第35卷第2期	热带地理	Vol.35, No.2
2015年3月	TROPICAL GEOGRAPHY	Mar., 2015

苏泳娴,王重阳,张虹鸥,陈修治,林晖,许喜逢. 基于 DMSP/OLS 夜间灯光数据提取城镇建设用地的邻域分析法[J]. 热带地理,2015,35(2):193-201.

SU Yongxian, WANG Chongyang, ZHANG Hong'ou, CHEN Xiuzhi, LIN Hui, XU Xifeng. Neighborhood Statistics Analysis Method for Extracting the Built-up Urban Area with DMSP/OLS Night Light Data[J]. Tropical Geography, 2015, 35(2): 193-201.

基于 DMSP/OLS 夜间灯光数据提取 城镇建设用地的邻域分析法

苏泳娴^{1,2,3},王重阳^{1,2,3},张虹鸥²,陈修治⁴,林 晖⁵,许喜逢⁶

(1. 中国科学院 广州地球化学研究所,广州 510640; 2. 广州地理研究所,广州 510070; 3. 中国科学院大学,北京 100049; 4. 中国科学院
华南植物园,广州 510650; 5. 广东环境保护工程职业学院,广东 佛山 528216; 6. 安徽省濉溪县第二中学,安徽 淮北 235100)

摘 要:为提高城镇建设用地提取的精度,文章提出一种基于 DMSP/OLS 夜间灯光数据邻近象元特征差异的提取 城镇建设用地的邻域分析方法。该方法主要是通过栅格运算识别建设用地和非建设用地的突变,结合阈值法准确 提取建设用地边界。将该方法应用于 2009 年中国大陆 34 个主要城市的建设用地提取,并与基于 TM 数据以及基 于 DMSP/OLS 数据传统全局阈值法和局部优化法提取的建设用地进行比较。结果显示,该方法提取的建设用地象 元数与 TM 影像提取的象元数呈较好的相关性(*R*=0.966),均方根误差为 191.64 个象元,相对精度为 82.79%, 景观形状指数、聚集度指数、边缘面积比指数和连接度指数也具有较高的相似性(*R*分别为 0.475 4、0.366 2、0.858 9 和 0.915 3)。该方法不仅能准确识别大面积的城市建设用地斑块边界,而且不会漏掉小面积的城市建设用地斑块, 克服了传统全局阈值法和局部优化法的缺点。

关键词:DMSP/OLS;夜间灯光影像;城镇建设用地;城镇扩展;遥感

文献标志码:A

文章编号:1001-5221(2015)02-0193-09

DOI:10.13284/j.cnki.rddl.002699

中图分类号:F301.2

30 年的城镇化进程使得中国大陆城镇建设用 地翻了近 3.37 倍^[1-2],导致大量的耕地、林地、湿地 被占用,对生态环境造成了极大的威胁和破坏,直 接影响着城市的宜居性和经济的可持续发展^[3]。因 此,加强对中国城镇建设用地扩展的监测和评估显 得尤为重要,已被学者认为是降低中国大陆城市化 过程风险水平的有效途径之一^[4-5]。

近年来,中高分辨率的多光谱遥感技术得到了 充足发展,也在城镇建设用地提取中得到了广泛应 用^[6],如 IKONOS、Quickbird、Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper plus (ETM+)、 Systeme Probatoire d'Observation de la Terre (SPOT)/ High Resolution Visible (HRV) images 等^[7-11]。但是, 多光谱遥感影像在提供较高空间分辨率的同时,也 导致其空间覆盖度受到极大的限制。一景中高分辨 率的多光谱遥感影像往往无法覆盖整个城市^[12],而 对于省级、地区、国家和全球尺度的时间序列建设 用地监测,获取高质量全覆盖的时间周期较长,甚 至可能长达5年甚至10年。然而,随着中国经济的 迅速发展和建设用地的快速扩展,较高分辨率的多 光谱遥感影像在揭示快速城镇化背景下建设用地变 化的时空特征规律具有一定的局限性,不利于政府 及时制定正确的城镇扩展指引方案^[5]。

美国军事气象卫星 DMSP(the Defense Meteorological Satellite Program)搭载的 OLS (Operational Line-scan System)传感器能有效获取全球夜间灯光数据,是从事大尺度城市化研究的一种有效的数据获取手段^[13-15]。20世纪90年代,Croft^[15]和Kramer^[16]基于 DMSP/OLS 夜间灯光数据实现了城镇建设用地的提取,随后相关学者在全球^[17-18]、国家^[19-20]和区域尺度^[21-24]开展了大量的研究。总结来看,目前主要有3种方法:一是经验阈值法,包括

作者简介:苏泳娴(1985-),女,广东中山人,博士,助理研究员,研究方向为城市生态环境与低碳城市,(E-mail) suyongxian@gdas.ac.cn。

收稿日期: 2015-01-21; 修回日期: 2015-03-29

基金项目:国家自然科学基金 (41401055);惠州市科技计划项目(2013B020006005)

全局阈值法和区域阈值法;二是数学模型法,如支 持向量机法^{[21}和混合象元线性分解法^{[23}];三是图突 变法^[21]。其中,数学模型法比较复杂,在大尺度、 长时间序列的城镇建设用地提取中普适性不好;经 验阈值法主观性较强,由于夜间灯光的发散现象, 简单的设置阈值往往高估大面积的城镇建设用地面 积,而低估甚至忽略小面积的城镇建设用地斑块; 而图突变法不仅简单易行,而且能消除人为主观的 影响,是一种相对有效的方法。

鉴于 DMSP/OLS 夜间灯光数据与 DEM 栅格数 据特征的相似性,本研究借鉴 DEM 栅格数据的邻 域分析方法(Neighborhood Statistics Analysis, NSA), 构建一套基于 DMSP/OLS 夜间灯光邻近象元特征差 异的邻域分析方法,并基于 2009 年 DMSP/OLS 稳定 夜间灯光数据对中国内地主要城镇建设用地进行提 取和验证,以期为实现我国城镇建设用地扩展的监 测和评估提供一种快速、有效方法。

1 数据来源

DMSP/OLS 夜间灯光数据是由美国国家海洋和 大气管理局 NOAA(National Oceanic and Atmospheric Administration)下属的国家地球物理数据中心 NGDC(National Geophysical Data Center)提供,获 取时间为当地时间的T 20:30-21:30^[4,14]。OLS 传感 器有可见光(VNIR, 0.4~1.0 µm)和热红外(TIR, 10~13 µm)2个通道,图像总幅宽3000 km,传感 器采样距离为0.55 km。夜间灯光数据为可见光通道, 数据灰度值范围1~63,空间分辨率为0.008 333°,该 数据消除了云及火光等偶然噪声影响,主要是城市、 村镇以及其他类型的稳定灯光^[4]。由于同一时期不 同传感器获取的夜间灯光数据之间有轻微差异,且 存在一些光噪声,本文采用Liu等^[19]建立的方法对 2009 年夜间灯光数据进行融合去噪、切割、相对辐 射标定以及地理坐标转换等预处理。

验证数据使用 2009 年覆盖北京、成都、广州、 济南、南京、南宁、青岛、上海、沈阳、苏州、无 锡、武汉、长春、长沙、福州、贵阳、哈尔滨、海 口、杭州、合肥、呼和浩特、昆明、拉萨、兰州、 南昌、石家庄、太原、天津、乌鲁木齐、西安、西 宁、银川、郑州、重庆等中国大陆 34 个主要城市的 Landsat TM/ETM+数据。Landsat TM/ETM+数据源由 美国地质调查局(United States Geological Survey,简 称 USGS)网站提供。所有数据质量良好,无云, 地面特征清晰,图像干扰较少。影像数据处理采用 遥感图像处理软件平台 ENVI、Erdas 以及地理信息 系统软件平台 ArcGIS。

2 研究方法与技术路线

DMSP/OLS 夜间灯光影像与 DEM 高程数据相 似,存在着明显的"峰"和"陷",在此分别称为"亮 源"和"暗源"。亮源与暗源之间存在一个明显的突 变区域,即建设用地与非建设用地的分界线。邻域 统计函数(Neighborhood Statistics)是一种邻域函数, 可以通过函数对单元值和这一单元周围在指定邻域 单元值处理的基础上进行统计分析,然后将这一值 输出到相应单元位置。通过指定单元格最大邻域统 计值与最小邻域统计值的减法运算,可以有效识别 突变区域,是地形分析的一种常用方法。

基于 Neighborhood Statistics 原理,利用 ArcGIS 平台提供的 Neighborhood Statistics 表面分析工具, 借鉴地形起伏度分析方法,提出一种基于邻近象元 特征差异从 DMSP/OLS 夜间灯光数据中提取城镇建 设用地的邻域分析法。具体步骤为:首先对预处理 后的DMSP/OLS夜间灯光数据做3×3单元格最大值 邻域计算、3×3单元格最小值邻域计算和5×5单 元格最小值邻域计算,分别生成栅格文件1 (NB_MAX_3)、栅格文件2(NB_MIN_3)和栅格文 件3(NB_MIN_5)。然后用NB_MAX_3、NB_MIN_5 分别和 NB_MIN_3 做减法栅格运算(图 1)。其中, NB_MAX_3减去 NB_MIN_3 得到的是起伏度变化文 件(NB_QFD)。通过试验发现,以夜间灯光数值(DN) = 8 为阈值对 NB_QFD 进行分类, DN> 8 的区域便 是建设用地和非建设用地的分界带。分界带被识别 之后,主要的建设用地即可以被提取出来。但是在 分界带内仍然有一部分的建设用地未被识别出来, 此时用 NB_MIN_5 减去 NB_MIN_3 生成的栅格文件 (NB_BJ), 通过试验发现, 以 DN=-7 为阈值进行分 类,当 DN<-7 时能较好地把分界带中的建设用地 提取出来。为清晰展示该方法,以广州市 1996-2009年建设用地提取为例作详细介绍。

2.1 提取分界带外的建设用地

类似于 DEM 栅格数据, DMSP/OLS 夜间灯光数 据中主建成区和非建设用地的夜间灯光变化较小, 而分界带内的夜间灯光数值变化比较大。因此,在 起伏度变化文件(NB_QFD)中, DN值较大的区域 即是建设用地和非建设用地的分界带,是建设用地 和非建设用地的混合区域。比较发现,当 DN>8 时, 可以有效识别建设用地和非建设用地的分界带(图

2a-d 黄色部分)。当分界带被识别之后,研究区主 要被分为 2 个部分:分界带、建设用地或非建设用 地。由于分界带外建设用地的 DMSP/OLS 夜间灯光 数值一般大于邻近的非建设用地夜间灯光数值,可 根据这一特征实现自动提取分界带外建设用地(图 2e-h),最终图像被分为 3 个部分:建设用地(红 色部分)、分界带(黄色部分)、非建设用地(绿色 部分)(见图 2a-d)。

2.2 提取分界带内的建设用地

预处理后的 DMSP/OLS 夜间灯光数据,其分界 带内的 DN 值波动比较大、分界带外的 DN 值变化 很小,因此,在分界带区域,5×5单元格最小值邻 域分析生成的栅格数据(NB_MIN_5)DN 值明显小 于 3×3 单元格最小值邻域分析生成的栅格数据 (NB_MIN_3)DN 值,而在分界带外 5×5 单元格最 小值邻域分析生成的栅格数据(NB_MIN_5)DN 值 与 3×3 单元格最小值邻域分析生成的栅格数据 (NB_MIN_3)DN 值相差很小,基本相等。所以, 两者做减法栅格运算可以有效识别分界带内的建设 用地。通过比较发现,当输出栅格(NB_BJ)的DN< -7 时效果最为理想(图 3a-d),提取结果如图 3eh所示。

图 2 广州市分界带外部建设用地的提取过程 Fig.2 Extracting the construction lands outside of the transition zones of Guangzhou City

2.3 提取整个建设用地

叠加分界带外的建设用地和分界带内的建设用 地提取结果,得到整个城市的建设用地(图4)。

3 精度验证与比较

3.1 建设用地提取精度验证

建设用地面积精度和图斑形状相似程度是衡量

建设用地提取的重要指标。由于 Landsat TM 影像的 空间分辨率相对较高(30×30 m²),学者普遍认为 基于 TM 影像提取的建设用地图斑是可靠的验证数 据源^[22,24-26],鉴于 TM 与 DMSP/OLS 夜间灯光数据的 空间分辨率差异,首先将 2009 年 TM 影像提取的建 设用地图斑重采样成 1 km 空间分辨率,然后开展精 度验证。结果显示,基于 DMSP/OLS 邻域分析方法

图 4 广州市建设用地提取结果 Fig.4 The entire construction lands extracted from NSL of Guangzhou City

提取的建设用地象元数与 TM 影像提取的象元数呈 较好的相关性 ($R^2 = 0.966$),均方根误差为 191.64 个象元数,相对精度为 82.79% (图 5)。另外,本

研究选取景观形状指数、聚集度指数、边缘面积比 和连接度指数来验证提取结果的形状相似程度。结 果显示,基于 DMSP/OLS 邻域分析法和 TM 影像提

取建设用地图斑的景观形状指数、聚集度指数、边缘面积比和连接度指数决定系数(*R²*)分别达到 0.4754、0.3662、0.8589和0.9153,具有较高的相 似性(表1和图6)。可见,DMSP/OLS 邻域分析法 是一种有效的建设用地遥感提取方法,能满足中国 主要城市的建设用地监测需求。

3.2 与其他方法的比较

全局阈值法(Global-Fixed Threshold Method, GF)和局部优化法(Local-Optimized Threshold Method,LO)是目前使用较为广泛的2种DMSP/OLS 方法。全局阈值法是将DN值从1~63分别生成63 条城镇边界,将与TM/ETM+影像提取建设用地结果 最为吻合的那一个值作为最优阈值,提取所有城市 的建设用地。而局部最优法是在利用城市边界切割 原始影像的基础上,为每个城市各设置一个最优DN 阈值,使得提取的每个城市面积尽可能地接近TM/

衣! 动域分析法与!M 影像旋取建设用地的京观指数为比	以刘妃
-----------------------------	-----

	景观形状指数				边缘面积	边缘面积比指数		连接度指数	
城巾 -	TM	NSA	TM	NSA	ТМ	NSA	TM	NSA	
北京	6.35	5.93	0.86	0.92	26.52	29.08	93.31	91.60	
成都	6.02	6.28	0.65	0.77	32.76	28.59	95.19	98.86	
广州	3.99	5.51	0.72	0.59	27.31	30.95	93.55	95.94	
济南	6.03	6.25	0.54	0.47	29.69	27.72	82.67	84.33	
南京	5.50	6.79	0.48	0.57	43.22	36.92	90.67	100.00	
南宁	3.98	3.40	0.71	0.68	26.45	24.62	96.14	100.00	
青岛	7.63	6.95	0.62	0.58	27.51	25.28	87.17	94.77	
上海	10.59	7.30	0.64	0.43	84.66	83.42	100.00	99.91	
沈阳	6.55	6.89	0.66	0.67	32.58	37.47	79.04	86.81	
苏州	12.38	8.45	0.71	0.87	35.77	34.18	95.94	93.55	
无锡	6.07	8.34	0.55	0.66	43.39	37.78	100.00	100.00	
武汉	5.32	5.11	0.74	0.67	29.30	26.60	98.55	100.00	
长春	6.02	6.44	0.68	0.87	39.25	32.19	87.19	81.88	
长沙	4.82	6.02	0.78	0.88	25.97	22.70	85.27	96.36	
福州	4.21	8.05	0.84	0.67	27.50	31.02	98.95	98.49	
贵阳	3.64	4.58	0.76	0.58	28.35	24.39	100.00	100.00	
哈尔滨	4.84	9.28	0.78	0.87	27.55	31.74	50.75	48.52	
海口	0.76	1.88	0.62	0.49	10.12	6.39	100.00	100.00	
杭州	9.05	8.18	0.44	0.42	35.43	31.92	79.59	81.03	
合肥	4.78	4.81	0.65	0.78	29.54	22.80	91.76	93.33	
呼和浩特	3.96	4.78	0.82	0.88	21.82	20.13	94.52	94.87	
昆明	4.73	6.16	0.83	0.68	19.81	22.41	89.72	87.93	
拉萨	4.54	3.36	0.68	0.57	37.94	35.65	80.95	78.57	
兰州	3.11	4.90	0.83	0.68	19.35	15.48	90.29	85.83	
南昌	5.95	4.34	0.73	0.67	32.53	28.22	99.80	100.00	
石家庄	5.84	6.64	0.84	0.88	17.40	19.06	96.98	99.21	
太原	5.52	6.09	0.73	0.97	31.45	30.05	99.45	100.00	
天津	6.37	7.91	0.90	0.96	21.75	31.49	91.36	87.56	
乌鲁木齐	2.80	4.78	0.76	0.67	29.97	29.34	99.26	98.90	
西安	3.01	5.22	0.84	0.78	18.60	24.75	96.88	91.21	
西宁	3.06	3.66	0.76	0.68	28.52	25.67	100.00	100.00	
银川	3.82	3.35	0.73	0.58	30.10	24.93	100.00	100.00	
郑州	6.47	6.94	0.81	0.97	21.76	28.28	96.63	98.27	
重庆	8.36	10.11	0.72	0.98	34.38	22.53	46.51	38.76	

2期

图 6 邻域分析法与 TM 影像提取结果景观指数的对比 Fig.6 Scatter diagrams between the landscape indices of DMSP/OLS NSL-derived urban areas and Landsat TM/ETM+ -derived urban areas

ETM+影像提取建设用地面积^[22]。本研究利用混淆矩阵的方法将基于邻域分析方法的提取结果,与全局

Tah 2

阈值法和局部优化法进行量化对比(表2)。结果显示,全局阈值法、局部优化法和邻域分析法的相对

表 2	3 种方法提取建设用地面积精度对比
Compari	son of urban areas extracted results from the three methods

松吉	TM 全局阈值:		去(GF)		法(LO)	邻域分析法(NSA)	
功以1[]	象元数	象元数	全局精度	象元数	OA	象元数	全局精度
北京	2 462	4 790	0.876	2 665	0.83	2 704	0.892
成都	1 102	1 290	0.817	1 065	0.843	1 160	0.912
广州	1 335	2 334	0.772	1 458	0.802	1 882	0.845
济南	793	967	0.832	739	0.828	890	0.864
南京	1 037	1 435	0.795	1 031	0.774	1 222	0.868
南宁	367	463	0.891	360	0.898	449	0.956
青岛	1 043	2 701	0.79	1 030	0.875	1 381	0.877
上海	2 074	2 679	0.778	2 234	0.779	2 319	0.857
沈阳	1 061	1 725	0.869	1 078	0.825	969	0.91
苏州	2 019	3 208	0.865	2 031	0.862	2 165	0.891
无锡	801	1 476	0.783	781	0.839	1 052	0.883
武汉	944	964	0.823	964	0.803	1 035	0.894
长春	707	1 276	0.834	694	0.915	823	0.951

(转下页)

城市	ТМ	全局阈值法(GF)		局部优化法(LO)		邻域分析法(NSA)		
城山	象元数	象元数	全局精度	象元数	OA	象元数	全局精度	
长沙	577	461	0.881	568	0.854	582	0.934	
福州	514	727	0.912	502	0.893	597	0.933	
贵阳	340	329	0.94	329	0.9	477	0.939	
哈尔滨	804	1 777	0.765	791	0.875	1 147	0.966	
海口	96	135	0.743	97	0.834	105	0.846	
杭州	1 087	2 058	0.822	1 132	0.852	1 324	0.936	
合肥	668	864	0.796	677	0.832	724	0.908	
呼和浩特	535	781	0.875	531	0.92	638	0.963	
昆明	510	1 004	0.798	500	0.917	724	0.972	
拉萨	137	178	0.876	134	0.903	177	0.983	
兰州	401	533	0.868	401	0.817	479	0.958	
南昌	459	554	0.879	456	0.863	514	0.912	
石家庄	968	1 111	0.894	955	0.874	1 081	0.915	
太原	607	934	0.845	594	0.832	781	0.902	
天津	2 044	2 971	0.888	2065	0.902	2 442	0.959	
乌鲁木齐	558	634	0.907	556	0.885	623	0.936	
西安	786	881	0.869	772	0.9	802	0.956	
西宁	202	343	0.901	208	0.912	252	0.967	
银川	335	532	0.864	333	0.845	462	0.911	
郑州	821	1 084	0.953	823	0.9	936	0.892	
重庆	1 504	1 005	0.853	1 499	0.893	1 706	0.97	
平均	873.47	1 300.11	0.848 6	883.91	0.861 1	1 018.35	0.9194	

(续表 2)

精度分别为 84.86%、86.11%和 91.94%,可见,全 局阈值法和局部优化法的面积精度较差,邻域分析 法则相对较好。为了更好地对比提取结果,本研究 展示了分别使用邻域分析方法、全局阈值法和局部 优化法提取的部分城市建设用地图斑(图7)。通过 比较发现,全局阈值法和局部优化法均具有一定的 缺点。其中全局阈值法一般会高估城镇建设用地面 积,局部优化方法提取的斑块形状与 TM 提取的结 果相差较大。且由于夜间灯光的发散效应,两者均 会过多估算大斑块的城市建设用地,低估甚至忽略 小斑块的城市建设用地。而邻域分析法能很好地克 服两者的缺点,最大程度地提取接近 TM 影像的建 设用地斑块形状。

4 结论

本研究构建了基于 DMSP/OLS 夜间灯光数据自动提取城镇建设用地的邻域分析法。该方法主要基于 Neighborhood Statistics 原理,利用 ArcGIS 平台提供的 Neighborhood Statistics 表面分析工具,借鉴地形起伏度分析方法,通过多个栅格的复合运算,从 DMSP/OLS 夜间灯光数据中精确提取城镇建设用地。并将邻域分析方法应用于中国 34 个主要城市建

设用地的提取,以TM 影像提取结果作为验证数据 源,以建设用地象元数、景观形状指数、聚集度指 数、边缘面积比和连接度指数作为验证指标,检验 该方法提取结果的图斑面积精度和形状相似度。结 果表明,与TM影像提取结果相比,该方法的提取 图斑面积与 TM 提取结果相近, 而且形状相似度高。 进一步与全局阈值法和局部优化法这 2 种提取结果 相比, 邻域分析法提取的建设用地面积虽略高于局 部优化法的提取结果,但整体精度均高于这2种方 法。由此可见,基于 DMSP/OLS 夜间灯光数据提取 建设城镇建设用地,既避免了使用 TM 等高分辨率 影像,也避免了使用局部优化法切割影像为每个城 市设定阈值的繁琐工作,而且提取斑块面积精度和 形状相似精度高,是一种经济、省时、有效的建设 用地遥感提取方法,可以为区域尺度下城镇建设用 地扩展的监测或者利用夜间灯光数据开展其他相关 研究提供新的途径。

参考文献:

- 周一星,曹广忠.改革开放 20 年来的中国城市化进程[J].城市规 划,1999,23 (12):8-13.
- [2] SU Y X, CHEN X Z, WANG C Y, et al. A new method for extracting built-up urban areas using DMSP-OLS nighttime stable lights: a case

图 7 2009 年中国部分城市建设用地提取结果 Fig.7 Urban areas mapping results of 6 cities in 2009

study in the Pearl River Delta, southern China[J]. GIScience and Remote Sensing, 2015, 52 (2): 218-238.

- [3] 谈明洪,李秀彬,吕昌河,等. 20世纪90年代中国大众城市建设 用地扩张及其对耕地的占用[J]. 中国科学 D 辑:地球科学,2004, 34(12):1157-1165.
- [4] 舒松,余柏蒗,吴健平,等.基于夜间灯光数据的城市建成区提取 方法评价与应用[J].遥感技术与应用,2011,26(2):169-176.
- [5] 陈燕乔,彭长连,陈波.基于遥感监测的广州市建设用地时空变化[J].热带地理,2012,32(6):598-605.
- [6] GONG P, MARCEAU D J, HOWARTH P J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data[J]. Remote Sensing of Environment, 1992, 40 (2): 137-151.
- [7] VAN der Sande C J, DE Jong S M, DE Roo A P J. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment[J]. International Journal of Applied Earth Observation and Geoinformation, 2003, 4(3): 217–229.

- [8] ZHA Y, GAO J, NI S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003, 24 (3): 583-594.
- [9] ZHANG J, ZHANG Y. Remote sensing research issues of the national land use change program of China[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62 (6): 461–472.
- [10] BAN Y, HU H, RANGEL I M. Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping: object-based and knowledgebased approach[J]. International Journal of Remote Sensing, 2010, 31 (6): 1391-1410.
- [11] 卓莉,李强,史培军,等. 基于夜间灯光数据的中国城市用地扩展 类型[J]. 地理学报,2006,61(2):169-178.
- [12] 刘纪远,张增祥,徐新良,等. 21 世纪初中国土地利用变化的空间 格局与驱动力分析[J]. 地理学报, 2009, 64 (12): 1411-1420.
- [13] 杨洋,何春阳,赵媛媛,等.利用 DMSP/OLS 稳定夜间灯光数据提 取城镇用地信息的分层阈值法研究[J].中国图象图形学报,2011,

2 期

16 (4): 666-673.

- [14] 苏泳娴,陈修治,叶玉瑶,等.基于夜间灯光数据的中国能源消费 碳排放特征及机理[J].地理学报,2013,68(11):1513-1526.
- [15] CROFT T A. Nighttime images of the earth from space[J]. Scientific American, 1977, 239 (1): 86–98.
- [16] KRAMER H J. DMSP (Defense Meteorological Satellite Program) and DMSP data availability: visible and infrared images[M]//KRAMER H J. Observation of the Earth and its Environment: Survey of Missions and Sensors. Berlin: Springer Verlag, 1994: 61–67.
- [17] ELVIDGE C D, ZISKIN D, BAUGH K E, et al. A fifteen year record of global natural gas flaring derived from satellite data[J]. Energies, 2009, 2 (3): 595–622.
- [18] ZHANG Q, SETO K C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data[J]. Remote Sensing of Environment, 2011, 115 (9): 2320–2329.
- [19] LIU Z, HE C, ZHANG Q, et al. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008[J]. Landscape and Urban Planning, 2012, 106 (1): 62–72.
- [20] ZHOU Y, SMITH S J, ELVIDGE C D, et al. A cluster-based method to map urban area from DMSP/OLS nightlights[J]. Remote Sensing of

Environment, 2014, 147: 173-185.

- [21] IMHOFF M, LAWRENCE W T, STUTZER D C, et al. A technique for using composite DMSP/OLS "city lights" satellite data to map urban area
 [J]. Remote Sensing of Environment, 1997, 61 (3): 361–370.
- [22] CAO X, CHEN J, IMURA H, et al. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data[J]. Remote Sensing of Environment, 2009, 113 (10): 2205-2209.
- [23] LU D, TIAN H, ZHOU G, et al. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data[J]. Remote Sensing of Environment, 2008, 112 (9): 3668–3679.
- [24] HE C, SHI P, LI J, et al. Restoring urbanization process in China in the 1990 by using non-radiance calibrated DMSP/OLS nighttime light imagery and statistical data[J]. Chinese Science Bulletin, 2006, 51(13): 1614-1620.
- [25] HENDERSON M, YEH E T, GONG P, et al. Validation of urban boundaries derived from global night-time satellite imagery [J]. International Journal of Remote Sensing, 2003, 24 (3): 595–609.
- [26] SMALL C, POZZI F, ELVIDGE C D. Spatial analysis of global urban extent from DMSP-OLS night lights[J]. Remote Sensing of Environment, 2005, 96: 277-291. Doi: 10.1016/j.rse.2005.02.002.

Neighborhood Statistics Analysis Method for Extracting the Built-up Urban Area with DMSP/OLS Night Light Data

SU Yongxian^{1,2,3}, WANG Chongyang^{1,2,3}, ZHANG Hong'ou², CHEN Xiuzhi⁴, LIN Hui⁵, XU Xifeng⁶

(1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 2. Guangzhou Institute of Geography, Guangzhou 510070, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 5. Guangdong Vocational College of Environmental Protection Engineering, Foshan 528216, China; 6. Suixi No.2 Middle School, Suixi 235100, China)

Abstract: Under the current rapid urbanization process, it is an urgent task to map the regional and global built-up urban areas timely and accurately. The DMSP/OLS night light data is one accurate, affordable and convenient dataset to reflect the urban distribution and built-up area boundaries. In order to promote the accurate level, this paper develops a Neighborhood Statistics Analysis method (NSA) for mapping the built-up area, which is based on the relative differences between neighborhood pixels. The proposed method indentifies the mutation region by raster calculating and accurately extracts the built-up area boundaries by combining the threshold method. Then, the proposed NSA method is applied to extract the built-up urban areas of China's 34 main cities in 2009 and the accuracy is validated by using the results extracted from TM data and the global-fixed and local-optimized threshold methods based on DMSP/OLS night light data. Results show that the pixel numbers of NSA-extracted built-up lands match well with those of TM-extracted built-up lands. The coefficient of determination R^2 is 0.966, with root mean squared error RMSE=191.64 and relative accuracy RA=82.79%. The Landscape shape index, aggregation index, edge area ratio index and connectivity index also show highly consistent (R^2 =0.475 4, 0.366 2, 0.858 9 and 0.915 3, respectively). In addition, the proposed NSA method, which significantly overcomes the disadvantages that are associated with the global-fixed and local-optimized threshold methods, accurately maps both the large patches of built-up areas in urban regions and the small patches of built-up areas in surrounding towns.

Key words: DMSP/OLS; night light imagery; urban built-up area; urban expansion; remote sensing