken in Pearl River Delta (PRD) of China [J]. Atmospheric Environment, 2008, 42(25): 6284-6295.
- [6] PATHAK R K, WU W S, WANG T. Summertime PM_{2.5} ionic species in four major cities of China: Nitrate formation in an ammoniadeficient atmosphere [J]. Atmospheric Chemistry and Physics, 2009, 9(5): 1711–1722.
- [7] 胡敏,赵云良,何凌燕.北京冬,夏季颗粒物及其离子成分质量浓度谱分布 [J].环境科学,2005,26(4): 1-6. HU M, ZHAO Y L, HE L Y, et al. Mass size distribution of Beijing particulate matters and its inorganic water-soluble ions in winter and summer [J]. Environmental Science, 2005, 26(4): 1-6(in Chinese).
- [8] 沈振兴,霍宗权,韩月梅,等.采暖期和非采暖期西安大气颗粒物中水溶性组分的化学特征[J].高原气象,2009,28(1): 151-158.

SHEN Z X , HUO Z Q , HAN Y M , et al. Chemical composition of water-soluble ions in aerosols over Xi´ an in heating and non-heating seasons [J]. Plateau Meteorology , 2009 , 28(1): 151–158(in Chinese) .

- [9] PARMAR R S, SATSANGI G S, KUMARI M, et al. Study of size distribution of atmospheric aerosol at Agra [J]. Atmospheric Environment, 2001, 35(4): 693-702.
- [10] WANG Y , ZHUANG G , ZHANG X , et al. The ion chemistry , seasonal cycle , and sources of PM_{2.5} and TSP aerosol in Shanghai [J]. Atmospheric Environment , 2006 , 40(16) : 2935–2952.
- [11] KHODER M I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area [J]. Chemosphere, 2002, 49(6): 675-684.

- [12] WANG Y, ZHUANG G, TANG A, et al. The ion chemistry and the source of PM_{2.5} aerosol in Beijing [J]. Atmospheric Environment, 2005, 39(21): 3771-3784.
- [13] OHTA S, OKITA T. A chemical characterization of atmospheric aerosol in Sapporo [J]. Atmospheric Environment, Part A General Topics, 1990, 24(4): 815-822.
- [14] 朱彤,尚静,赵德峰.大气复合污染及灰霾形成中非均相化学过程的作用[J].中国科学:化学,2010,40(12):1731-1740. ZHU T, SHANG J, ZHAO D F. The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze [J]. Science China Chemistry, 2010,40(12):1731-1740(in Chinese).
- [15] SUN C, ZHAO N, ZHANG Z K, et al. Mechanisms and reaction pathways for simultaneous oxidation of NO_x and SO₂ by ozone determined by *in situ* IR measurements [J]. Journal of Hazardous Materials, 2014(274): 376–383.
- [16] 廖碧婷,吴兑,常越,等. 广州地区 SO₄²、NO₃、NH₄⁺ 与相关气体污染特征研究[J]. 环境科学学报 2014 34(6):1551-1559. LIAO B T, WU D, CHANG Y, et al. Characteristics of particulate SO₄²、NO₃、NH₄⁺ and related gaseous pollutants in Guangzhou[J]. Acta Scientiae Circumstantiae 2014 34(6): 1551-1559(in Chinese).
- [17] 王美,崔阳,闫雨龙,等.太原市大气污染防治战略研究[J].环境科学与管理,2014,39(8): 18-21.
 WANG M, CUI Y, YAN Y L, et al. Study on pollution control strategy in Taiyuan [J].Environmental Science and Management, 2014, 39 (8): 18-21(in Chinese).
- [18] 李艳红,赵彩萍,荆肖军,等.太原地区灰霾天气特征及影响因子分析[J].气候与环境研究,2014,19(2): 200-208. LI Y H, ZHAO C P, JING X J, et al. Characteristics of dust haze in taiyuan and its causative factors [J]. Climatic and Environmental Research, 2014, 19(2): 200-208(in Chinese).
- [19] 郭晓方,崔阳,王开扬,等.近3年太原市夏季降水的化学特征研究[J].环境科学,2015,36(2):388-395. GUO X F, CUI Y, WANG K Y, et al. Chemical characteristics of 3-year atmospheric precipitation in summer, Taiyuan [J]. Environmental Science, 2015,36(2): 388-395(in Chinese).
- [20] 贾小花,解静芳,马翔,等. 太原市冬季 PM_{2.5}水溶性组分污染特征分析[J]. 中国环境科学,2013(4): 599-604. JIA X H, XIE J F, MA X, et al. Analysis of water-soluble constituents in winter of PM_{2.5} in Taiyuan City[J]. China Environmental Science, 2013(4): 599-604(in Chinese).
- [21] 王明星.大气化学[M].第二版,北京,气象出版社,1999:135.
 Wang M X.Atmospheric chemistry [M]. Second edition, Beijing: Meteorology Press, 1999:135(in Chinese).
- [22] QUAN J , ZHANG X. Assessing the role of ammonia in sulfur transformation and deposition in China [J]. Atmospheric Research , 2008 , 88 (1): 78-88.
- [23] CUI J, ZHOU J, PENG Y, et al. Atmospheric wet deposition of nitrogen and sulfur in the agroecosystem in developing and developed areas of Southeastern China [J]. Atmospheric Environment, 2014, 89: 102–108.
- [24] OREL A E, SEINFELD J H. Nitrate formation in atmospheric aerosols [J]. Environmental Science & Technology, 1977, 11(10): 1000-1007.