doi: 10. 3969/j. issn. 1004 - 4957. 2015. 07. 019

¹³ C 固体核磁共振技术检测 PM_{2.5} 中的 总有机碳质组分

张向云¹²,李 军^{1*},刘 頔¹,申铠君¹²,张 干¹

(1. 中国科学院 广州地球化学研究所 有机地球化学国家重点实验室,广东 广州 510640;2. 中国科学院大学,北京 100049)

摘 要: 建立了¹³C 固体核磁共振技术检测 PM_{2.5}中总有机碳质组分的分析方法。针对大气气溶胶中有机质组 分的复杂性,探索出较为快速检测 PM_{2.5}中总有机质组分的核磁共振分析方法,使样品无需进行繁琐的前处 理即可获得可靠的化学结构信息。利用该方法获得了太原、新乡、广州冬季 PM_{2.5}样品中总有机物的化学结 构信息。结果表明,该方法操作简单,检测较为快速,准确度较高,可以满足大气气溶胶总有机成分的检测 要求。

关键词: 核磁共振; 灰霾; PM_{2.5}; 组分分析 中图分类号: 0482.532; 0741.6 文献标识码: A 文章编号: 1004 – 4957(2015)07 – 0856 – 04

Study on ¹³C Solid – NMR Technique to Reveal the Organic Components of PM_{2.5}

ZHANG Xiang-yun^{1 2} , LI Jun^{1*} , LIU Di¹ , SHEN Kai-jun^{1 2} , ZHANG Gan¹

 State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: In this paper , a method for rapidly detection the total organic components of $PM_{2.5}$ by using ¹³C solid – NMR technique was reported. Reliable information on the organic chemical structure could be obtained without cumbersome sample pre-treatment by this method. Organic components data of $PM_{2.5}$ from Taiyuan , Xinxiang and Guangzhou were obtained by ¹³C solid – NMR technique. The result showed that the method was simple , rapid and highly sensitive , and could be applied in the determination of total organic composition of atmospheric aerosol. **Key words**: NMR; haze; $PM_{2.5}$; component analysis

 $PM_{2.5}$ 是指空气动力学直径小于 2.5 µm 的颗粒,其粒径小、表面积极大,极易吸附大量的有毒、 有害物质和强致癌物,且在大气中的停留时间长、输送距离远^[1]。碳质颗粒占大气颗粒物组成成分的 10%~50%,含有邻苯二甲酸酯、多环芳烃等有害物质,对全球环境变化、辐射强度、能见度、环境质 量和人类健康有重要影响^[2-5]。但目前对大气有机气溶胶的研究仍处于初级阶段,在许多方面的研究 工作有待进一步展开,特别是气溶胶中有机物的浓度、组成和形成机制的研究。 $PM_{2.5}$ 中有机物种类繁 多且结构复杂,可通过测量有机物的官能团类型来表征有机化合物类型,从而提供其中有机物种类繁 多且结构复杂,可通过测量有机物的官能团类型来表征有机化合物类型,从而提供其中有机物特征和 来源的有益信息^[6]。核磁共振技术(NMR)可用于原子分子结构官能团和动力学行为的微观性质研究, 其在有机化学及相关学科的研究中占有举足轻重的地位。研究人员通过运用¹³C NMR 和 ¹H NMR 技术 研究大气气溶胶中的腐殖酸、干酪根、黑碳、水溶性有机碳等物质,取得了一系列研究成果^[7-13]。但 采用¹³C NMR 对大气气溶胶中总有机碳质组分的检测和研究尚未见报道。本文旨在建立一种¹³C 固体核 磁共振技术检测 $PM_{2.5}$ 中总有机碳质组分的分析方法,以期为开展城市大气雾霾污染的防治工作提供科 学依据。该方法操作简单,能较为快速、准确地检测出 $PM_{2.5}$ 中的总有机碳质组分。

基金项目: 广州市科学研究专项重点项目(201504010002)

收稿日期: 2015-01-15; 修回日期: 2015-03-11

^{*} 通讯作者: 李 军,博士,副研究员,研究方向: 环境有机地球化学,Tel: 020-85291508,E-mail: junli@gig.ac.cn

1 实验部分

1.1 仪器与试剂

XT – 1025 大流量大气采样仪(上海新拓分析仪器科技有限公司),400 MHz 核磁共振仪(瑞士 Bruker AVANCE Ⅲ 400),有机碳/元素碳(OC/EC)分析仪(美国 Sunset Laboratory – 4L),元素分析仪(德国 Element vario EL Ⅲ),马弗炉(上海浦东跃欣科学仪器厂),石英滤膜(英国 Whatman 公司),天平 CPA225D(德国 Sartorius 公司,精度 0.01 mg);标准样品:甘氨酸(美国 Sigma 公司),苯甲酸(德国 Merck 公司)。

1.2 样品采集

太原样品采样点:太原市小店区学府街的中国辐射防护研究院主楼楼顶,楼高为9层,距离学府 街主干道直线距离约50 m,周边为商业区和居民区。新乡样品采样地点:新乡市建设东路46 号,河南 师范大学教学楼楼顶,楼高为5 层,距离建设东路主干道直线距离约150 m,周边为学校和居民区。广 州样品采样地点:广州市天河区五山镇中科院广州地球化学研究所图书馆楼顶,楼高为4 层,距离广 园快速路主干道直线距离约50 m,周边为学校和居民区。采用撞击式空气动力学切割大流量采样仪和 微孔石英纤维滤膜捕集大气中的 PM_{2.5},采样流量为999 L/min,石英滤膜在采样前于450 ℃预烧8 h 以 去除可能的含碳有机物。为避免碳组分挥发,分析前样品用铝箔纸密封于 – 20 ℃冷藏。采样前后对滤 膜衡重,使用电子微量天平称重3次。采样时长为24 h,起始时间:太原为2013 年 12 月 24 日,新乡 为2014 年 1 月 22 日,广州为2014 年 1 月 25 日。

1.3 OC/EC 实验条件

用打孔取样器将滤膜切割成 1.5 cm² 大小的切片。通过 Sunset 有机碳/元素碳(OC/EC) 热光碳分析 仪进行样品的 OC 和 EC 分析,该仪器采用 NIOSH 5040 热光透射的分析方法(TOT)。其原理为:在热 光炉中,先通入氦气气流,在无氧环境中,逐步将样品加热至 250 ℃(OC1),500 ℃(OC2),650 ℃ (OC3) 和 850 ℃(OC4),使样品中的有机碳挥发,然后在含 2% 氧气的氦气环境下,分别于 650 ℃ (EC1),750 ℃(EC2) 和 850 ℃(EC3) 对样品逐步加热使元素碳完全转化为 CO₂。无氧加热释放的有 机碳经催化氧化炉转化生成的 CO₂和有氧加热时段生成的 CO₂均在还原炉中被还原成甲烷(CH₄),再由 火焰离子化检测器(FID) 定量检测。无氧加热时的焦化效应(也称为碳化),可使部分有机碳转变为裂 解碳(OPC)。为检测 OPC 的生成量,用 633 nm 激光全程照射样品,测量加热升温过程中透射光强度 的变化,以初始光强为参照,准确测定 OC 和 EC 的分离点。每天样品测试开始和结束时均用已知量的 CO₂ 气体对仪器进行校准,同时每天测试1个标准样品,每个样品重复测试。标准样品和重复测试样品的 TC 偏差均在 5% 以内; OC 与 EC 的偏差均在 10% 以内。所有样品的测定结果均进行野外空白校正。

1.4 元素分析实验条件

元素分析实验在 Element vario EL III 元素分析仪上完成,采用 CHN 模式,燃烧时间为 70 s,称取 10 mg 样品用锡舟包好置于仪器样品盘上,样品在 950 ℃高温下的氧气环境中经催化氧化而燃烧分解, 生成气体中的非检测气体被去除,被检测的不同组分气体通过特殊吸附柱分离,再使用热导检测器对 相应的气体进行分别检测,氦气作为载气和吹扫气。每个样品测试开始和结束时均用苯甲酸标准品对 仪器进行校准,同时每个样品进行重复测试。标准样品和重复测试样品的结果偏差均在 5% 以内。所 有样品的测定结果均进行标准曲线和空白校正。

2 结果与讨论

2.1 前处理条件的优化

¹³C 固体核磁共振实验信号强度与样品的含碳量直接相关,样品(OC,EC 数据见表 1)处理后准备 核磁实验。实验发现,采样滤膜直接用玛瑙研钵研磨,用元素分析仪分析,测得样品的含碳量很低。 以此样品进行核磁实验,耗时长且信号强度很弱。为提高信号强度,将样品从石英滤膜上剥离富集后, 用元素分析仪分析,其含碳量提高了 2.4~4.1 倍(见图 1)。对从石英滤膜上剥离富集前后的太原样品 进行¹³C 固体核磁共振实验,扫描 10 000 次的结果对照,发现剥离富集后信号强度显著增强。 表 1 太原、新乡和广州地区冬季样品的 PM25, OC, EC 数据

Table 1 PM2.5 , OC , EC concentrations of samples obtained from Taiyuan , Xinxiang and Guangzhou											
Sample	Date	$PM_{2.5}(\mu g \cdot m^{-3})$	OC($\mu g \cdot m^{-3}$)	EC($\mu g \cdot m^{-3}$)	TC(μ g • m ⁻³)	OC/EC					
Taiyuan	2013. 12. 24	609	120. 175	13.507	133.682	8.897					
Xinxiang	2014. 1. 22	348	56.948	10.393	67.342	5.479					
Guangzhou	2014. 1. 25	87	29.126	3.945	33. 171	7.383					

2.2¹³C NMR 实验条件的优化

¹³C 固体核磁共振实验分析在 BrukerAVANCE III 400 MHz 超导核磁共振仪上完成,采用 CP/MAS 固体双共振探头,4 mm ZrO₂ 转子,MAS 转速为 (5±0.003) kHz,¹³C 的检测共振频率为 100.613 MHz,以标准物 Glycine(甘氨酸)标定化学位移。采 样时间为 12.4 μs,谱宽为 100 kHz,90°脉宽4 μs, 循环延迟时间为5s,优化 TOSS 参数,180°脉宽10 μs时,旋转边带峰面积占比由 22.2%降至小于 5%,边带抑制效果较好(见图 2)。扫描 100 次,数 据用 Bruker Topspin 2.1 软件处理。对太原样品富 集处理后分别扫描 50 000 次,100 000 次,150 000 次,结果表明扫描 100 000 次时信号强度已达到定性 定量要求。

2.3 ¹³C NMR 谱图

将样品从石英滤膜上剥离富集,研磨后的样品 装入4 mm ZrO₂转子,在优化条件下各样品的¹³ C NMR 分析谱图如图 3 所示。根据化学位移解析各样 品中有机质的碳质组成^[14],结果见表 2。

总体显示,烷基碳、烷基取代芳香烃碳和氧取 代的芳烃或酚醛树脂类碳是这3个城市冬季大气 PM25样品中有机质的主要组成成分。这几类化合物 是各种燃烧源排放的共有产物^[15],说明大气有机质 污染来源具有多样性。太原市与新乡市样品的核磁 图谱有相似性,这与两市的地理位置较近,以及采 样时均处于冬季采暖期间有关。其中太原市样品中 氧取代的芳烃或者酚醛树脂类碳所占比例在3个城 市中最高,总芳碳占比近50%(见表2)。有研究表 明,生物质燃烧排放最多的组分是羧酸类化合物和 甲氧基酚类化合物^[16],结合其 OC/EC(8.897),推 测除煤燃烧排放外,生物质燃烧也是太原冬季中大 气 PM2.5有机质的主要来源之一。新乡市样品的羰基 类碳所占比例与太原相似,烷基碳的比例增高,结 合其 OC/EC(5.479),推测除了燃煤和生物质燃烧 外,机动车排放也是新乡冬季大气 PM,,有机质的主 要来源之一。广州市样品中烷基碳占比最高,且羟 基碳在3个城市中最高,表明含醇或糖类物质高于 其他两市。结合其 OC/EC(7.383), 广州冬季无采

图1 从石英滤膜上剥离富集前后的样品含碳量

and CPTOSS experiments

Fig. 3 ¹³C NMR spectra of PM_{2.5} during winter's haze period of different regions

暖期,推测除机动车尾气排放外,生物排放是广州冬季大气 PM2.5有机质的主要来源之一。

Table 2	$\simeq 2$ Variations of carbonaceous component in PM _{2.5} during winter's haze period of Taiyuan , Xinxiang and Guangzhou										
Sample	Alkyl carbons (烷基碳 , 0~50 ppm)	Methoxyl car– bons(甲氧基 碳 , 50 ~ 60 ppm)	Hydroxyl car- bons (羟 基 碳 , 60 ~ 90 ppm)	Aromatic car– bons(芳香烃 碳 , 90 ~ 110 ppm)	Alkyl – substi- tuted aromatic carbons (烷基 取代芳香烃 碳 , 110 ~ 130 ppm)	Oxygen - substitu- ted aromatic or phenolic carbons (氧取代的芳族或 酚醛树脂碳,130 ~160 ppm)	Carboxylic carbons (羧化碳 , 160~188 ppm)	Carbonyl carbons (羰基碳 , 188~230 ppm)			
Taiyuan	21.97	1.59	6.60	2.82	19.17	30.30	10.63	6.80			
Xinxiang	28.78	4.03	13.12	5.17	13.30	17.21	11.17	7.22			
Guangzhou	36.86	3.73	16.14	9.23	11.69	10.58	5.50	6.75			

表 2 太原、新乡和广州地区冬季灰霾期 PM_{2.5}中的碳质组分变化

3 结 论

本文建立了¹³C 固体核磁共振技术检测 PM_{2.5}中总有机碳质组分的分析方法。该方法操作简单,检 测速度较快,准确度较高,可以满足大气气溶胶总有机成分的检测要求。同时也为大气沉降物、土壤 有机质、页岩等环境和地质样品中的总有机成分检测提供了参考。

参考文献:

- [1] Tian Y Y, Qiao Y Y. Mod. Chem. Ind. (田原宇, 乔英云.现代化工), 2013, 33(9): 1-4.
- [2] Huang H, Li S C, Cao J J, Zou C W, Chen X G. *Environ. Sci. Technol.* (黄虹,李顺诚,曹军骥,邹长伟,陈新 庚. 环境科学与技术), 2005, 28(3): 112-114.
- [3] Kanakidou M, Seinfeld J H, Pandis S N, Barnes I, Dentener F J, Facchini M C, Van Dingenen R, Ervens B, Nenes A, Nielsen C J, Swietlicki E, Putaud J P, Balkanski Y, Fuzzi S, Horth J, Moortgat G K, Winterhalter R, Myhre C E L, Tsigaridis K, Vignati E, Stephanou E G, Wilson J. Atmos. Chem. Phys., 2005, 5: 1053 1123.
- [4] Dai X L, Li D, Zhang L Z, Jiang S J, Yu Y J, Wang Y J, Dong L J. J. Instrum. Anal. (戴玄吏,李丹,章霖之, 蒋少杰,余益军,王延军,董黎静. 分析测试学报), 2014, 33(3): 349-353.
- [5] Cai X X, Wang B G, Tang X D, Liu H X. J. Instrum. Anal. (蔡小琼, 王伯光, 唐小东, 刘慧璇. 分析测试学报), 2010, 29(9): 888-894.
- [6] Turpin B J , Saxena P , Andrews E. Atmos. Environ. , 2000 , 34: 2983 3013.
- [7] Decesaria S, Facchini M C, Fuzzi S, McFiggans G B, Coe H, Bower K N. Atmos. Environ., 2005, 39: 211-222.
- [8] Li Y C , Yu J Z , Ho S S H , Yuan Z B , Lau A K H , Huang X F. Atmos. Res. , 2012 , 118 : 41 51.
- [9] Decesari S, Fuzzi S, Facchini M C, Mircea M, Emblico L, Cavalli F, Maenhaut W, Chi X, Schkolnik G, Falkovich A, Rudich Y, Claeys M, Pashynska V, Vas G, Kourtchev I, Vermeylen R, Hoffer A, Andreae M O, Tagliavini E, Moretti F, Artaxo P. Atmos. Chem. Phys., 2006, 6: 375 – 402.
- [10] Tagliavini E, Moretti F, Decesari S, Facchini M C, Fuzzi S, Maenhaut W. Atmos. Chem. Phys., 2006, 6: 1003-1019.
- [11] Ziemba L D , Griffin R J , Whitlow S , Talbot R W. Atmos. Environ. , 2011 , 45: 7319 7329.
- [12] Chalbot M C , Nikolich G , Etyemezian V , Dubois D W , King J , Shafer D , Gamboa da Costa G , Hinton J F , Kavouras I G. Environ. Pollut. , 2013 , 181: 167 171.
- [13] Fan X J , Song J Z , Peng P A. Chemosphere , 2013 , 93: 1710 1719.
- [14] Zhao J P , Peng P A , Song J Z , Ma S X , Sheng G Y , Fu J M. Atmos. Environ. , 2011 , 45: 5612 5620.
- [15] Gu Z P. Compositional Variations of Solvent Extractable Organic Compounds in PM_{2.5} and Their Application in Source Apportionment. Shanghai: Shanghai University(顾泽平. 大气细颗粒物有机质组成的变化规律及其在源解析中的应用. 上海: 上海大学), 2009.
- [16] Xie S D, Yu M, Jiang M. Acta Scientiae Circumstantiae(谢绍东,于森,姜明. 环境科学学报), 2006, 26(12): 1933-1939.